Abstract

Early detection of dental caries is known to be the key to the effectiveness of therapeutic and preventive approaches in dentistry. However, existing clinical detection techniques, such as radiographs, are not sufficiently sensitive to detect and monitor the progression of caries at early stages. As such, in recent years, several optics-based imaging modalities have been proposed for the early detection of caries. The majority of these techniques rely on the enhancement of light scattering in early carious lesions, while a few of them are based on the enhancement of light absorption at early caries sites. In this paper, we report on a systemic comparative study on the detection performances of optical coherence tomography (OCT) and thermophotonic lock-in imaging (TPLI) as representative early caries detection modalities based on light scattering and absorption, respectively. Through controlled demineralization studies on extracted human teeth and µCT validation experiments, several detection performance parameters of the two modalities such as detection threshold, sensitivity and specificity have been qualitatively analyzed and discussed. Our experiment results suggests that both modalities have sufficient sensitivity for the detection of well-developed early caries on occlusal and smooth surfaces; however, TPLI provides better sensitivity and detection threshold for detecting very early stages of caries formation, which is deemed to be critical for the effectiveness of therapeutic and preventive approaches in dentistry. Moreover, due to the more specific nature of the light absorption contrast mechanism over light scattering, TPLI exhibits better detection specificity, which results in less false positive readings and thus allows for the proper differentiation of early caries regions from the surrounding intact areas. The major shortcoming of TPLI is its inherent depth-integrated nature, prohibiting the production of depth-resolved/B-mode like images. The outcomes of this research justify the need for a light-absorption based imaging modality with the ability to produce tomographic and depth-resolved images, combining the key advantages of OCT and TPLI.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Detection of early dental caries using polarized Raman spectroscopy

Alex C.-T. Ko, Lin-P’ing Choo-Smith, Mark Hewko, Michael G. Sowa, Cecilia C.S. Dong, and Blaine Cleghorn
Opt. Express 14(1) 203-215 (2006)

Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm

Christopher M. Bühler, Patara Ngaotheppitak, and Daniel Fried
Opt. Express 13(2) 573-582 (2005)

Early dental caries detection using a fibre-optic coupled polarization-resolved Raman spectroscopic system

Alex C.-T. Ko, Mark Hewko, Michael G. Sowa, Cecilia C.S. Dong, Blaine Cleghorn, and Lin-P’ing Choo-Smith
Opt. Express 16(9) 6274-6284 (2008)

References

  • View by:
  • |
  • |
  • |

  1. E. Kidd, Essentials of Dental Caries the Disease and Its Management, 3rd ed. (Oxford University Press, 2005).
  2. Dental Caries: The Disease and its Clinical Management, 3rd ed. (Wiley-Blackwell, 2015).
  3. M. Mohanraj, V. Prabhu, and R. Senthil, “Diagnostic methods for early detection of dental caries - A review,” International Journal of Pedodontic Rehabilitation 1, 29–36 (2016).
  4. R. A. Bagramian, F. Garcia-Godoy, and A. R. Volpe, “The global increase in dental caries. A pending public health crisis,” Am. J. Dent. 22(1), 3–8 (2009).
    [PubMed]
  5. J. D. Bader, D. A. Shugars, and A. J. Bonito, “A systematic review of the performance of methods for identifying carious lesions,” J. Public Health Dent. 62(4), 201–213 (2002).
    [Crossref] [PubMed]
  6. M. S. Hopcraft and M. V. Morgan, “Comparison of radiographic and clinical diagnosis of approximal and occlusal dental caries in a young adult population,” Community Dent. Oral Epidemiol. 33(3), 212–218 (2005).
    [Crossref] [PubMed]
  7. L. Karlsson, “Caries detection methods based on changes in optical properties between healthy and carious tissue,” Int. J. Dent. 2010, 270729 (2010).
    [Crossref] [PubMed]
  8. M. J. S. C. White, Pharoah, Oral Radiology: Principles and Interpretation, 7th ed. (Elsevier Health Sciences, 2013).
  9. A. P. Dhawan, B. D’Alessandro, and X. Fu, “Optical imaging modalities for biomedical applications,” IEEE Rev. Biomed. Eng. 3, 69–92 (2010).
    [Crossref] [PubMed]
  10. Y.-S. Hsieh, Y.-C. Ho, S.-Y. Lee, C.-C. Chuang, J. C. Tsai, K.-F. Lin, and C.-W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
    [Crossref] [PubMed]
  11. N. Tabatabaei, A. Mandelis, and B. T. Amaechi, “Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth,” J. Biomed. Opt.  16, 071402 (2011).
    [Crossref]
  12. M.-T. Tsai, H.-C. Lee, C.-K. Lee, C.-H. Yu, H.-M. Chen, C.-P. Chiang, C.-C. Chang, Y.-M. Wang, and C. C. Yang, “Effective indicators for diagnosis of oral cancer using optical coherence tomography,” Opt. Express 16(20), 15847–15862 (2008).
    [Crossref] [PubMed]
  13. J. Espigares, A. Sadr, H. Hamba, Y. Shimada, M. Otsuki, J. Tagami, and Y. Sumi, “Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography,” J. Med. Imaging (Bellingham) 2(1), 014001 (2015).
    [Crossref] [PubMed]
  14. Y. Shimada, A. Sadr, M. F. Burrow, J. Tagami, N. Ozawa, and Y. Sumi, “Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries,” J. Dent. 38(8), 655–665 (2010).
    [Crossref] [PubMed]
  15. C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt. 13(5), 054065 (2008).
    [Crossref] [PubMed]
  16. D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
    [Crossref] [PubMed]
  17. D. Fried, M. Staninec, C. L. Darling, K. H. Chan, and R. B. Pelzner, “Clinical Monitoring of Early Caries Lesions using Cross Polarization Optical Coherence Tomography,” Proceedings of SPIE–the International Society for Optical Engineering8566(2013).
    [Crossref]
  18. D. Fried, M. Staninec, C. Darling, H. Kang, and K. Chan, “Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner,” Proceedings of SPIE–the International Society for Optical Engineering8208(2012).
    [Crossref]
  19. J. C. Simon, H. Kang, M. Staninec, A. T. Jang, K. H. Chan, C. L. Darling, R. C. Lee, and D. Fried, “Near-IR and CP-OCT imaging of suspected occlusal caries lesions,” Lasers Surg. Med. 49(3), 215–224 (2017).
    [Crossref] [PubMed]
  20. A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
    [Crossref] [PubMed]
  21. J. Walther, J. Golde, L. Kirsten, F. Tetschke, F. Hempel, T. Rosenauer, C. Hannig, and E. Koch, “In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 22(12), 1–17 (2017).
    [Crossref] [PubMed]
  22. P. Ngaotheppitak, C. L. Darling, and D. Fried, “Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography,” Lasers Surg. Med. 37(1), 78–88 (2005).
    [Crossref] [PubMed]
  23. J. Golde, F. Tetschke, J. Walther, T. Rosenauer, F. Hempel, C. Hannig, E. Koch, and L. Kirsten, “Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography,” J. Biomed. Opt. 23(7), 1–8 (2018).
    [Crossref] [PubMed]
  24. Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
    [Crossref] [PubMed]
  25. G. M. C. T. Astarita, Infrared Thermography for Thermo-Fluid-Dynamics, 1st ed. (Springer-Verlag Berlin Heidelberg, 2013).
  26. W. W. O. Breitenstein and M. Langenkamp, Lock-in Thermography: Basics and Use for Evaluating Electronic Devices and Materials, 1st ed., Springer Series in Advanced Microelectronics (Springer-Verlag Berlin Heidelberg, 2003).
  27. Y.-K. An, J. Min Kim, and H. Sohn, “Laser lock-in thermography for detection of surface-breaking fatigue cracks on uncoated steel structures,” NDT Int. 65, 54–63 (2014).
    [Crossref]
  28. C. Meola, G. M. Carlomagno, A. Squillace, and A. Vitiello, “Non-destructive evaluation of aerospace materials with lock-in thermography,” Eng. Fail. Anal. 13(3), 380–388 (2006).
    [Crossref]
  29. N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
    [Crossref] [PubMed]
  30. A. Ojaghi, A. Parkhimchyk, and N. Tabatabaei, “First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology,” J. Biomed. Opt. 21(9), 096003 (2016).
    [Crossref] [PubMed]
  31. M. Razani, A. Parkhimchyk, and N. Tabatabaei, “Lock-in thermography using a cellphone attachment infrared camera,” AIP Adv. (in press).
  32. M. Streza, B. Belean, I. Hodisan, and C. Prejmerean, “Improving lock-in thermography detection of microgaps located at the tooth-filling interface using a phase versus amplitude image signal extraction approach,” Measurement 104, 21–28 (2017).
    [Crossref]
  33. H. Schneider, K.-J. Park, M. Häfer, C. Rüger, G. Schmalz, F. Krause, J. Schmidt, D. Ziebolz, and R. Haak, “Dental applications of optical coherence tomography (OCT) in criology,” Applied Sciences 7(5), 472 (2017).
    [Crossref]
  34. A. Aden, A. Anthony, C. Brigi, M. S. Merchant, H. Siraj, and P. H. Tomlins, “Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography,” J. Biomed. Opt. 22(7), 076020 (2017).
    [Crossref] [PubMed]
  35. J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, “Ability of optical coherence tomography to detect caries beneath commonly used dental sealants,” Lasers Surg. Med. 42(8), 752–759 (2010).
    [Crossref] [PubMed]
  36. Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
    [Crossref] [PubMed]
  37. S. Kaiplavil and A. Mandelis, “Truncated-correlation photothermal coherence tomography for deep subsurface analysis,” Nat. Photonics 8(8), 635–642 (2014).
    [Crossref]
  38. D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
    [Crossref] [PubMed]

