Abstract

To date, there has been limited evidence to reveal the effect of terahertz radiation on sperm. In this study, semen samples were collected from males who had just finished a prepregnancy computer-assisted semen analysis (CASA). The motility, intracellular concentration of free Ca2+ and DNA integrity of sperm with or without terahertz (0.1 to 3 THz) irradiation at 60 µW/cm2 were assessed. We found that terahertz irradiation for more than 5 minutes significantly increased the progressive motility percentage of sperm, and the DNA integrity was not changed. We also found that the effect of terahertz irradiation on spermatozoa was weakened by reducing the concentration of extracellular calcium ions or by blocking calcium channels.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Confocal Raman micro-spectroscopy for rapid and label-free detection of maleic acid-induced variations in human sperm

Ning Li, Diling Chen, Yan Xu, Songhao Liu, and Heming Zhang
Biomed. Opt. Express 5(5) 1690-1699 (2014)

Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection

J. Baumgart, W. Bintig, A. Ngezahayo, H. Lubatschowski, and A. Heisterkamp
Opt. Express 18(3) 2219-2229 (2010)

Effect of red light on optically trapped spermatozoa

Kay W. Chow, Daryl Preece, and Michael W. Berns
Biomed. Opt. Express 8(9) 4200-4205 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc. Interface 14(137), 20170585 (2017).
    [Crossref] [PubMed]
  2. R. Ankri, H. Friedman, N. Savion, S. Kotev-Emeth, H. Breitbart, and R. Lubart, “Visible light induces nitric oxide (NO) formation in sperm and endothelial cells,” Lasers Surg. Med. 42(4), 348–352 (2010).
    [Crossref] [PubMed]
  3. N. Cohen, R. Lubart, S. Rubinstein, and H. Breitbart, “Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals,” Photochem. Photobiol. 68(3), 407–413 (1998).
    [Crossref] [PubMed]
  4. R. Lubart, H. Friedmann, T. Levinshal, R. Lavie, and H. Breitbart, “Effect of light on calcium transport in bull sperm cells,” J. Photochem. Photobiol. B 15(4), 337–341 (1992).
    [Crossref] [PubMed]
  5. S. E. Lewis, E. T. Donnelly, E. S. Sterling, M. S. Kennedy, W. Thompson, and U. Chakravarthy, “Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility,” Mol. Hum. Reprod. 2(11), 873–878 (1996).
    [Crossref] [PubMed]
  6. P. C. Rodriguez, C. M. O’Flaherty, M. T. Beconi, and N. B. Beorlegui, “Nitric oxide-induced capacitation of cryopreserved bull spermatozoa and assessment of participating regulatory pathways,” Anim. Reprod. Sci. 85(3-4), 231–242 (2005).
    [Crossref] [PubMed]
  7. S. S. Suarez, S. M. Varosi, and X. Dai, “Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle,” Proc. Natl. Acad. Sci. U.S.A. 90(10), 4660–4664 (1993).
    [Crossref] [PubMed]
  8. S. Kumar, K. K. Kesari, and J. Behari, “The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field,” Clinics (Sao Paulo) 66(7), 1237–1245 (2011).
    [Crossref] [PubMed]
  9. G. N. De Iuliis, R. J. Newey, B. V. King, and R. J. Aitken, “Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro,” PLoS One 4(7), e6446 (2009).
    [Crossref] [PubMed]
  10. G. J. Wilmink And Grundt, “Current State of Research on Biological Effects of Terahertz Radiation,” J Infrared Millim. THz Waves. 32(10), 1074–1122 (2011).
  11. C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous wave terahertz transmission imaging of nonmelanoma skin cancers,” Lasers Surg. Med. 43(6), 457–462 (2011).
    [Crossref] [PubMed]
  12. P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
    [Crossref] [PubMed]
  13. J. Nishizawa, T. Sasaki, K. Suto, T. Yamada, T. Tanabe, T. Tanno, T. Sawai, and Y. Miura,“THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator,” Opt. Commun. 2004(1–6), 469–474 (2005).
  14. E.-A. Jung, M.-H. Lim, K.-W. Moon, Y.-W. Do, S.-S. Lee, H.-W. Han, H.-J. Choi, K.-S. Cho, and K.-R. Kim, “Terahertz pulse imaging of micro-metastatic lymph nodes in early-stage cervical cancer patients,” J. Opt. Soc. Korea 15(2), 155–160 (2011).
    [Crossref]
  15. A. Berrier, M. C. Schaafsma, G. Nonglaton, J. Bergquist, and J. G. Rivas, “Selective detection of bacterial layers with terahertz plasmonic antennas,” Biomed. Opt. Express 3(11), 2937–2949 (2012).
    [Crossref] [PubMed]
  16. A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express 20(5), 5344–5355 (2012).
    [Crossref] [PubMed]
  17. H. J. Lee and J. H. Lee Choi, “Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers,” Appl. Phys. Lett. 103(5), 86 (2013).
  18. S. Shahar, A. Wiser, D. Ickowicz, R. Lubart, A. Shulman, and H. Breitbart, “Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility,” Hum. Reprod. 26(9), 2274–2282 (2011).
    [Crossref] [PubMed]
  19. J. G. Yan, M. Agresti, T. Bruce, Y. H. Yan, A. Granlund, and H. S. Matloub, “Effects of cellular phone emissions on sperm motility in rats,” Fertil. Steril. 88(4), 957–964 (2007).
    [Crossref] [PubMed]

