Abstract

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly (over the age of 60 years) in western countries. In the early stages of the disease, structural changes may be subtle and cannot be detected. Recently it has been postulated that the mechanical properties of the retina may change with the onset of AMD. In this manuscript, we present a novel, non-invasive means that utilizes synchronized acoustic radiation force optical coherence elastography (ARF-OCE) to measure and estimate the elasticity of cadaver porcine retina. Both regions near the optic nerve and in the peripheral retina were studied. An acoustic force is exerted on the tissue for excitation and the resulting tissue vibrations, often in the nanometer scale, are detected with high-resolution optical methods. Segmentation has been performed to isolate individual layers and the Young’s modulus has been estimated for each. The results have been successfully compared and mapped to corresponding histological results using H&E staining. Finally, 64 elastograms of the retina were analyzed, as well as the elastic properties, with stiffness ranging from 1.3 to 25.9 kPa in the ganglion to the photoreceptor sides respectively. ARF-OCE allows for the elasticity mapping of anatomical retinal layers. This imaging approach needs further evaluation but has the potential to allow physicians to gain a better understanding of the elasticity of retinal layers in retinal diseases such as AMD.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical coherence elastography – OCT at work in tissue biomechanics [Invited]

Kirill V. Larin and David D. Sampson
Biomed. Opt. Express 8(2) 1172-1202 (2017)

Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples

Marjan Razani, Timothy W.H. Luk, Adrian Mariampillai, Peter Siegler, Tim-Rasmus Kiehl, Michael C. Kolios, and Victor X.D. Yang
Biomed. Opt. Express 5(3) 895-906 (2014)

Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms

Marjan Razani, Adrian Mariampillai, Cuiru Sun, Timothy W. H. Luk, Victor X. D. Yang, and Michael C. Kolios
Biomed. Opt. Express 3(5) 972-980 (2012)

References

  • View by:
  • |
  • |
  • |

  1. N. M. Bressler, S. B. Bressler, and S. L. Fine, “Age-related macular degeneration,” Surv. Ophthalmol. 32(6), 375–413 (1988).
    [Crossref] [PubMed]
  2. R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,” N. Engl. J. Med. 358(24), 2606–2617 (2008).
    [Crossref] [PubMed]
  3. U. Chakravarthy, J. Evans, and P. J. Rosenfeld, “Age related macular degeneration,” BMJ 340, 526–530 (2010).
  4. S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
    [Crossref] [PubMed]
  5. M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
    [Crossref] [PubMed]
  6. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
    [Crossref] [PubMed]
  7. L. Krishnan, J. B. Hoying, H. Nguyen, H. Song, and J. A. Weiss, “Interaction of angiogenic microvessels with the extracellular matrix,” Am. J. Physiol. Heart Circ. Physiol. 293(6), H3650–H3658 (2007).
    [Crossref] [PubMed]
  8. E. Friedman, M. Ivry, E. Ebert, R. Glynn, E. Gragoudas, and J. Seddon, “Increased scleral rigidity and age-related macular degeneration,” Ophthalmology 96(1), 104–108 (1989).
    [Crossref] [PubMed]
  9. S. Shahbazi, M. Mokhtari-Dizaji, and M. R. Mansori, “Noninvasive estimation of the ocular elastic modulus for age-related macular degeneration in the human eye using sequential ultrasound imaging,” Ultrasonics 52(2), 208–214 (2012).
    [Crossref] [PubMed]
  10. K. Chen and J. D. Weiland, “Discovery of retinal elastin and its possible role in age-related macular degeneration,” Ann. Biomed. Eng. 42(3), 678–684 (2014).
    [Crossref] [PubMed]
  11. K. Chen, A. P. Rowley, and J. D. Weiland, “Elastic properties of porcine ocular posterior soft tissues,” J. Biomed. Mater. Res. A 93(2), 634–645 (2010).
    [PubMed]
  12. T. R. Friberg and J. W. Lace, “A comparison of the elastic properties of human choroid and sclera,” Exp. Eye Res. 47(3), 429–436 (1988).
    [Crossref] [PubMed]
  13. I. L. Jones, M. Warner, and J. D. Stevens, “Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus,” Eye (Lond.) 6(6), 556–559 (1992).
    [Crossref] [PubMed]
  14. A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
    [Crossref] [PubMed]
  15. S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
    [Crossref] [PubMed]
  16. T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
    [Crossref] [PubMed]
  17. X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: a review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
    [Crossref] [PubMed]
  18. J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
    [Crossref] [PubMed]
  19. Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
    [Crossref] [PubMed]
  20. W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
    [Crossref] [PubMed]
  21. S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
    [Crossref] [PubMed]
  22. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
    [Crossref] [PubMed]
  23. W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
    [Crossref] [PubMed]
  24. I. L. Jones, M. Warner, and J. D. Stevens, “Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus,” Eye (Lond.) 6(6), 556–559 (1992).
    [Crossref] [PubMed]
  25. S. Song, N. M. Le, Z. Huang, T. Shen, and R. K. Wang, “Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source,” Opt. Lett. 40(21), 5007–5010 (2015).
    [Crossref] [PubMed]
  26. J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett. 34(21), 3442–3444 (2009).
    [Crossref] [PubMed]