2018 (1)

J. Golde, F. Tetschke, J. Walther, T. Rosenauer, F. Hempel, C. Hannig, E. Koch, and L. Kirsten, “Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref] [PubMed]

2017 (5)

J. C. Simon, H. Kang, M. Staninec, A. T. Jang, K. H. Chan, C. L. Darling, R. C. Lee, and D. Fried, “Near-IR and CP-OCT imaging of suspected occlusal caries lesions,” Lasers Surg. Med. 49(3), 215–224 (2017).
[Crossref] [PubMed]

J. Walther, J. Golde, L. Kirsten, F. Tetschke, F. Hempel, T. Rosenauer, C. Hannig, and E. Koch, “In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 22(12), 1–17 (2017).
[Crossref] [PubMed]

M. Streza, B. Belean, I. Hodisan, and C. Prejmerean, “Improving lock-in thermography detection of microgaps located at the tooth-filling interface using a phase versus amplitude image signal extraction approach,” Measurement 104, 21–28 (2017).
[Crossref]

H. Schneider, K.-J. Park, M. Häfer, C. Rüger, G. Schmalz, F. Krause, J. Schmidt, D. Ziebolz, and R. Haak, “Dental applications of optical coherence tomography (OCT) in criology,” Applied Sciences 7(5), 472 (2017).
[Crossref]

A. Aden, A. Anthony, C. Brigi, M. S. Merchant, H. Siraj, and P. H. Tomlins, “Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography,” J. Biomed. Opt. 22(7), 076020 (2017).
[Crossref] [PubMed]

2016 (2)

A. Ojaghi, A. Parkhimchyk, and N. Tabatabaei, “First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology,” J. Biomed. Opt. 21(9), 096003 (2016).
[Crossref] [PubMed]

M. Mohanraj, V. Prabhu, and R. Senthil, “Diagnostic methods for early detection of dental caries - A review,” International Journal of Pedodontic Rehabilitation 1, 29–36 (2016).

2015 (1)

J. Espigares, A. Sadr, H. Hamba, Y. Shimada, M. Otsuki, J. Tagami, and Y. Sumi, “Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography,” J. Med. Imaging (Bellingham) 2(1), 014001 (2015).
[Crossref] [PubMed]

2014 (4)

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y.-K. An, J. Min Kim, and H. Sohn, “Laser lock-in thermography for detection of surface-breaking fatigue cracks on uncoated steel structures,” NDT Int. 65, 54–63 (2014).
[Crossref]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

S. Kaiplavil and A. Mandelis, “Truncated-correlation photothermal coherence tomography for deep subsurface analysis,” Nat. Photonics 8(8), 635–642 (2014).
[Crossref]

2013 (1)

Y.-S. Hsieh, Y.-C. Ho, S.-Y. Lee, C.-C. Chuang, J. C. Tsai, K.-F. Lin, and C.-W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

2012 (1)

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref] [PubMed]

2011 (1)

N. Tabatabaei, A. Mandelis, and B. T. Amaechi, “Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth,” J. Biomed. Opt.  16, 071402 (2011).
[Crossref]

2010 (4)

Y. Shimada, A. Sadr, M. F. Burrow, J. Tagami, N. Ozawa, and Y. Sumi, “Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries,” J. Dent. 38(8), 655–665 (2010).
[Crossref] [PubMed]

L. Karlsson, “Caries detection methods based on changes in optical properties between healthy and carious tissue,” Int. J. Dent. 2010, 270729 (2010).
[Crossref] [PubMed]

A. P. Dhawan, B. D’Alessandro, and X. Fu, “Optical imaging modalities for biomedical applications,” IEEE Rev. Biomed. Eng. 3, 69–92 (2010).
[Crossref] [PubMed]

J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, “Ability of optical coherence tomography to detect caries beneath commonly used dental sealants,” Lasers Surg. Med. 42(8), 752–759 (2010).
[Crossref] [PubMed]

2009 (1)

R. A. Bagramian, F. Garcia-Godoy, and A. R. Volpe, “The global increase in dental caries. A pending public health crisis,” Am. J. Dent. 22(1), 3–8 (2009).
[PubMed]

2008 (3)

2006 (1)

C. Meola, G. M. Carlomagno, A. Squillace, and A. Vitiello, “Non-destructive evaluation of aerospace materials with lock-in thermography,” Eng. Fail. Anal. 13(3), 380–388 (2006).
[Crossref]

2005 (2)

M. S. Hopcraft and M. V. Morgan, “Comparison of radiographic and clinical diagnosis of approximal and occlusal dental caries in a young adult population,” Community Dent. Oral Epidemiol. 33(3), 212–218 (2005).
[Crossref] [PubMed]

P. Ngaotheppitak, C. L. Darling, and D. Fried, “Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography,” Lasers Surg. Med. 37(1), 78–88 (2005).
[Crossref] [PubMed]

2002 (2)

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

J. D. Bader, D. A. Shugars, and A. J. Bonito, “A systematic review of the performance of methods for identifying carious lesions,” J. Public Health Dent. 62(4), 201–213 (2002).
[Crossref] [PubMed]

2000 (1)

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Aden, A.