2017 (1)

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc. Interface 14(137), 20170585 (2017).
[Crossref] [PubMed]

2013 (1)

H. J. Lee and J. H. Lee Choi, “Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers,” Appl. Phys. Lett. 103(5), 86 (2013).

2012 (2)

2011 (5)

E.-A. Jung, M.-H. Lim, K.-W. Moon, Y.-W. Do, S.-S. Lee, H.-W. Han, H.-J. Choi, K.-S. Cho, and K.-R. Kim, “Terahertz pulse imaging of micro-metastatic lymph nodes in early-stage cervical cancer patients,” J. Opt. Soc. Korea 15(2), 155–160 (2011).
[Crossref]

G. J. Wilmink And Grundt, “Current State of Research on Biological Effects of Terahertz Radiation,” J Infrared Millim. THz Waves. 32(10), 1074–1122 (2011).

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous wave terahertz transmission imaging of nonmelanoma skin cancers,” Lasers Surg. Med. 43(6), 457–462 (2011).
[Crossref] [PubMed]

S. Kumar, K. K. Kesari, and J. Behari, “The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field,” Clinics (Sao Paulo) 66(7), 1237–1245 (2011).
[Crossref] [PubMed]

S. Shahar, A. Wiser, D. Ickowicz, R. Lubart, A. Shulman, and H. Breitbart, “Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility,” Hum. Reprod. 26(9), 2274–2282 (2011).
[Crossref] [PubMed]

2010 (1)

R. Ankri, H. Friedman, N. Savion, S. Kotev-Emeth, H. Breitbart, and R. Lubart, “Visible light induces nitric oxide (NO) formation in sperm and endothelial cells,” Lasers Surg. Med. 42(4), 348–352 (2010).
[Crossref] [PubMed]

2009 (2)

G. N. De Iuliis, R. J. Newey, B. V. King, and R. J. Aitken, “Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro,” PLoS One 4(7), e6446 (2009).
[Crossref] [PubMed]

P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
[Crossref] [PubMed]

2007 (1)

J. G. Yan, M. Agresti, T. Bruce, Y. H. Yan, A. Granlund, and H. S. Matloub, “Effects of cellular phone emissions on sperm motility in rats,” Fertil. Steril. 88(4), 957–964 (2007).
[Crossref] [PubMed]

2005 (2)

J. Nishizawa, T. Sasaki, K. Suto, T. Yamada, T. Tanabe, T. Tanno, T. Sawai, and Y. Miura,“THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator,” Opt. Commun. 2004(1–6), 469–474 (2005).