2016 (1)

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
[Crossref] [PubMed]

2015 (5)

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

S. Song, N. M. Le, Z. Huang, T. Shen, and R. K. Wang, “Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source,” Opt. Lett. 40(21), 5007–5010 (2015).
[Crossref] [PubMed]

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref] [PubMed]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref] [PubMed]

2014 (3)

S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
[Crossref] [PubMed]

K. Chen and J. D. Weiland, “Discovery of retinal elastin and its possible role in age-related macular degeneration,” Ann. Biomed. Eng. 42(3), 678–684 (2014).
[Crossref] [PubMed]

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref] [PubMed]

2013 (1)

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

2012 (2)

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

S. Shahbazi, M. Mokhtari-Dizaji, and M. R. Mansori, “Noninvasive estimation of the ocular elastic modulus for age-related macular degeneration in the human eye using sequential ultrasound imaging,” Ultrasonics 52(2), 208–214 (2012).
[Crossref] [PubMed]

2010 (3)

U. Chakravarthy, J. Evans, and P. J. Rosenfeld, “Age related macular degeneration,” BMJ 340, 526–530 (2010).

K. Chen, A. P. Rowley, and J. D. Weiland, “Elastic properties of porcine ocular posterior soft tissues,” J. Biomed. Mater. Res. A 93(2), 634–645 (2010).
[PubMed]

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: a review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,” N. Engl. J. Med. 358(24), 2606–2617 (2008).
[Crossref] [PubMed]

2007 (1)

L. Krishnan, J. B. Hoying, H. Nguyen, H. Song, and J. A. Weiss, “Interaction of angiogenic microvessels with the extracellular matrix,” Am. J. Physiol. Heart Circ. Physiol. 293(6), H3650–H3658 (2007).
[Crossref] [PubMed]

2005 (2)

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

1992 (2)

I. L. Jones, M. Warner, and J. D. Stevens, “Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus,” Eye (Lond.) 6(6), 556–559 (1992).
[Crossref] [PubMed]

I. L. Jones, M. Warner, and J. D. Stevens, “Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus,” Eye (Lond.) 6(6), 556–559 (1992).
[Crossref] [PubMed]

1989 (1)

E. Friedman, M. Ivry, E. Ebert, R. Glynn, E. Gragoudas, and J. Seddon, “Increased scleral rigidity and age-related macular degeneration,” Ophthalmology 96(1), 104–108 (1989).
[Crossref] [PubMed]

1988 (2)

N. M. Bressler, S. B. Bressler, and S. L. Fine, “Age-related macular degeneration,” Surv. Ophthalmol. 32(6), 375–413 (1988).
[Crossref] [PubMed]

T. R. Friberg and J. W. Lace, “A comparison of the elastic properties of human choroid and sclera,” Exp. Eye Res. 47(3), 429–436 (1988).
[Crossref] [PubMed]

Abràmoff, M. D.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Arnal, B.