A. Aden, A. Anthony, C. Brigi, M. S. Merchant, H. Siraj, and P. H. Tomlins, “Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography,” J. Biomed. Opt. 22(7), 076020 (2017).
[Crossref] [PubMed]

Adler, D. C.

Ahn, Y. C.

J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, “Ability of optical coherence tomography to detect caries beneath commonly used dental sealants,” Lasers Surg. Med. 42(8), 752–759 (2010).
[Crossref] [PubMed]

Amaechi, B. T.

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref] [PubMed]

N. Tabatabaei, A. Mandelis, and B. T. Amaechi, “Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth,” J. Biomed. Opt.  16, 071402 (2011).
[Crossref]

An, Y.-K.

Y.-K. An, J. Min Kim, and H. Sohn, “Laser lock-in thermography for detection of surface-breaking fatigue cracks on uncoated steel structures,” NDT Int. 65, 54–63 (2014).
[Crossref]

Anthony, A.

A. Aden, A. Anthony, C. Brigi, M. S. Merchant, H. Siraj, and P. H. Tomlins, “Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography,” J. Biomed. Opt. 22(7), 076020 (2017).
[Crossref] [PubMed]

Bader, J. D.

J. D. Bader, D. A. Shugars, and A. J. Bonito, “A systematic review of the performance of methods for identifying carious lesions,” J. Public Health Dent. 62(4), 201–213 (2002).
[Crossref] [PubMed]

Bagramian, R. A.

R. A. Bagramian, F. Garcia-Godoy, and A. R. Volpe, “The global increase in dental caries. A pending public health crisis,” Am. J. Dent. 22(1), 3–8 (2009).
[PubMed]

Balabuc, C.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt. 13(5), 054065 (2008).
[Crossref] [PubMed]

Baumgartner, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Belean, B.

M. Streza, B. Belean, I. Hodisan, and C. Prejmerean, “Improving lock-in thermography detection of microgaps located at the tooth-filling interface using a phase versus amplitude image signal extraction approach,” Measurement 104, 21–28 (2017).
[Crossref]

Bonito, A. J.

J. D. Bader, D. A. Shugars, and A. J. Bonito, “A systematic review of the performance of methods for identifying carious lesions,” J. Public Health Dent. 62(4), 201–213 (2002).
[Crossref] [PubMed]

Bradu, A.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt. 13(5), 054065 (2008).
[Crossref] [PubMed]

Breunig, T. M.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

Brigi, C.

A. Aden, A. Anthony, C. Brigi, M. S. Merchant, H. Siraj, and P. H. Tomlins, “Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography,” J. Biomed. Opt. 22(7), 076020 (2017).
[Crossref] [PubMed]

Burrow, M. F.

Y. Shimada, A. Sadr, M. F. Burrow, J. Tagami, N. Ozawa, and Y. Sumi, “Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries,” J. Dent. 38(8), 655–665 (2010).
[Crossref] [PubMed]

Carlomagno, G. M.

C. Meola, G. M. Carlomagno, A. Squillace, and A. Vitiello, “Non-destructive evaluation of aerospace materials with lock-in thermography,” Eng. Fail. Anal. 13(3), 380–388 (2006).
[Crossref]

Chan, K.

D. Fried, M. Staninec, C. Darling, H. Kang, and K. Chan, “Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner,” Proceedings of SPIE–the International Society for Optical Engineering8208(2012).
[Crossref]

Chan, K. H.

J. C. Simon, H. Kang, M. Staninec, A. T. Jang, K. H. Chan, C. L. Darling, R. C. Lee, and D. Fried, “Near-IR and CP-OCT imaging of suspected occlusal caries lesions,” Lasers Surg. Med. 49(3), 215–224 (2017).
[Crossref] [PubMed]

D. Fried, M. Staninec, C. L. Darling, K. H. Chan, and R. B. Pelzner, “Clinical Monitoring of Early Caries Lesions using Cross Polarization Optical Coherence Tomography,” Proceedings of SPIE–the International Society for Optical Engineering8566(2013).
[Crossref]

Chang, C.-C.

Chen, H.-M.

Chen, Z.

J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, “Ability of optical coherence tomography to detect caries beneath commonly used dental sealants,” Lasers Surg. Med. 42(8), 752–759 (2010).
[Crossref] [PubMed]

Chiang, C.-P.

Chuang, C.-C.

Y.-S. Hsieh, Y.-C. Ho, S.-Y. Lee, C.-C. Chuang, J. C. Tsai, K.-F. Lin, and C.-W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

D’Alessandro, B.

A. P. Dhawan, B. D’Alessandro, and X. Fu, “Optical imaging modalities for biomedical applications,” IEEE Rev. Biomed. Eng. 3, 69–92 (2010).
[Crossref] [PubMed]

Darling, C.

D. Fried, M. Staninec, C. Darling, H. Kang, and K. Chan, “Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner,” Proceedings of SPIE–the International Society for Optical Engineering8208(2012).
[Crossref]

Darling, C. L.

J. C. Simon, H. Kang, M. Staninec, A. T. Jang, K. H. Chan, C. L. Darling, R. C. Lee, and D. Fried, “Near-IR and CP-OCT imaging of suspected occlusal caries lesions,” Lasers Surg. Med. 49(3), 215–224 (2017).
[Crossref] [PubMed]

P. Ngaotheppitak, C. L. Darling, and D. Fried, “Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography,” Lasers Surg. Med. 37(1), 78–88 (2005).
[Crossref] [PubMed]

D. Fried, M. Staninec, C. L. Darling, K. H. Chan, and R. B. Pelzner, “Clinical Monitoring of Early Caries Lesions using Cross Polarization Optical Coherence Tomography,” Proceedings of SPIE–the International Society for Optical Engineering8566(2013).
[Crossref]

Dehghany, M.

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref] [PubMed]

Dhawan, A. P.

A. P. Dhawan, B. D’Alessandro, and X. Fu, “Optical imaging modalities for biomedical applications,” IEEE Rev. Biomed. Eng. 3, 69–92 (2010).
[Crossref] [PubMed]

Dichtl, S.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Espigares, J.