P. C. Rodriguez, C. M. O’Flaherty, M. T. Beconi, and N. B. Beorlegui, “Nitric oxide-induced capacitation of cryopreserved bull spermatozoa and assessment of participating regulatory pathways,” Anim. Reprod. Sci. 85(3-4), 231–242 (2005).
[Crossref] [PubMed]

1998 (1)

N. Cohen, R. Lubart, S. Rubinstein, and H. Breitbart, “Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals,” Photochem. Photobiol. 68(3), 407–413 (1998).
[Crossref] [PubMed]

1996 (1)

S. E. Lewis, E. T. Donnelly, E. S. Sterling, M. S. Kennedy, W. Thompson, and U. Chakravarthy, “Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility,” Mol. Hum. Reprod. 2(11), 873–878 (1996).
[Crossref] [PubMed]

1993 (1)

S. S. Suarez, S. M. Varosi, and X. Dai, “Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle,” Proc. Natl. Acad. Sci. U.S.A. 90(10), 4660–4664 (1993).
[Crossref] [PubMed]

1992 (1)

R. Lubart, H. Friedmann, T. Levinshal, R. Lavie, and H. Breitbart, “Effect of light on calcium transport in bull sperm cells,” J. Photochem. Photobiol. B 15(4), 337–341 (1992).
[Crossref] [PubMed]

Agresti, M.

J. G. Yan, M. Agresti, T. Bruce, Y. H. Yan, A. Granlund, and H. S. Matloub, “Effects of cellular phone emissions on sperm motility in rats,” Fertil. Steril. 88(4), 957–964 (2007).
[Crossref] [PubMed]

Aitken, R. J.

G. N. De Iuliis, R. J. Newey, B. V. King, and R. J. Aitken, “Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro,” PLoS One 4(7), e6446 (2009).
[Crossref] [PubMed]

Ankri, R.

R. Ankri, H. Friedman, N. Savion, S. Kotev-Emeth, H. Breitbart, and R. Lubart, “Visible light induces nitric oxide (NO) formation in sperm and endothelial cells,” Lasers Surg. Med. 42(4), 348–352 (2010).
[Crossref] [PubMed]

Ashworth, P. C.

Beconi, M. T.

P. C. Rodriguez, C. M. O’Flaherty, M. T. Beconi, and N. B. Beorlegui, “Nitric oxide-induced capacitation of cryopreserved bull spermatozoa and assessment of participating regulatory pathways,” Anim. Reprod. Sci. 85(3-4), 231–242 (2005).
[Crossref] [PubMed]

Begley, R.

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc. Interface 14(137), 20170585 (2017).
[Crossref] [PubMed]

Behari, J.

S. Kumar, K. K. Kesari, and J. Behari, “The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field,” Clinics (Sao Paulo) 66(7), 1237–1245 (2011).
[Crossref] [PubMed]

Beorlegui, N. B.

P. C. Rodriguez, C. M. O’Flaherty, M. T. Beconi, and N. B. Beorlegui, “Nitric oxide-induced capacitation of cryopreserved bull spermatozoa and assessment of participating regulatory pathways,” Anim. Reprod. Sci. 85(3-4), 231–242 (2005).
[Crossref] [PubMed]

Bergquist, J.

Berrier, A.

Breitbart, H.

S. Shahar, A. Wiser, D. Ickowicz, R. Lubart, A. Shulman, and H. Breitbart, “Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility,” Hum. Reprod. 26(9), 2274–2282 (2011).
[Crossref] [PubMed]

R. Ankri, H. Friedman, N. Savion, S. Kotev-Emeth, H. Breitbart, and R. Lubart, “Visible light induces nitric oxide (NO) formation in sperm and endothelial cells,” Lasers Surg. Med. 42(4), 348–352 (2010).
[Crossref] [PubMed]

N. Cohen, R. Lubart, S. Rubinstein, and H. Breitbart, “Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals,” Photochem. Photobiol. 68(3), 407–413 (1998).
[Crossref] [PubMed]

R. Lubart, H. Friedmann, T. Levinshal, R. Lavie, and H. Breitbart, “Effect of light on calcium transport in bull sperm cells,” J. Photochem. Photobiol. B 15(4), 337–341 (1992).
[Crossref] [PubMed]

Bruce, T.

J. G. Yan, M. Agresti, T. Bruce, Y. H. Yan, A. Granlund, and H. S. Matloub, “Effects of cellular phone emissions on sperm motility in rats,” Fertil. Steril. 88(4), 957–964 (2007).
[Crossref] [PubMed]

Chakravarthy, U.

