Abstract

Multiple scattering in turbid media inhibits optimal light focusing and thus limits the penetration depth in optical coherence tomography (OCT). However, the effects of multiple scattering in a turbid medium can be systematically controlled by shaping the incident wavefront. The authors utilize the reciprocity of Maxwell’s equations and finite-difference time-domain numerical analysis to investigate the ultimate performance bounds of wavefront shaping-OCT under ideal and realistic configurations and compare them with the conventional method. The results reveal that the optimized impinging wavefront significantly enhances the penetration depth of OCT.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography

Jaeduck Jang, Jaeguyn Lim, Hyeonseung Yu, Hyun Choi, Jinyong Ha, Jung-Hoon Park, Wang-Yuhl Oh, Wooyoung Jang, SeongDeok Lee, and YongKeun Park
Opt. Express 21(3) 2890-2902 (2013)

Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping

Hyeonseung Yu, Jaeduck Jang, Jaeguyn Lim, Jung-Hoon Park, Wooyoung Jang, Ji-Yeun Kim, and YongKeun Park
Opt. Express 22(7) 7514-7523 (2014)

Improved importance sampling for Monte Carlo simulation of time-domain optical coherence tomography

Ivan T. Lima, Anshul Kalra, and Sherif S. Sherif
Biomed. Opt. Express 2(5) 1069-1081 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  2. W. Drexler and J. G. Fugimoto, Optical coherence tomography: Technology and Applications (Springer, New York, 2008).
    [Crossref]
  3. O. Katz, E. Small, Y. Bromberg, and S. Yaron, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photon. 5, 372 (2011).
    [Crossref]
  4. J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. Ko, K. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454 (2013).
    [Crossref]
  5. R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427 (2014).
    [Crossref]
  6. S. G. Proskurin and I. V. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett. 4, 824–826 (2007).
    [Crossref]
  7. V. V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 41, 258 (2002).
    [Crossref] [PubMed]
  8. K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for oct image enhancement and in-depth monitoring of molecular diffusion,” IEEE J. Sel. Top. Quantum Electron. 18, 1244 (2012).
    [Crossref]
  9. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photon. 2, 110–115 (2008).
    [Crossref]
  10. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photon. 6, 549–553 (2012).
    [Crossref]
  11. I. M. Vellekoop, M. Cui, and C. H. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
    [Crossref]
  12. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photon. 4, 320–322 (2010).
    [Crossref]
  13. A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
    [Crossref]
  14. E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Optimal concentration of light in turbid materials,” J. Opt. Soc. Am. B 28, 1200–1203 (2011).
    [Crossref]
  15. S. H. Tseng, “2-D PSTD simulation of focusing monochromatic light through a macroscopic scattering medium via optical phase conjugation,” Biomed. Opt. Express 6, 815–826 (2015).
    [Crossref] [PubMed]
  16. S. H. Tseng and C. H. Yang, “2-d pstd simulation of optical phase conjugation for turbidity suppression,” Opt. Express 15, 16005–16016 (2007).
    [Crossref] [PubMed]
  17. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photon. 9, 563 (2015).
    [Crossref]
  18. Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light,” Nat. Commun. 6, 5904 (2015).
    [Crossref] [PubMed]
  19. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013).
    [Crossref] [PubMed]
  20. H. Yu, P. Lee, K. Lee, J. Jang, J. Lim, W. Jang, Y. Jeong, and Y. Park, “In vivo deep tissue imaging using wavefront shaping optical coherence tomography,” J. Biomed. Opt. 21, 101406 (2016).
    [Crossref] [PubMed]
  21. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended huygens-fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).
    [Crossref]
  22. J. M. Schmitt and A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
    [Crossref]
  23. G. Yao and L. V. Wang, “Monte carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
    [Crossref] [PubMed]
  24. C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
    [Crossref] [PubMed]
  25. D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt. 28, 5243–5249 (1989).
    [Crossref] [PubMed]
  26. A. Dunn and R. RichardsKortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2, 898–905 (1996).
    [Crossref]
  27. P. R. Munro, A. Curatolo, and D. D. Sampson, “Full wave model of image formation in optical coherence tomography applicable to general samples,” Opt. Express 23, 2541–2556 (2015).
    [Crossref] [PubMed]
  28. D. L. Farkas, D. V. Nicolau, R. C. Leif, S.-H. Huang, S.-J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
    [Crossref]
  29. T. Tanifuji and M. Hijikata, “Finite difference time doniain (fdtd) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imag. 21, 181–184 (2002).
    [Crossref]
  30. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  31. J. A. Kong, Scattering of Electromagnetic Waves (Wiley, 1986).
  32. M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63, 1933 (2000).
    [Crossref]
  33. A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75, 4206 (1995).
    [Crossref] [PubMed]
  34. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7, 300–305 (2013).
    [Crossref] [PubMed]
  35. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
    [Crossref] [PubMed]
  36. M. Tanter, J. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223 (2000).
    [Crossref] [PubMed]
  37. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A reveiw of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166 (1990).
    [Crossref]
  38. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317 (1990).
    [Crossref] [PubMed]
  39. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37 (2013).
    [Crossref] [PubMed]
  40. G. Kumar and J. M. Schmitt, “Micro-optical properties of tissue,” Proc. SPIE 2679, 106–116 (1996).
    [Crossref]
  41. P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
    [Crossref] [PubMed]
  42. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34, 7410 (1995).
    [Crossref] [PubMed]
  43. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  44. S. A. Schelkunoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,” Bell Syst. Tech. 15, 92 (1936).
    [Crossref]
  45. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
    [Crossref]