J. Espigares, A. Sadr, H. Hamba, Y. Shimada, M. Otsuki, J. Tagami, and Y. Sumi, “Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography,” J. Med. Imaging (Bellingham) 2(1), 014001 (2015).
[Crossref] [PubMed]

Featherstone, J. D.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

Fercher, A. F.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Filip, L.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt. 13(5), 054065 (2008).
[Crossref] [PubMed]

Fried, D.

J. C. Simon, H. Kang, M. Staninec, A. T. Jang, K. H. Chan, C. L. Darling, R. C. Lee, and D. Fried, “Near-IR and CP-OCT imaging of suspected occlusal caries lesions,” Lasers Surg. Med. 49(3), 215–224 (2017).
[Crossref] [PubMed]

P. Ngaotheppitak, C. L. Darling, and D. Fried, “Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography,” Lasers Surg. Med. 37(1), 78–88 (2005).
[Crossref] [PubMed]

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

D. Fried, M. Staninec, C. Darling, H. Kang, and K. Chan, “Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner,” Proceedings of SPIE–the International Society for Optical Engineering8208(2012).
[Crossref]

D. Fried, M. Staninec, C. L. Darling, K. H. Chan, and R. B. Pelzner, “Clinical Monitoring of Early Caries Lesions using Cross Polarization Optical Coherence Tomography,” Proceedings of SPIE–the International Society for Optical Engineering8566(2013).
[Crossref]

Fu, X.

A. P. Dhawan, B. D’Alessandro, and X. Fu, “Optical imaging modalities for biomedical applications,” IEEE Rev. Biomed. Eng. 3, 69–92 (2010).
[Crossref] [PubMed]

Fujimoto, J. G.

Garcia-Godoy, F.

R. A. Bagramian, F. Garcia-Godoy, and A. R. Volpe, “The global increase in dental caries. A pending public health crisis,” Am. J. Dent. 22(1), 3–8 (2009).
[PubMed]

Golde, J.

J. Golde, F. Tetschke, J. Walther, T. Rosenauer, F. Hempel, C. Hannig, E. Koch, and L. Kirsten, “Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref] [PubMed]

J. Walther, J. Golde, L. Kirsten, F. Tetschke, F. Hempel, T. Rosenauer, C. Hannig, and E. Koch, “In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 22(12), 1–17 (2017).
[Crossref] [PubMed]

Gukasyan, R.

J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, “Ability of optical coherence tomography to detect caries beneath commonly used dental sealants,” Lasers Surg. Med. 42(8), 752–759 (2010).
[Crossref] [PubMed]

Haak, R.

H. Schneider, K.-J. Park, M. Häfer, C. Rüger, G. Schmalz, F. Krause, J. Schmidt, D. Ziebolz, and R. Haak, “Dental applications of optical coherence tomography (OCT) in criology,” Applied Sciences 7(5), 472 (2017).
[Crossref]

Häfer, M.

H. Schneider, K.-J. Park, M. Häfer, C. Rüger, G. Schmalz, F. Krause, J. Schmidt, D. Ziebolz, and R. Haak, “Dental applications of optical coherence tomography (OCT) in criology,” Applied Sciences 7(5), 472 (2017).
[Crossref]

Hamba, H.

J. Espigares, A. Sadr, H. Hamba, Y. Shimada, M. Otsuki, J. Tagami, and Y. Sumi, “Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography,” J. Med. Imaging (Bellingham) 2(1), 014001 (2015).
[Crossref] [PubMed]

Hannig, C.

J. Golde, F. Tetschke, J. Walther, T. Rosenauer, F. Hempel, C. Hannig, E. Koch, and L. Kirsten, “Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref] [PubMed]

J. Walther, J. Golde, L. Kirsten, F. Tetschke, F. Hempel, T. Rosenauer, C. Hannig, and E. Koch, “In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 22(12), 1–17 (2017).
[Crossref] [PubMed]

Hempel, F.

J. Golde, F. Tetschke, J. Walther, T. Rosenauer, F. Hempel, C. Hannig, E. Koch, and L. Kirsten, “Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref] [PubMed]

J. Walther, J. Golde, L. Kirsten, F. Tetschke, F. Hempel, T. Rosenauer, C. Hannig, and E. Koch, “In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 22(12), 1–17 (2017).
[Crossref] [PubMed]

Hitzenberger, C. K.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Ho, Y.-C.

Y.-S. Hsieh, Y.-C. Ho, S.-Y. Lee, C.-C. Chuang, J. C. Tsai, K.-F. Lin, and C.-W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Hodisan, I.

M. Streza, B. Belean, I. Hodisan, and C. Prejmerean, “Improving lock-in thermography detection of microgaps located at the tooth-filling interface using a phase versus amplitude image signal extraction approach,” Measurement 104, 21–28 (2017).
[Crossref]

Holtzman, J. S.

J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, “Ability of optical coherence tomography to detect caries beneath commonly used dental sealants,” Lasers Surg. Med. 42(8), 752–759 (2010).
[Crossref] [PubMed]

Hopcraft, M. S.

M. S. Hopcraft and M. V. Morgan, “Comparison of radiographic and clinical diagnosis of approximal and occlusal dental caries in a young adult population,” Community Dent. Oral Epidemiol. 33(3), 212–218 (2005).
[Crossref] [PubMed]

Hsieh, Y.-S.

Y.-S. Hsieh, Y.-C. Ho, S.-Y. Lee, C.-C. Chuang, J. C. Tsai, K.-F. Lin, and C.-W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Huang, S.-W.

Huber, R.

Hughes, M.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt. 13(5), 054065 (2008).
[Crossref] [PubMed]

Jang, A. T.

J. C. Simon, H. Kang, M. Staninec, A. T. Jang, K. H. Chan, C. L. Darling, R. C. Lee, and D. Fried, “Near-IR and CP-OCT imaging of suspected occlusal caries lesions,” Lasers Surg. Med. 49(3), 215–224 (2017).
[Crossref] [PubMed]

Kaiplavil, S.

S. Kaiplavil and A. Mandelis, “Truncated-correlation photothermal coherence tomography for deep subsurface analysis,” Nat. Photonics 8(8), 635–642 (2014).
[Crossref]

Kang, H.

J. C. Simon, H. Kang, M. Staninec, A. T. Jang, K. H. Chan, C. L. Darling, R. C. Lee, and D. Fried, “Near-IR and CP-OCT imaging of suspected occlusal caries lesions,” Lasers Surg. Med. 49(3), 215–224 (2017).
[Crossref] [PubMed]

D. Fried, M. Staninec, C. Darling, H. Kang, and K. Chan, “Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner,” Proceedings of SPIE–the International Society for Optical Engineering8208(2012).
[Crossref]

Karlsson, L.

L. Karlsson, “Caries detection methods based on changes in optical properties between healthy and carious tissue,” Int. J. Dent. 2010, 270729 (2010).
[Crossref] [PubMed]

Kirsten, L.

J. Golde, F. Tetschke, J. Walther, T. Rosenauer, F. Hempel, C. Hannig, E. Koch, and L. Kirsten, “Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref] [PubMed]

J. Walther, J. Golde, L. Kirsten, F. Tetschke, F. Hempel, T. Rosenauer, C. Hannig, and E. Koch, “In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 22(12), 1–17 (2017).
[Crossref] [PubMed]

Koch, E.