S. E. Lewis, E. T. Donnelly, E. S. Sterling, M. S. Kennedy, W. Thompson, and U. Chakravarthy, “Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility,” Mol. Hum. Reprod. 2(11), 873–878 (1996).
[Crossref] [PubMed]

Chinnappan, R.

Cho, K.-S.

Choi, H.-J.

Cohen, N.

N. Cohen, R. Lubart, S. Rubinstein, and H. Breitbart, “Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals,” Photochem. Photobiol. 68(3), 407–413 (1998).
[Crossref] [PubMed]

Dai, X.

S. S. Suarez, S. M. Varosi, and X. Dai, “Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle,” Proc. Natl. Acad. Sci. U.S.A. 90(10), 4660–4664 (1993).
[Crossref] [PubMed]

De Iuliis, G. N.

G. N. De Iuliis, R. J. Newey, B. V. King, and R. J. Aitken, “Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro,” PLoS One 4(7), e6446 (2009).
[Crossref] [PubMed]

Do, Y.-W.

Donnelly, E. T.

S. E. Lewis, E. T. Donnelly, E. S. Sterling, M. S. Kennedy, W. Thompson, and U. Chakravarthy, “Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility,” Mol. Hum. Reprod. 2(11), 873–878 (1996).
[Crossref] [PubMed]

Friedman, H.

R. Ankri, H. Friedman, N. Savion, S. Kotev-Emeth, H. Breitbart, and R. Lubart, “Visible light induces nitric oxide (NO) formation in sperm and endothelial cells,” Lasers Surg. Med. 42(4), 348–352 (2010).
[Crossref] [PubMed]

Friedmann, H.

R. Lubart, H. Friedmann, T. Levinshal, R. Lavie, and H. Breitbart, “Effect of light on calcium transport in bull sperm cells,” J. Photochem. Photobiol. B 15(4), 337–341 (1992).
[Crossref] [PubMed]

Giles, R. H.

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous wave terahertz transmission imaging of nonmelanoma skin cancers,” Lasers Surg. Med. 43(6), 457–462 (2011).
[Crossref] [PubMed]

Goyette, T. M.

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous wave terahertz transmission imaging of nonmelanoma skin cancers,” Lasers Surg. Med. 43(6), 457–462 (2011).
[Crossref] [PubMed]

Granlund, A.

J. G. Yan, M. Agresti, T. Bruce, Y. H. Yan, A. Granlund, and H. S. Matloub, “Effects of cellular phone emissions on sperm motility in rats,” Fertil. Steril. 88(4), 957–964 (2007).
[Crossref] [PubMed]

Han, H.-W.

Harvey, A. R.

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc. Interface 14(137), 20170585 (2017).
[Crossref] [PubMed]

Hool, L.

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc. Interface 14(137), 20170585 (2017).
[Crossref] [PubMed]

Ickowicz, D.

S. Shahar, A. Wiser, D. Ickowicz, R. Lubart, A. Shulman, and H. Breitbart, “Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility,” Hum. Reprod. 26(9), 2274–2282 (2011).
[Crossref] [PubMed]

Joseph, C. S.

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous wave terahertz transmission imaging of nonmelanoma skin cancers,” Lasers Surg. Med. 43(6), 457–462 (2011).
[Crossref] [PubMed]

Jung, E.-A.

Kennedy, M. S.

S. E. Lewis, E. T. Donnelly, E. S. Sterling, M. S. Kennedy, W. Thompson, and U. Chakravarthy, “Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility,” Mol. Hum. Reprod. 2(11), 873–878 (1996).
[Crossref] [PubMed]

Kesari, K. K.

S. Kumar, K. K. Kesari, and J. Behari, “The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field,” Clinics (Sao Paulo) 66(7), 1237–1245 (2011).
[Crossref] [PubMed]

Kim, K.-R.

King, B. V.

G. N. De Iuliis, R. J. Newey, B. V. King, and R. J. Aitken, “Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro,” PLoS One 4(7), e6446 (2009).
[Crossref] [PubMed]

Kotev-Emeth, S.

R. Ankri, H. Friedman, N. Savion, S. Kotev-Emeth, H. Breitbart, and R. Lubart, “Visible light induces nitric oxide (NO) formation in sperm and endothelial cells,” Lasers Surg. Med. 42(4), 348–352 (2010).
[Crossref] [PubMed]

Kumar, S.