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref] [PubMed]

Beaton, S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

Boppart, S. A.

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: a review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

Bouma, B. E.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Bressler, N. M.

N. M. Bressler, S. B. Bressler, and S. L. Fine, “Age-related macular degeneration,” Surv. Ophthalmol. 32(6), 375–413 (1988).
[Crossref] [PubMed]

Bressler, S. B.

N. M. Bressler, S. B. Bressler, and S. L. Fine, “Age-related macular degeneration,” Surv. Ophthalmol. 32(6), 375–413 (1988).
[Crossref] [PubMed]

Chakravarthy, U.

U. Chakravarthy, J. Evans, and P. J. Rosenfeld, “Age related macular degeneration,” BMJ 340, 526–530 (2010).

Chan, R. C.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Chau, A. H.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Chen, K.

K. Chen and J. D. Weiland, “Discovery of retinal elastin and its possible role in age-related macular degeneration,” Ann. Biomed. Eng. 42(3), 678–684 (2014).
[Crossref] [PubMed]

K. Chen, A. P. Rowley, and J. D. Weiland, “Elastic properties of porcine ocular posterior soft tissues,” J. Biomed. Mater. Res. A 93(2), 634–645 (2010).
[PubMed]

Chen, R.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

Chen, Z.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
[Crossref] [PubMed]

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref] [PubMed]

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref] [PubMed]

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett. 34(21), 3442–3444 (2009).
[Crossref] [PubMed]

Chou, L.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

Crecea, V.

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: a review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

Dai, C.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
[Crossref] [PubMed]

Du, Y.

Ebert, E.

E. Friedman, M. Ivry, E. Ebert, R. Glynn, E. Gragoudas, and J. Seddon, “Increased scleral rigidity and age-related macular degeneration,” Ophthalmology 96(1), 104–108 (1989).
[Crossref] [PubMed]

Evans, J.

U. Chakravarthy, J. Evans, and P. J. Rosenfeld, “Age related macular degeneration,” BMJ 340, 526–530 (2010).

Fine, S. L.

N. M. Bressler, S. B. Bressler, and S. L. Fine, “Age-related macular degeneration,” Surv. Ophthalmol. 32(6), 375–413 (1988).
[Crossref] [PubMed]

Friberg, T. R.

T. R. Friberg and J. W. Lace, “A comparison of the elastic properties of human choroid and sclera,” Exp. Eye Res. 47(3), 429–436 (1988).
[Crossref] [PubMed]

Friedman, E.

E. Friedman, M. Ivry, E. Ebert, R. Glynn, E. Gragoudas, and J. Seddon, “Increased scleral rigidity and age-related macular degeneration,” Ophthalmology 96(1), 104–108 (1989).
[Crossref] [PubMed]

Fujimoto, J. G.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

Garvin, M. K.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Glynn, R.

E. Friedman, M. Ivry, E. Ebert, R. Glynn, E. Gragoudas, and J. Seddon, “Increased scleral rigidity and age-related macular degeneration,” Ophthalmology 96(1), 104–108 (1989).
[Crossref] [PubMed]

Gragoudas, E.

E. Friedman, M. Ivry, E. Ebert, R. Glynn, E. Gragoudas, and J. Seddon, “Increased scleral rigidity and age-related macular degeneration,” Ophthalmology 96(1), 104–108 (1989).
[Crossref] [PubMed]

He, Y.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
[Crossref] [PubMed]

Hoying, J. B.

L. Krishnan, J. B. Hoying, H. Nguyen, H. Song, and J. A. Weiss, “Interaction of angiogenic microvessels with the extracellular matrix,” Am. J. Physiol. Heart Circ. Physiol. 293(6), H3650–H3658 (2007).
[Crossref] [PubMed]

Huang, S.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
[Crossref] [PubMed]

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref] [PubMed]

Huang, Z.