J. Golde, F. Tetschke, J. Walther, T. Rosenauer, F. Hempel, C. Hannig, E. Koch, and L. Kirsten, “Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref] [PubMed]

J. Walther, J. Golde, L. Kirsten, F. Tetschke, F. Hempel, T. Rosenauer, C. Hannig, and E. Koch, “In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 22(12), 1–17 (2017).
[Crossref] [PubMed]

Krause, F.

H. Schneider, K.-J. Park, M. Häfer, C. Rüger, G. Schmalz, F. Krause, J. Schmidt, D. Ziebolz, and R. Haak, “Dental applications of optical coherence tomography (OCT) in criology,” Applied Sciences 7(5), 472 (2017).
[Crossref]

Le, C.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

Lee, C.-K.

Lee, H.-C.

Lee, K.

J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, “Ability of optical coherence tomography to detect caries beneath commonly used dental sealants,” Lasers Surg. Med. 42(8), 752–759 (2010).
[Crossref] [PubMed]

Lee, R. C.

J. C. Simon, H. Kang, M. Staninec, A. T. Jang, K. H. Chan, C. L. Darling, R. C. Lee, and D. Fried, “Near-IR and CP-OCT imaging of suspected occlusal caries lesions,” Lasers Surg. Med. 49(3), 215–224 (2017).
[Crossref] [PubMed]

Lee, S.-Y.

Y.-S. Hsieh, Y.-C. Ho, S.-Y. Lee, C.-C. Chuang, J. C. Tsai, K.-F. Lin, and C.-W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Lin, K.-F.

Y.-S. Hsieh, Y.-C. Ho, S.-Y. Lee, C.-C. Chuang, J. C. Tsai, K.-F. Lin, and C.-W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Mandelis, A.

S. Kaiplavil and A. Mandelis, “Truncated-correlation photothermal coherence tomography for deep subsurface analysis,” Nat. Photonics 8(8), 635–642 (2014).
[Crossref]

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref] [PubMed]

N. Tabatabaei, A. Mandelis, and B. T. Amaechi, “Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth,” J. Biomed. Opt.  16, 071402 (2011).
[Crossref]

Meola, C.

C. Meola, G. M. Carlomagno, A. Squillace, and A. Vitiello, “Non-destructive evaluation of aerospace materials with lock-in thermography,” Eng. Fail. Anal. 13(3), 380–388 (2006).
[Crossref]

Merchant, M. S.

A. Aden, A. Anthony, C. Brigi, M. S. Merchant, H. Siraj, and P. H. Tomlins, “Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography,” J. Biomed. Opt. 22(7), 076020 (2017).
[Crossref] [PubMed]

Michaelian, K. H.

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref] [PubMed]

Min Kim, J.

Y.-K. An, J. Min Kim, and H. Sohn, “Laser lock-in thermography for detection of surface-breaking fatigue cracks on uncoated steel structures,” NDT Int. 65, 54–63 (2014).
[Crossref]

Mohanraj, M.

M. Mohanraj, V. Prabhu, and R. Senthil, “Diagnostic methods for early detection of dental caries - A review,” International Journal of Pedodontic Rehabilitation 1, 29–36 (2016).

Morgan, M. V.

M. S. Hopcraft and M. V. Morgan, “Comparison of radiographic and clinical diagnosis of approximal and occlusal dental caries in a young adult population,” Community Dent. Oral Epidemiol. 33(3), 212–218 (2005).
[Crossref] [PubMed]

Moritz, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Nakagawa, H.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Nakajima, M.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Negrutiu, M. L.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt. 13(5), 054065 (2008).
[Crossref] [PubMed]

Ngaotheppitak, P.

P. Ngaotheppitak, C. L. Darling, and D. Fried, “Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography,” Lasers Surg. Med. 37(1), 78–88 (2005).
[Crossref] [PubMed]

Nikaido, T.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Ojaghi, A.

A. Ojaghi, A. Parkhimchyk, and N. Tabatabaei, “First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology,” J. Biomed. Opt. 21(9), 096003 (2016).
[Crossref] [PubMed]

Osann, K.

J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, “Ability of optical coherence tomography to detect caries beneath commonly used dental sealants,” Lasers Surg. Med. 42(8), 752–759 (2010).
[Crossref] [PubMed]

Otsuki, M.

J. Espigares, A. Sadr, H. Hamba, Y. Shimada, M. Otsuki, J. Tagami, and Y. Sumi, “Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography,” J. Med. Imaging (Bellingham) 2(1), 014001 (2015).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Ozawa, N.

Y. Shimada, A. Sadr, M. F. Burrow, J. Tagami, N. Ozawa, and Y. Sumi, “Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries,” J. Dent. 38(8), 655–665 (2010).
[Crossref] [PubMed]

Park, K.-J.

H. Schneider, K.-J. Park, M. Häfer, C. Rüger, G. Schmalz, F. Krause, J. Schmidt, D. Ziebolz, and R. Haak, “Dental applications of optical coherence tomography (OCT) in criology,” Applied Sciences 7(5), 472 (2017).
[Crossref]

Parkhimchyk, A.

A. Ojaghi, A. Parkhimchyk, and N. Tabatabaei, “First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology,” J. Biomed. Opt. 21(9), 096003 (2016).
[Crossref] [PubMed]

M. Razani, A. Parkhimchyk, and N. Tabatabaei, “Lock-in thermography using a cellphone attachment infrared camera,” AIP Adv. (in press).

Pelzner, R. B.

D. Fried, M. Staninec, C. L. Darling, K. H. Chan, and R. B. Pelzner, “Clinical Monitoring of Early Caries Lesions using Cross Polarization Optical Coherence Tomography,” Proceedings of SPIE–the International Society for Optical Engineering8566(2013).
[Crossref]

Pharar, J.

J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, “Ability of optical coherence tomography to detect caries beneath commonly used dental sealants,” Lasers Surg. Med. 42(8), 752–759 (2010).
[Crossref] [PubMed]

Podoleanu, A. G.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt. 13(5), 054065 (2008).
[Crossref] [PubMed]

Prabhu, V.

M. Mohanraj, V. Prabhu, and R. Senthil, “Diagnostic methods for early detection of dental caries - A review,” International Journal of Pedodontic Rehabilitation 1, 29–36 (2016).

Prejmerean, C.

M. Streza, B. Belean, I. Hodisan, and C. Prejmerean, “Improving lock-in thermography detection of microgaps located at the tooth-filling interface using a phase versus amplitude image signal extraction approach,” Measurement 104, 21–28 (2017).
[Crossref]

Razani, M.

M. Razani, A. Parkhimchyk, and N. Tabatabaei, “Lock-in thermography using a cellphone attachment infrared camera,” AIP Adv. (in press).

Robl, B.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Rominu, R.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt. 13(5), 054065 (2008).
[Crossref] [PubMed]

Rosenauer, T.