S. Kumar, K. K. Kesari, and J. Behari, “The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field,” Clinics (Sao Paulo) 66(7), 1237–1245 (2011).
[Crossref] [PubMed]

Lavie, R.

R. Lubart, H. Friedmann, T. Levinshal, R. Lavie, and H. Breitbart, “Effect of light on calcium transport in bull sperm cells,” J. Photochem. Photobiol. B 15(4), 337–341 (1992).
[Crossref] [PubMed]

Lee, H. J.

H. J. Lee and J. H. Lee Choi, “Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers,” Appl. Phys. Lett. 103(5), 86 (2013).

Lee, S.-S.

Lee Choi, J. H.

H. J. Lee and J. H. Lee Choi, “Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers,” Appl. Phys. Lett. 103(5), 86 (2013).

Levinshal, T.

R. Lubart, H. Friedmann, T. Levinshal, R. Lavie, and H. Breitbart, “Effect of light on calcium transport in bull sperm cells,” J. Photochem. Photobiol. B 15(4), 337–341 (1992).
[Crossref] [PubMed]

Lewis, S. E.

S. E. Lewis, E. T. Donnelly, E. S. Sterling, M. S. Kennedy, W. Thompson, and U. Chakravarthy, “Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility,” Mol. Hum. Reprod. 2(11), 873–878 (1996).
[Crossref] [PubMed]

Lim, M.-H.

Lubart, R.

S. Shahar, A. Wiser, D. Ickowicz, R. Lubart, A. Shulman, and H. Breitbart, “Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility,” Hum. Reprod. 26(9), 2274–2282 (2011).
[Crossref] [PubMed]

R. Ankri, H. Friedman, N. Savion, S. Kotev-Emeth, H. Breitbart, and R. Lubart, “Visible light induces nitric oxide (NO) formation in sperm and endothelial cells,” Lasers Surg. Med. 42(4), 348–352 (2010).
[Crossref] [PubMed]

N. Cohen, R. Lubart, S. Rubinstein, and H. Breitbart, “Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals,” Photochem. Photobiol. 68(3), 407–413 (1998).
[Crossref] [PubMed]

R. Lubart, H. Friedmann, T. Levinshal, R. Lavie, and H. Breitbart, “Effect of light on calcium transport in bull sperm cells,” J. Photochem. Photobiol. B 15(4), 337–341 (1992).
[Crossref] [PubMed]

Markov, A.

Matloub, H. S.

J. G. Yan, M. Agresti, T. Bruce, Y. H. Yan, A. Granlund, and H. S. Matloub, “Effects of cellular phone emissions on sperm motility in rats,” Fertil. Steril. 88(4), 957–964 (2007).
[Crossref] [PubMed]

Mazhorova, A.

Miura, Y.

J. Nishizawa, T. Sasaki, K. Suto, T. Yamada, T. Tanabe, T. Tanno, T. Sawai, and Y. Miura,“THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator,” Opt. Commun. 2004(1–6), 469–474 (2005).

Moon, K.-W.

Neel, V. A.

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous wave terahertz transmission imaging of nonmelanoma skin cancers,” Lasers Surg. Med. 43(6), 457–462 (2011).
[Crossref] [PubMed]

Newey, R. J.

G. N. De Iuliis, R. J. Newey, B. V. King, and R. J. Aitken, “Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro,” PLoS One 4(7), e6446 (2009).
[Crossref] [PubMed]

Ng, A.

Nishizawa, J.

J. Nishizawa, T. Sasaki, K. Suto, T. Yamada, T. Tanabe, T. Tanno, T. Sawai, and Y. Miura,“THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator,” Opt. Commun. 2004(1–6), 469–474 (2005).

Nonglaton, G.

O’Flaherty, C. M.

P. C. Rodriguez, C. M. O’Flaherty, M. T. Beconi, and N. B. Beorlegui, “Nitric oxide-induced capacitation of cryopreserved bull spermatozoa and assessment of participating regulatory pathways,” Anim. Reprod. Sci. 85(3-4), 231–242 (2005).
[Crossref] [PubMed]

Pepper, M.