2016 (2)

H. Yu, P. Lee, K. Lee, J. Jang, J. Lim, W. Jang, Y. Jeong, and Y. Park, “In vivo deep tissue imaging using wavefront shaping optical coherence tomography,” J. Biomed. Opt. 21, 101406 (2016).
[Crossref] [PubMed]

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

2015 (5)

P. R. Munro, A. Curatolo, and D. D. Sampson, “Full wave model of image formation in optical coherence tomography applicable to general samples,” Opt. Express 23, 2541–2556 (2015).
[Crossref] [PubMed]

D. L. Farkas, D. V. Nicolau, R. C. Leif, S.-H. Huang, S.-J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
[Crossref]

S. H. Tseng, “2-D PSTD simulation of focusing monochromatic light through a macroscopic scattering medium via optical phase conjugation,” Biomed. Opt. Express 6, 815–826 (2015).
[Crossref] [PubMed]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photon. 9, 563 (2015).
[Crossref]

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

2014 (1)

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427 (2014).
[Crossref]

2013 (5)

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. Ko, K. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454 (2013).
[Crossref]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7, 300–305 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37 (2013).
[Crossref] [PubMed]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

2012 (3)

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for oct image enhancement and in-depth monitoring of molecular diffusion,” IEEE J. Sel. Top. Quantum Electron. 18, 1244 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photon. 6, 549–553 (2012).
[Crossref]

I. M. Vellekoop, M. Cui, and C. H. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
[Crossref]

2011 (2)

O. Katz, E. Small, Y. Bromberg, and S. Yaron, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photon. 5, 372 (2011).
[Crossref]

E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Optimal concentration of light in turbid materials,” J. Opt. Soc. Am. B 28, 1200–1203 (2011).
[Crossref]

2010 (1)

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photon. 4, 320–322 (2010).
[Crossref]

2009 (1)

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
[Crossref] [PubMed]

2008 (3)

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref] [PubMed]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photon. 2, 110–115 (2008).
[Crossref]

2007 (2)

S. H. Tseng and C. H. Yang, “2-d pstd simulation of optical phase conjugation for turbidity suppression,” Opt. Express 15, 16005–16016 (2007).
[Crossref] [PubMed]

S. G. Proskurin and I. V. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett. 4, 824–826 (2007).
[Crossref]

2002 (2)

V. V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 41, 258 (2002).
[Crossref] [PubMed]

T. Tanifuji and M. Hijikata, “Finite difference time doniain (fdtd) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imag. 21, 181–184 (2002).
[Crossref]

2000 (3)

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63, 1933 (2000).
[Crossref]

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended huygens-fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).
[Crossref]

M. Tanter, J. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223 (2000).
[Crossref] [PubMed]

1999 (1)

G. Yao and L. V. Wang, “Monte carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref] [PubMed]

1997 (1)

1996 (2)

A. Dunn and R. RichardsKortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2, 898–905 (1996).
[Crossref]

G. Kumar and J. M. Schmitt, “Micro-optical properties of tissue,” Proc. SPIE 2679, 106–116 (1996).
[Crossref]

1995 (2)

A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75, 4206 (1995).
[Crossref] [PubMed]

I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34, 7410 (1995).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

1990 (2)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A reveiw of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166 (1990).
[Crossref]

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317 (1990).
[Crossref] [PubMed]

1989 (1)

1936 (1)

S. A. Schelkunoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,” Bell Syst. Tech. 15, 92 (1936).
[Crossref]

Andersen, P. E.