J. Golde, F. Tetschke, J. Walther, T. Rosenauer, F. Hempel, C. Hannig, E. Koch, and L. Kirsten, “Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref] [PubMed]

J. Walther, J. Golde, L. Kirsten, F. Tetschke, F. Hempel, T. Rosenauer, C. Hannig, and E. Koch, “In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 22(12), 1–17 (2017).
[Crossref] [PubMed]

Rüger, C.

H. Schneider, K.-J. Park, M. Häfer, C. Rüger, G. Schmalz, F. Krause, J. Schmidt, D. Ziebolz, and R. Haak, “Dental applications of optical coherence tomography (OCT) in criology,” Applied Sciences 7(5), 472 (2017).
[Crossref]

Sabet, S.

J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, “Ability of optical coherence tomography to detect caries beneath commonly used dental sealants,” Lasers Surg. Med. 42(8), 752–759 (2010).
[Crossref] [PubMed]

Sadr, A.

J. Espigares, A. Sadr, H. Hamba, Y. Shimada, M. Otsuki, J. Tagami, and Y. Sumi, “Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography,” J. Med. Imaging (Bellingham) 2(1), 014001 (2015).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, A. Sadr, M. F. Burrow, J. Tagami, N. Ozawa, and Y. Sumi, “Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries,” J. Dent. 38(8), 655–665 (2010).
[Crossref] [PubMed]

Sattmann, H.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Schmalz, G.

H. Schneider, K.-J. Park, M. Häfer, C. Rüger, G. Schmalz, F. Krause, J. Schmidt, D. Ziebolz, and R. Haak, “Dental applications of optical coherence tomography (OCT) in criology,” Applied Sciences 7(5), 472 (2017).
[Crossref]

Schmidt, J.

H. Schneider, K.-J. Park, M. Häfer, C. Rüger, G. Schmalz, F. Krause, J. Schmidt, D. Ziebolz, and R. Haak, “Dental applications of optical coherence tomography (OCT) in criology,” Applied Sciences 7(5), 472 (2017).
[Crossref]

Schneider, H.

H. Schneider, K.-J. Park, M. Häfer, C. Rüger, G. Schmalz, F. Krause, J. Schmidt, D. Ziebolz, and R. Haak, “Dental applications of optical coherence tomography (OCT) in criology,” Applied Sciences 7(5), 472 (2017).
[Crossref]

Senthil, R.

M. Mohanraj, V. Prabhu, and R. Senthil, “Diagnostic methods for early detection of dental caries - A review,” International Journal of Pedodontic Rehabilitation 1, 29–36 (2016).

Shafi, S.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

Shimada, Y.

J. Espigares, A. Sadr, H. Hamba, Y. Shimada, M. Otsuki, J. Tagami, and Y. Sumi, “Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography,” J. Med. Imaging (Bellingham) 2(1), 014001 (2015).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, A. Sadr, M. F. Burrow, J. Tagami, N. Ozawa, and Y. Sumi, “Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries,” J. Dent. 38(8), 655–665 (2010).
[Crossref] [PubMed]

Shugars, D. A.

J. D. Bader, D. A. Shugars, and A. J. Bonito, “A systematic review of the performance of methods for identifying carious lesions,” J. Public Health Dent. 62(4), 201–213 (2002).
[Crossref] [PubMed]

Simon, J. C.

J. C. Simon, H. Kang, M. Staninec, A. T. Jang, K. H. Chan, C. L. Darling, R. C. Lee, and D. Fried, “Near-IR and CP-OCT imaging of suspected occlusal caries lesions,” Lasers Surg. Med. 49(3), 215–224 (2017).
[Crossref] [PubMed]

Sinescu, C.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt. 13(5), 054065 (2008).
[Crossref] [PubMed]

Siraj, H.

A. Aden, A. Anthony, C. Brigi, M. S. Merchant, H. Siraj, and P. H. Tomlins, “Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography,” J. Biomed. Opt. 22(7), 076020 (2017).
[Crossref] [PubMed]

Sohn, H.

Y.-K. An, J. Min Kim, and H. Sohn, “Laser lock-in thermography for detection of surface-breaking fatigue cracks on uncoated steel structures,” NDT Int. 65, 54–63 (2014).
[Crossref]

Sperr, W.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Squillace, A.

C. Meola, G. M. Carlomagno, A. Squillace, and A. Vitiello, “Non-destructive evaluation of aerospace materials with lock-in thermography,” Eng. Fail. Anal. 13(3), 380–388 (2006).
[Crossref]

Staninec, M.

J. C. Simon, H. Kang, M. Staninec, A. T. Jang, K. H. Chan, C. L. Darling, R. C. Lee, and D. Fried, “Near-IR and CP-OCT imaging of suspected occlusal caries lesions,” Lasers Surg. Med. 49(3), 215–224 (2017).
[Crossref] [PubMed]

D. Fried, M. Staninec, C. Darling, H. Kang, and K. Chan, “Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner,” Proceedings of SPIE–the International Society for Optical Engineering8208(2012).
[Crossref]

D. Fried, M. Staninec, C. L. Darling, K. H. Chan, and R. B. Pelzner, “Clinical Monitoring of Early Caries Lesions using Cross Polarization Optical Coherence Tomography,” Proceedings of SPIE–the International Society for Optical Engineering8566(2013).
[Crossref]

Streza, M.

M. Streza, B. Belean, I. Hodisan, and C. Prejmerean, “Improving lock-in thermography detection of microgaps located at the tooth-filling interface using a phase versus amplitude image signal extraction approach,” Measurement 104, 21–28 (2017).
[Crossref]

Sumi, Y.

J. Espigares, A. Sadr, H. Hamba, Y. Shimada, M. Otsuki, J. Tagami, and Y. Sumi, “Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography,” J. Med. Imaging (Bellingham) 2(1), 014001 (2015).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, A. Sadr, M. F. Burrow, J. Tagami, N. Ozawa, and Y. Sumi, “Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries,” J. Dent. 38(8), 655–665 (2010).
[Crossref] [PubMed]

Sun, C.-W.

Y.-S. Hsieh, Y.-C. Ho, S.-Y. Lee, C.-C. Chuang, J. C. Tsai, K.-F. Lin, and C.-W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Tabatabaei, N.

A. Ojaghi, A. Parkhimchyk, and N. Tabatabaei, “First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology,” J. Biomed. Opt. 21(9), 096003 (2016).
[Crossref] [PubMed]

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref] [PubMed]

N. Tabatabaei, A. Mandelis, and B. T. Amaechi, “Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth,” J. Biomed. Opt.  16, 071402 (2011).
[Crossref]

M. Razani, A. Parkhimchyk, and N. Tabatabaei, “Lock-in thermography using a cellphone attachment infrared camera,” AIP Adv. (in press).

Tagami, J.

J. Espigares, A. Sadr, H. Hamba, Y. Shimada, M. Otsuki, J. Tagami, and Y. Sumi, “Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography,” J. Med. Imaging (Bellingham) 2(1), 014001 (2015).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, A. Sadr, M. F. Burrow, J. Tagami, N. Ozawa, and Y. Sumi, “Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries,” J. Dent. 38(8), 655–665 (2010).
[Crossref] [PubMed]

Tetschke, F.