Pickwell-MacPherson, E.

Pinder, S. E.

Provenzano, E.

Purushotham, A. D.

Rivas, J. G.

Rodriguez, P. C.

P. C. Rodriguez, C. M. O’Flaherty, M. T. Beconi, and N. B. Beorlegui, “Nitric oxide-induced capacitation of cryopreserved bull spermatozoa and assessment of participating regulatory pathways,” Anim. Reprod. Sci. 85(3-4), 231–242 (2005).
[Crossref] [PubMed]

Romanenko, S.

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc. Interface 14(137), 20170585 (2017).
[Crossref] [PubMed]

Rubinstein, S.

N. Cohen, R. Lubart, S. Rubinstein, and H. Breitbart, “Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals,” Photochem. Photobiol. 68(3), 407–413 (1998).
[Crossref] [PubMed]

Sasaki, T.

J. Nishizawa, T. Sasaki, K. Suto, T. Yamada, T. Tanabe, T. Tanno, T. Sawai, and Y. Miura,“THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator,” Opt. Commun. 2004(1–6), 469–474 (2005).

Savion, N.

R. Ankri, H. Friedman, N. Savion, S. Kotev-Emeth, H. Breitbart, and R. Lubart, “Visible light induces nitric oxide (NO) formation in sperm and endothelial cells,” Lasers Surg. Med. 42(4), 348–352 (2010).
[Crossref] [PubMed]

Sawai, T.

J. Nishizawa, T. Sasaki, K. Suto, T. Yamada, T. Tanabe, T. Tanno, T. Sawai, and Y. Miura,“THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator,” Opt. Commun. 2004(1–6), 469–474 (2005).

Schaafsma, M. C.

Shahar, S.

S. Shahar, A. Wiser, D. Ickowicz, R. Lubart, A. Shulman, and H. Breitbart, “Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility,” Hum. Reprod. 26(9), 2274–2282 (2011).
[Crossref] [PubMed]

Shulman, A.

S. Shahar, A. Wiser, D. Ickowicz, R. Lubart, A. Shulman, and H. Breitbart, “Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility,” Hum. Reprod. 26(9), 2274–2282 (2011).
[Crossref] [PubMed]

Skorobogata, O.

Skorobogatiy, M.

Sterling, E. S.

S. E. Lewis, E. T. Donnelly, E. S. Sterling, M. S. Kennedy, W. Thompson, and U. Chakravarthy, “Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility,” Mol. Hum. Reprod. 2(11), 873–878 (1996).
[Crossref] [PubMed]

Suarez, S. S.

S. S. Suarez, S. M. Varosi, and X. Dai, “Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle,” Proc. Natl. Acad. Sci. U.S.A. 90(10), 4660–4664 (1993).
[Crossref] [PubMed]

Suto, K.

J. Nishizawa, T. Sasaki, K. Suto, T. Yamada, T. Tanabe, T. Tanno, T. Sawai, and Y. Miura,“THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator,” Opt. Commun. 2004(1–6), 469–474 (2005).

Tanabe, T.

J. Nishizawa, T. Sasaki, K. Suto, T. Yamada, T. Tanabe, T. Tanno, T. Sawai, and Y. Miura,“THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator,” Opt. Commun. 2004(1–6), 469–474 (2005).

Tanno, T.

J. Nishizawa, T. Sasaki, K. Suto, T. Yamada, T. Tanabe, T. Tanno, T. Sawai, and Y. Miura,“THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator,” Opt. Commun. 2004(1–6), 469–474 (2005).

Thompson, W.

S. E. Lewis, E. T. Donnelly, E. S. Sterling, M. S. Kennedy, W. Thompson, and U. Chakravarthy, “Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility,” Mol. Hum. Reprod. 2(11), 873–878 (1996).
[Crossref] [PubMed]

Varosi, S. M.

S. S. Suarez, S. M. Varosi, and X. Dai, “Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle,” Proc. Natl. Acad. Sci. U.S.A. 90(10), 4660–4664 (1993).
[Crossref] [PubMed]

Wallace, V. P.

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc. Interface 14(137), 20170585 (2017).
[Crossref] [PubMed]

P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
[Crossref] [PubMed]

Wilmink And Grundt, G. J.