S. Song, N. M. Le, Z. Huang, T. Shen, and R. K. Wang, “Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source,” Opt. Lett. 40(21), 5007–5010 (2015).
[Crossref] [PubMed]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref] [PubMed]

Ishikawa, H.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

Ivry, M.

E. Friedman, M. Ivry, E. Ebert, R. Glynn, E. Gragoudas, and J. Seddon, “Increased scleral rigidity and age-related macular degeneration,” Ophthalmology 96(1), 104–108 (1989).
[Crossref] [PubMed]

Jager, R. D.

R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,” N. Engl. J. Med. 358(24), 2606–2617 (2008).
[Crossref] [PubMed]

Jones, I. L.

I. L. Jones, M. Warner, and J. D. Stevens, “Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus,” Eye (Lond.) 6(6), 556–559 (1992).
[Crossref] [PubMed]

I. L. Jones, M. Warner, and J. D. Stevens, “Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus,” Eye (Lond.) 6(6), 556–559 (1992).
[Crossref] [PubMed]

Kardon, R.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Khalil, A. S.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Kirk Shung, K.

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref] [PubMed]

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

Krishnan, L.

L. Krishnan, J. B. Hoying, H. Nguyen, H. Song, and J. A. Weiss, “Interaction of angiogenic microvessels with the extracellular matrix,” Am. J. Physiol. Heart Circ. Physiol. 293(6), H3650–H3658 (2007).
[Crossref] [PubMed]

Lace, J. W.

T. R. Friberg and J. W. Lace, “A comparison of the elastic properties of human choroid and sclera,” Exp. Eye Res. 47(3), 429–436 (1988).
[Crossref] [PubMed]

Larin, K. V.

Le, N. M.

Li, J.

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

Li, R.

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref] [PubMed]

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref] [PubMed]

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

Liang, X.

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: a review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

Liu, G.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

Lu, F.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
[Crossref] [PubMed]

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

Ma, T.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
[Crossref] [PubMed]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref] [PubMed]

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref] [PubMed]

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

Mansori, M. R.

S. Shahbazi, M. Mokhtari-Dizaji, and M. R. Mansori, “Noninvasive estimation of the ocular elastic modulus for age-related macular degeneration in the human eye using sequential ultrasound imaging,” Ultrasonics 52(2), 208–214 (2012).
[Crossref] [PubMed]

Mieler, W. F.

R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,” N. Engl. J. Med. 358(24), 2606–2617 (2008).
[Crossref] [PubMed]

Miller, J. W.

R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,” N. Engl. J. Med. 358(24), 2606–2617 (2008).
[Crossref] [PubMed]

Mofrad, M. R.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Mokhtari-Dizaji, M.

S. Shahbazi, M. Mokhtari-Dizaji, and M. R. Mansori, “Noninvasive estimation of the ocular elastic modulus for age-related macular degeneration in the human eye using sequential ultrasound imaging,” Ultrasonics 52(2), 208–214 (2012).
[Crossref] [PubMed]

Nguyen, H.

L. Krishnan, J. B. Hoying, H. Nguyen, H. Song, and J. A. Weiss, “Interaction of angiogenic microvessels with the extracellular matrix,” Am. J. Physiol. Heart Circ. Physiol. 293(6), H3650–H3658 (2007).
[Crossref] [PubMed]

Nguyen, T. M.

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref] [PubMed]

O’Donnell, M.

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref] [PubMed]

Piao, Z.

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

Qi, W.

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref] [PubMed]

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

Qu, Y.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
[Crossref] [PubMed]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref] [PubMed]

Rao, B.

Rosenfeld, P. J.

U. Chakravarthy, J. Evans, and P. J. Rosenfeld, “Age related macular degeneration,” BMJ 340, 526–530 (2010).

Rowley, A. P.