J. Golde, F. Tetschke, J. Walther, T. Rosenauer, F. Hempel, C. Hannig, E. Koch, and L. Kirsten, “Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref] [PubMed]

J. Walther, J. Golde, L. Kirsten, F. Tetschke, F. Hempel, T. Rosenauer, C. Hannig, and E. Koch, “In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 22(12), 1–17 (2017).
[Crossref] [PubMed]

Todea, C.

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt. 13(5), 054065 (2008).
[Crossref] [PubMed]

Tomlins, P. H.

A. Aden, A. Anthony, C. Brigi, M. S. Merchant, H. Siraj, and P. H. Tomlins, “Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography,” J. Biomed. Opt. 22(7), 076020 (2017).
[Crossref] [PubMed]

Tsai, J. C.

Y.-S. Hsieh, Y.-C. Ho, S.-Y. Lee, C.-C. Chuang, J. C. Tsai, K.-F. Lin, and C.-W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Tsai, M.-T.

Tucker, T.

J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, “Ability of optical coherence tomography to detect caries beneath commonly used dental sealants,” Lasers Surg. Med. 42(8), 752–759 (2010).
[Crossref] [PubMed]

Vitiello, A.

C. Meola, G. M. Carlomagno, A. Squillace, and A. Vitiello, “Non-destructive evaluation of aerospace materials with lock-in thermography,” Eng. Fail. Anal. 13(3), 380–388 (2006).
[Crossref]

Volpe, A. R.

R. A. Bagramian, F. Garcia-Godoy, and A. R. Volpe, “The global increase in dental caries. A pending public health crisis,” Am. J. Dent. 22(1), 3–8 (2009).
[PubMed]

Wada, I.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Walther, J.

J. Golde, F. Tetschke, J. Walther, T. Rosenauer, F. Hempel, C. Hannig, E. Koch, and L. Kirsten, “Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref] [PubMed]

J. Walther, J. Golde, L. Kirsten, F. Tetschke, F. Hempel, T. Rosenauer, C. Hannig, and E. Koch, “In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 22(12), 1–17 (2017).
[Crossref] [PubMed]

Wang, Y.-M.

Wilder-Smith, P.

J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, “Ability of optical coherence tomography to detect caries beneath commonly used dental sealants,” Lasers Surg. Med. 42(8), 752–759 (2010).
[Crossref] [PubMed]

Xie, J.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

Yang, C. C.

Yu, C.-H.

Ziebolz, D.

H. Schneider, K.-J. Park, M. Häfer, C. Rüger, G. Schmalz, F. Krause, J. Schmidt, D. Ziebolz, and R. Haak, “Dental applications of optical coherence tomography (OCT) in criology,” Applied Sciences 7(5), 472 (2017).
[Crossref]

Am. J. Dent. (1)

R. A. Bagramian, F. Garcia-Godoy, and A. R. Volpe, “The global increase in dental caries. A pending public health crisis,” Am. J. Dent. 22(1), 3–8 (2009).
[PubMed]

Applied Sciences (1)

H. Schneider, K.-J. Park, M. Häfer, C. Rüger, G. Schmalz, F. Krause, J. Schmidt, D. Ziebolz, and R. Haak, “Dental applications of optical coherence tomography (OCT) in criology,” Applied Sciences 7(5), 472 (2017).
[Crossref]

Caries Res. (1)

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000).
[Crossref] [PubMed]

Community Dent. Oral Epidemiol. (1)

M. S. Hopcraft and M. V. Morgan, “Comparison of radiographic and clinical diagnosis of approximal and occlusal dental caries in a young adult population,” Community Dent. Oral Epidemiol. 33(3), 212–218 (2005).
[Crossref] [PubMed]

Eng. Fail. Anal. (1)

C. Meola, G. M. Carlomagno, A. Squillace, and A. Vitiello, “Non-destructive evaluation of aerospace materials with lock-in thermography,” Eng. Fail. Anal. 13(3), 380–388 (2006).
[Crossref]

IEEE Rev. Biomed. Eng. (1)

A. P. Dhawan, B. D’Alessandro, and X. Fu, “Optical imaging modalities for biomedical applications,” IEEE Rev. Biomed. Eng. 3, 69–92 (2010).
[Crossref] [PubMed]

Int. J. Dent. (1)

L. Karlsson, “Caries detection methods based on changes in optical properties between healthy and carious tissue,” Int. J. Dent. 2010, 270729 (2010).
[Crossref] [PubMed]

International Journal of Pedodontic Rehabilitation (1)

M. Mohanraj, V. Prabhu, and R. Senthil, “Diagnostic methods for early detection of dental caries - A review,” International Journal of Pedodontic Rehabilitation 1, 29–36 (2016).

J. Biomed. Opt (1)

N. Tabatabaei, A. Mandelis, and B. T. Amaechi, “Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth,” J. Biomed. Opt.  16, 071402 (2011).
[Crossref]

J. Biomed. Opt. (7)

C. Sinescu, M. L. Negrutiu, C. Todea, C. Balabuc, L. Filip, R. Rominu, A. Bradu, M. Hughes, and A. G. Podoleanu, “Quality assessment of dental treatments using en-face optical coherence tomography,” J. Biomed. Opt. 13(5), 054065 (2008).
[Crossref] [PubMed]

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[Crossref] [PubMed]

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref] [PubMed]

A. Ojaghi, A. Parkhimchyk, and N. Tabatabaei, “First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology,” J. Biomed. Opt. 21(9), 096003 (2016).
[Crossref] [PubMed]

A. Aden, A. Anthony, C. Brigi, M. S. Merchant, H. Siraj, and P. H. Tomlins, “Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography,” J. Biomed. Opt. 22(7), 076020 (2017).
[Crossref] [PubMed]

J. Walther, J. Golde, L. Kirsten, F. Tetschke, F. Hempel, T. Rosenauer, C. Hannig, and E. Koch, “In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 22(12), 1–17 (2017).
[Crossref] [PubMed]

J. Golde, F. Tetschke, J. Walther, T. Rosenauer, F. Hempel, C. Hannig, E. Koch, and L. Kirsten, “Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref] [PubMed]

J. Biophotonics (2)

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref] [PubMed]

J. Dent. (1)

Y. Shimada, A. Sadr, M. F. Burrow, J. Tagami, N. Ozawa, and Y. Sumi, “Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries,” J. Dent. 38(8), 655–665 (2010).
[Crossref] [PubMed]

J. Med. Imaging (Bellingham) (1)

J. Espigares, A. Sadr, H. Hamba, Y. Shimada, M. Otsuki, J. Tagami, and Y. Sumi, “Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography,” J. Med. Imaging (Bellingham) 2(1), 014001 (2015).
[Crossref] [PubMed]

J. Public Health Dent. (1)

J. D. Bader, D. A. Shugars, and A. J. Bonito, “A systematic review of the performance of methods for identifying carious lesions,” J. Public Health Dent. 62(4), 201–213 (2002).
[Crossref] [PubMed]