G. J. Wilmink And Grundt, “Current State of Research on Biological Effects of Terahertz Radiation,” J Infrared Millim. THz Waves. 32(10), 1074–1122 (2011).

Wiser, A.

S. Shahar, A. Wiser, D. Ickowicz, R. Lubart, A. Shulman, and H. Breitbart, “Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility,” Hum. Reprod. 26(9), 2274–2282 (2011).
[Crossref] [PubMed]

Yamada, T.

J. Nishizawa, T. Sasaki, K. Suto, T. Yamada, T. Tanabe, T. Tanno, T. Sawai, and Y. Miura,“THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator,” Opt. Commun. 2004(1–6), 469–474 (2005).

Yan, J. G.

J. G. Yan, M. Agresti, T. Bruce, Y. H. Yan, A. Granlund, and H. S. Matloub, “Effects of cellular phone emissions on sperm motility in rats,” Fertil. Steril. 88(4), 957–964 (2007).
[Crossref] [PubMed]

Yan, Y. H.

J. G. Yan, M. Agresti, T. Bruce, Y. H. Yan, A. Granlund, and H. S. Matloub, “Effects of cellular phone emissions on sperm motility in rats,” Fertil. Steril. 88(4), 957–964 (2007).
[Crossref] [PubMed]

Yaroslavsky, A. N.

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous wave terahertz transmission imaging of nonmelanoma skin cancers,” Lasers Surg. Med. 43(6), 457–462 (2011).
[Crossref] [PubMed]

Zourob, M.

Anim. Reprod. Sci. (1)

P. C. Rodriguez, C. M. O’Flaherty, M. T. Beconi, and N. B. Beorlegui, “Nitric oxide-induced capacitation of cryopreserved bull spermatozoa and assessment of participating regulatory pathways,” Anim. Reprod. Sci. 85(3-4), 231–242 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. J. Lee and J. H. Lee Choi, “Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers,” Appl. Phys. Lett. 103(5), 86 (2013).

Biomed. Opt. Express (1)

Clinics (Sao Paulo) (1)

S. Kumar, K. K. Kesari, and J. Behari, “The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field,” Clinics (Sao Paulo) 66(7), 1237–1245 (2011).
[Crossref] [PubMed]

Fertil. Steril. (1)

J. G. Yan, M. Agresti, T. Bruce, Y. H. Yan, A. Granlund, and H. S. Matloub, “Effects of cellular phone emissions on sperm motility in rats,” Fertil. Steril. 88(4), 957–964 (2007).
[Crossref] [PubMed]

Hum. Reprod. (1)

S. Shahar, A. Wiser, D. Ickowicz, R. Lubart, A. Shulman, and H. Breitbart, “Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility,” Hum. Reprod. 26(9), 2274–2282 (2011).
[Crossref] [PubMed]

J Infrared Millim. THz Waves. (1)

G. J. Wilmink And Grundt, “Current State of Research on Biological Effects of Terahertz Radiation,” J Infrared Millim. THz Waves. 32(10), 1074–1122 (2011).

J. Opt. Soc. Korea (1)

J. Photochem. Photobiol. B (1)

R. Lubart, H. Friedmann, T. Levinshal, R. Lavie, and H. Breitbart, “Effect of light on calcium transport in bull sperm cells,” J. Photochem. Photobiol. B 15(4), 337–341 (1992).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc. Interface 14(137), 20170585 (2017).
[Crossref] [PubMed]

Lasers Surg. Med. (2)

R. Ankri, H. Friedman, N. Savion, S. Kotev-Emeth, H. Breitbart, and R. Lubart, “Visible light induces nitric oxide (NO) formation in sperm and endothelial cells,” Lasers Surg. Med. 42(4), 348–352 (2010).
[Crossref] [PubMed]

C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous wave terahertz transmission imaging of nonmelanoma skin cancers,” Lasers Surg. Med. 43(6), 457–462 (2011).
[Crossref] [PubMed]

Mol. Hum. Reprod. (1)

S. E. Lewis, E. T. Donnelly, E. S. Sterling, M. S. Kennedy, W. Thompson, and U. Chakravarthy, “Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility,” Mol. Hum. Reprod. 2(11), 873–878 (1996).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Nishizawa, T. Sasaki, K. Suto, T. Yamada, T. Tanabe, T. Tanno, T. Sawai, and Y. Miura,“THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator,” Opt. Commun. 2004(1–6), 469–474 (2005).