K. Chen, A. P. Rowley, and J. D. Weiland, “Elastic properties of porcine ocular posterior soft tissues,” J. Biomed. Mater. Res. A 93(2), 634–645 (2010).
[PubMed]

Russell, S. R.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Schuman, J. S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

Seddon, J.

E. Friedman, M. Ivry, E. Ebert, R. Glynn, E. Gragoudas, and J. Seddon, “Increased scleral rigidity and age-related macular degeneration,” Ophthalmology 96(1), 104–108 (1989).
[Crossref] [PubMed]

Shahbazi, S.

S. Shahbazi, M. Mokhtari-Dizaji, and M. R. Mansori, “Noninvasive estimation of the ocular elastic modulus for age-related macular degeneration in the human eye using sequential ultrasound imaging,” Ultrasonics 52(2), 208–214 (2012).
[Crossref] [PubMed]

Shen, T.

Shung, K. K.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
[Crossref] [PubMed]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref] [PubMed]

Song, H.

L. Krishnan, J. B. Hoying, H. Nguyen, H. Song, and J. A. Weiss, “Interaction of angiogenic microvessels with the extracellular matrix,” Am. J. Physiol. Heart Circ. Physiol. 293(6), H3650–H3658 (2007).
[Crossref] [PubMed]

Song, S.

S. Song, N. M. Le, Z. Huang, T. Shen, and R. K. Wang, “Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source,” Opt. Lett. 40(21), 5007–5010 (2015).
[Crossref] [PubMed]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref] [PubMed]

Sonka, M.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Stein, D. M.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

Stevens, J. D.

I. L. Jones, M. Warner, and J. D. Stevens, “Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus,” Eye (Lond.) 6(6), 556–559 (1992).
[Crossref] [PubMed]

I. L. Jones, M. Warner, and J. D. Stevens, “Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus,” Eye (Lond.) 6(6), 556–559 (1992).
[Crossref] [PubMed]

Wang, R. K.

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref] [PubMed]

S. Song, N. M. Le, Z. Huang, T. Shen, and R. K. Wang, “Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source,” Opt. Lett. 40(21), 5007–5010 (2015).
[Crossref] [PubMed]

Wang, S.

Warner, M.

I. L. Jones, M. Warner, and J. D. Stevens, “Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus,” Eye (Lond.) 6(6), 556–559 (1992).
[Crossref] [PubMed]

I. L. Jones, M. Warner, and J. D. Stevens, “Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus,” Eye (Lond.) 6(6), 556–559 (1992).
[Crossref] [PubMed]

Weiland, J. D.

K. Chen and J. D. Weiland, “Discovery of retinal elastin and its possible role in age-related macular degeneration,” Ann. Biomed. Eng. 42(3), 678–684 (2014).
[Crossref] [PubMed]

K. Chen, A. P. Rowley, and J. D. Weiland, “Elastic properties of porcine ocular posterior soft tissues,” J. Biomed. Mater. Res. A 93(2), 634–645 (2010).
[PubMed]

Weiss, J. A.

L. Krishnan, J. B. Hoying, H. Nguyen, H. Song, and J. A. Weiss, “Interaction of angiogenic microvessels with the extracellular matrix,” Am. J. Physiol. Heart Circ. Physiol. 293(6), H3650–H3658 (2007).
[Crossref] [PubMed]

Wollstein, G.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

Wu, X.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Yu, L.