Lasers Surg. Med. (3)

J. C. Simon, H. Kang, M. Staninec, A. T. Jang, K. H. Chan, C. L. Darling, R. C. Lee, and D. Fried, “Near-IR and CP-OCT imaging of suspected occlusal caries lesions,” Lasers Surg. Med. 49(3), 215–224 (2017).
[Crossref] [PubMed]

P. Ngaotheppitak, C. L. Darling, and D. Fried, “Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography,” Lasers Surg. Med. 37(1), 78–88 (2005).
[Crossref] [PubMed]

J. S. Holtzman, K. Osann, J. Pharar, K. Lee, Y. C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, and P. Wilder-Smith, “Ability of optical coherence tomography to detect caries beneath commonly used dental sealants,” Lasers Surg. Med. 42(8), 752–759 (2010).
[Crossref] [PubMed]

Measurement (1)

M. Streza, B. Belean, I. Hodisan, and C. Prejmerean, “Improving lock-in thermography detection of microgaps located at the tooth-filling interface using a phase versus amplitude image signal extraction approach,” Measurement 104, 21–28 (2017).
[Crossref]

Nat. Photonics (1)

S. Kaiplavil and A. Mandelis, “Truncated-correlation photothermal coherence tomography for deep subsurface analysis,” Nat. Photonics 8(8), 635–642 (2014).
[Crossref]

NDT Int. (1)

Y.-K. An, J. Min Kim, and H. Sohn, “Laser lock-in thermography for detection of surface-breaking fatigue cracks on uncoated steel structures,” NDT Int. 65, 54–63 (2014).
[Crossref]

Opt. Express (2)

Sensors (Basel) (1)

Y.-S. Hsieh, Y.-C. Ho, S.-Y. Lee, C.-C. Chuang, J. C. Tsai, K.-F. Lin, and C.-W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Other (8)

M. J. S. C. White, Pharoah, Oral Radiology: Principles and Interpretation, 7th ed. (Elsevier Health Sciences, 2013).

E. Kidd, Essentials of Dental Caries the Disease and Its Management, 3rd ed. (Oxford University Press, 2005).

Dental Caries: The Disease and its Clinical Management, 3rd ed. (Wiley-Blackwell, 2015).

D. Fried, M. Staninec, C. L. Darling, K. H. Chan, and R. B. Pelzner, “Clinical Monitoring of Early Caries Lesions using Cross Polarization Optical Coherence Tomography,” Proceedings of SPIE–the International Society for Optical Engineering8566(2013).
[Crossref]

D. Fried, M. Staninec, C. Darling, H. Kang, and K. Chan, “Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner,” Proceedings of SPIE–the International Society for Optical Engineering8208(2012).
[Crossref]

M. Razani, A. Parkhimchyk, and N. Tabatabaei, “Lock-in thermography using a cellphone attachment infrared camera,” AIP Adv. (in press).

G. M. C. T. Astarita, Infrared Thermography for Thermo-Fluid-Dynamics, 1st ed. (Springer-Verlag Berlin Heidelberg, 2013).

W. W. O. Breitenstein and M. Langenkamp, Lock-in Thermography: Basics and Use for Evaluating Electronic Devices and Materials, 1st ed., Springer Series in Advanced Microelectronics (Springer-Verlag Berlin Heidelberg, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic representation of the developed thermophotonic lock-in imaging (TPLI) system.
Fig. 2
Fig. 2 Schematic representation of the developed spectral-domain optical coherence tomography (OCT) system. The polarization controller is adjusted to yield interference in the cross-polarization state.
Fig. 3
Fig. 3 Photographs of simulated advanced caries on (a) smooth and (b) occlusal surfaces; rectangles depict the location of treatment windows. Representative OCT B-mode images of (c) smooth surface and (d) occlusal caries samples along the solid lines indicated in panels (a) and (b), respectively. Integrated en-face OCT images at 10 days of treatment of (e) smooth and (f) occlusal caries samples. TPLI phase images obtained at 2-Hz modulation frequency at 10 days of treatment for (g) smooth surface (h) occlusal caries samples. (i) and (j) represent the µCT slices along the green and blue dashed lines in panel (f), respectively. Red and yellow arrows point to treatment window and false positives, respectively.
Fig. 4
Fig. 4 (a) Visual image of tooth with artificially-induced caries at 3 locations. (b) TPLI phase image at 2-Hz modulation frequency. Integrated en-face OCT images at (c) 2 days, (d) 4 days, and (e) 8 days of demineralization. B-scan OCT images at (f) 2 days, (g) 4 days, and (h) 8 days of demineralization. µCT images at (i) 2 days, (j) 4 days, and (k) 8 days of demineralization.
Fig. 5
Fig. 5 Average contrast values from early caries and the associated standard deviation of mean for (a) optical coherence tomography (OCT) and (b) thermophotonic lock-in imaging (TPLI) and (c) µCT.
Fig. 6
Fig. 6 Optical image of the smooth surface of extracted human molar (a) before demineralization and (b) after 15 days of demineralization on the treatment window. Integrated en-face OCT images at (c) 0 days, (d) 1 day, (e) 2 days, (f) 5 days, (g) 10 days, and (h) 15 days of demineralization. B-scan OCT images at (i) 0 days, (j) 1 day, (k) 2 days, (l) 5 days, (m) 10 days, and (n) 15 days of demineralization. (o) µCT image of 15-day treated sample.
Fig. 7
Fig. 7 TPLI phase images at 2-Hz modulation frequency at (a) 0 days, (b) 1 day, (c) 2 days, (d) 5 days, (e) 10 days, and (d) 15 days of demineralization. Yellow arrow points to change in contrast at cervical margin due to thinning of enamel and photothermal effects of the underlying cementum. Blue arrow points to part of the enamel which was damaged on day 10 of demineralization due to improper handling.
Fig. 8
Fig. 8 Average contrast values from early caries and the associated standard deviation for (a) spectral-domain optical coherence tomography (OCT), (b) thermophotonic lock-in imaging (TPLI) and (c) µCT.
Fig. 9
Fig. 9 Statistically (CI: 95%) identified healthy (blue pixels) and demineralized (yellow pixels) at various stages of demineralization by (a) CP-OCT and (b) TPLI. Corresponding (c) sensitivity (S) and specificity (P) values and (d) receiver operating characteristic curve.
Fig. 10
Fig. 10 Integrated CP-OCT en-face images using different integration limits along the depth, suggesting that inclusion of information from surface and superficial layers shallower than 50µm results in suboptimal contrast between early caries and surrounding healthy enamel as well as creation of false positive readings (arrows).

Tables (1)

Tables Icon

Table 1 Samples’ demineralization schedule and schematic of imaging study sequence.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A =   (  S 0   ) 2 + (  S 90   ) 2       a n d     φ = arc tan ( S 90 S 0 ) .
Normalized   image   pixel   value = pixel   value average   phase   value   of   healthy   region
Normalized   image   pixel   value = pixel   value average   amplitude   value   of   healthy   region

Metrics