Opt. Express (2)

Photochem. Photobiol. (1)

N. Cohen, R. Lubart, S. Rubinstein, and H. Breitbart, “Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals,” Photochem. Photobiol. 68(3), 407–413 (1998).
[Crossref] [PubMed]

PLoS One (1)

G. N. De Iuliis, R. J. Newey, B. V. King, and R. J. Aitken, “Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro,” PLoS One 4(7), e6446 (2009).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. S. Suarez, S. M. Varosi, and X. Dai, “Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle,” Proc. Natl. Acad. Sci. U.S.A. 90(10), 4660–4664 (1993).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The effect of terahertz irradiation on sperm motility. (A) The experimental groups received terahertz irradiation, while the control groups did not. The PR percentage of sperm was measured from the beginning to 60 minutes by CASA. The results are presented as median with the standard error of the mean. “N” stands for results from normal patients, “Mi” stands for results from mild asthenospermia patients, and “Mo” stands for results from moderate asthenospermia patients. (B) The experimental groups received terahertz irradiation for 60 minutes, while the control groups did not. The PR percentage of sperm was measured at the end of irradiation. The results are presented as median with quartile and extremum. “E” stands for experimental group, “C” stands for control group, “N” stands for results from normal patients, “Mi” stands for results from mild asthenospermia patients, and “Mo” stands for results from moderate asthenospermia patients. Samples were taken from 20 normal patients, 20 mild asthenospermia patients and 20 moderate asthenospermia patients. Each sample was divided into experimental and control group. (C) The experimental groups received terahertz irradiation for 60 minutes, while the control groups did not. After irradiation, the PR percentage of sperm was measured by CASA from the beginning to 180 minutes. Samples were taken from 10 mild asthenospermia patients and each sample was divided into experimental and control group. *p<0.05
Fig. 2
Fig. 2 Effect of terahertz irradiation on the DNA integrity of sperm. The experimental group received terahertz irradiation for 60 minutes, while the control group did not. The H2O2 group were incubated with 100 mM H2O2 for 10 min for positive control. After irradiation, the DFI of these samples was assessed by the sperm chromatin dispersion test using a Halosperm kit (Halotech DNA, S.L, Spain). For each sample, 500 spermatozoa were accounted. (A) Representative vision of control group in sperm chromatin dispersion test. (B) Representative vision of experimental group in sperm chromatin dispersion test. (C) Representative vision of H2O2 group in sperm chromatin dispersion test. (D) This graph represents average number of sperm with different Halo size in different group. Samples were taken from 10 mild asthenospermia patients and each sample was divided into experimental, control group and H2O2 group.
Fig. 3
Fig. 3 Effect of terahertz irradiation on the intracellular calcium concentration in sperm. Sperm cells were incubated with Fluo-4/AM as described and then irradiated for the specified duration. Fluorescence was measured immediately after the irradiation. Samples were taken from 10 mild asthenospermia patients and each sample was divided into experimental, control group. *p<0.05
Fig. 4
Fig. 4 Effect of terahertz irradiation on sperm motility after blocking calcium channels or changing the extracellular calcium concentration. Washed sperm cells (100 µl) were incubated with phosphate-buffered saline with 1 mM ethylene glycol-bis (β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), 30 mM nifedipine, EGTA with Ca2+ or nothing. Ten minutes later, the experimental group was irradiated for 60 minutes. Sperm motility was measured using CASA after the irradiation. Samples were taken from 10 mild asthenospermia patients and each sample was divided into all groups. *p<0.05

Tables (4)

Tables Icon

Table 1 The effect of terahertz irradiation on sperm motility during terahertz irradiation.

Tables Icon

Table 2 The effect of terahertz irradiation on sperm motility after terahertz irradiation.

Tables Icon

Table 3 Effect of terahertz irradiation on the intracellular calcium concentration in sperm.

Tables Icon

Table 4 Effect of terahertz irradiation on sperm motility after blocking calcium channels or changing the extracellular calcium concentration.

Metrics