Yu, M.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
[Crossref] [PubMed]

Zhang, J.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett. 34(21), 3442–3444 (2009).
[Crossref] [PubMed]

Zhou, Q.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
[Crossref] [PubMed]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref] [PubMed]

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref] [PubMed]

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

Zhu, J.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
[Crossref] [PubMed]

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

L. Krishnan, J. B. Hoying, H. Nguyen, H. Song, and J. A. Weiss, “Interaction of angiogenic microvessels with the extracellular matrix,” Am. J. Physiol. Heart Circ. Physiol. 293(6), H3650–H3658 (2007).
[Crossref] [PubMed]

Ann. Biomed. Eng. (2)

K. Chen and J. D. Weiland, “Discovery of retinal elastin and its possible role in age-related macular degeneration,” Ann. Biomed. Eng. 42(3), 678–684 (2014).
[Crossref] [PubMed]

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett. 103(10), 103704 (2013).
[Crossref] [PubMed]

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

BMJ (1)

U. Chakravarthy, J. Evans, and P. J. Rosenfeld, “Age related macular degeneration,” BMJ 340, 526–530 (2010).

Exp. Eye Res. (1)

T. R. Friberg and J. W. Lace, “A comparison of the elastic properties of human choroid and sclera,” Exp. Eye Res. 47(3), 429–436 (1988).
[Crossref] [PubMed]

Eye (Lond.) (2)

I. L. Jones, M. Warner, and J. D. Stevens, “Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus,” Eye (Lond.) 6(6), 556–559 (1992).
[Crossref] [PubMed]

I. L. Jones, M. Warner, and J. D. Stevens, “Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus,” Eye (Lond.) 6(6), 556–559 (1992).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–7 (2016).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005).
[Crossref] [PubMed]

J. Biomed. Mater. Res. A (1)

K. Chen, A. P. Rowley, and J. D. Weiland, “Elastic properties of porcine ocular posterior soft tissues,” J. Biomed. Mater. Res. A 93(2), 634–645 (2010).
[PubMed]

J. Biomed. Opt. (4)

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref] [PubMed]

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

S. Huang, Z. Piao, J. Zhu, F. Lu, and Z. Chen, “In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method,” J. Biomed. Opt. 20(7), 076003 (2015).
[Crossref] [PubMed]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: a review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,” N. Engl. J. Med. 358(24), 2606–2617 (2008).
[Crossref] [PubMed]

Ophthalmology (1)

E. Friedman, M. Ivry, E. Ebert, R. Glynn, E. Gragoudas, and J. Seddon, “Increased scleral rigidity and age-related macular degeneration,” Ophthalmology 96(1), 104–108 (1989).
[Crossref] [PubMed]

Opt. Lett. (3)

Surv. Ophthalmol. (1)

N. M. Bressler, S. B. Bressler, and S. L. Fine, “Age-related macular degeneration,” Surv. Ophthalmol. 32(6), 375–413 (1988).
[Crossref] [PubMed]

Ultrasonics (1)

S. Shahbazi, M. Mokhtari-Dizaji, and M. R. Mansori, “Noninvasive estimation of the ocular elastic modulus for age-related macular degeneration in the human eye using sequential ultrasound imaging,” Ultrasonics 52(2), 208–214 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of system setup. SLD: superluminescent diode, L: lens, G: diffraction grating, CMOS: camera, C: coupler, A: attenuator, M: mirror, MS: mechanical stage, GM: galvo mirror, UT: ultrasound transducer, S: sample, RFA: radio-frequency amplifier, FG: function generator, CO: collimator. Red beam: light path. Yellow beam: ARF path.
Fig. 2
Fig. 2 Timing diagram of system showing excitation and detection.
Fig. 3
Fig. 3 Optical disc and peripheral retina imaging. a) OCT cross-section of optical disc. b) OCE phase cross-section of optical disc. c) OCT cross-section of peripheral retina. d) OCE phase cross-section of peripheral retina. Phase is measured in radians from 0 to 5. White arrow indicates ganglion side and yellow arrow points to the photoreceptor side.
Fig. 4
Fig. 4 Retina segmentation and elastogram. a) OCT segmentation. b) Corresponding segments of OCE displacement mapping. c) Corresponding elastogram. d) H&E staining of porcine retina with the anatomical layers labeled. White arrow point to outer nuclear layer region with low elasticity. Blue arrow point to outer nuclear layer portion with high elasticity.

Tables (1)

Tables Icon

Table 1 Analysis of 64 B-scan locations on the retina

Metrics