Audouard, E.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Ayi, T. C.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Baets, R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

Bashkatov, A. N.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for oct image enhancement and in-depth monitoring of molecular diffusion,” IEEE J. Sel. Top. Quantum Electron. 18, 1244 (2012).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bonse, J.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Bourouina, T.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and S. Yaron, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photon. 5, 372 (2011).
[Crossref]

Bückmann, T.

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427 (2014).
[Crossref]

Cassereau, D.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63, 1933 (2000).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Chen, H. F.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Cheong, W.-F.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A reveiw of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166 (1990).
[Crossref]

Chin, L. K.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Cho, Y.-H.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. Ko, K. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454 (2013).
[Crossref]

Choi, H.

Cui, M.

I. M. Vellekoop, M. Cui, and C. H. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
[Crossref]

Curatolo, A.

Derode, A.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63, 1933 (2000).
[Crossref]

A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75, 4206 (1995).
[Crossref] [PubMed]

Doerr, C. R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

Drexler, W.

W. Drexler and J. G. Fugimoto, Optical coherence tomography: Technology and Applications (Springer, New York, 2008).
[Crossref]

Dunn, A.

A. Dunn and R. RichardsKortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2, 898–905 (1996).
[Crossref]

Eich, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

Fan, S.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

Farkas, D. L.

D. L. Farkas, D. V. Nicolau, R. C. Leif, S.-H. Huang, S.-J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
[Crossref]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photon. 2, 110–115 (2008).
[Crossref]

Fink, M.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63, 1933 (2000).
[Crossref]

M. Tanter, J. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223 (2000).
[Crossref] [PubMed]

A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75, 4206 (1995).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317 (1990).
[Crossref] [PubMed]

Freude, W.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

Fugimoto, J. G.

W. Drexler and J. G. Fugimoto, Optical coherence tomography: Technology and Applications (Springer, New York, 2008).
[Crossref]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Genina, E. A.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for oct image enhancement and in-depth monitoring of molecular diffusion,” IEEE J. Sel. Top. Quantum Electron. 18, 1244 (2012).
[Crossref]

Ghosn, M. G.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for oct image enhancement and in-depth monitoring of molecular diffusion,” IEEE J. Sel. Top. Quantum Electron. 18, 1244 (2012).
[Crossref]

Grabar, A. A.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Ha, J.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Han, S.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. Ko, K. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454 (2013).
[Crossref]

Hayakawa, C. K.

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hertel, I. V.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Hijikata, M.

T. Tanifuji and M. Hijikata, “Finite difference time doniain (fdtd) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imag. 21, 181–184 (2002).
[Crossref]

Horstmeyer, R.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photon. 9, 563 (2015).
[Crossref]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7, 300–305 (2013).
[Crossref] [PubMed]

Hsieh, C.-M.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Huang, S.-H.

D. L. Farkas, D. V. Nicolau, R. C. Leif, S.-H. Huang, S.-J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jacques, S. L.

Jalas, D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

Jang, J.

H. Yu, P. Lee, K. Lee, J. Jang, J. Lim, W. Jang, Y. Jeong, and Y. Park, “In vivo deep tissue imaging using wavefront shaping optical coherence tomography,” J. Biomed. Opt. 21, 101406 (2016).
[Crossref] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013).
[Crossref] [PubMed]

Jang, W.

H. Yu, P. Lee, K. Lee, J. Jang, J. Lim, W. Jang, Y. Jeong, and Y. Park, “In vivo deep tissue imaging using wavefront shaping optical coherence tomography,” J. Biomed. Opt. 21, 101406 (2016).
[Crossref] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013).
[Crossref] [PubMed]

Jeong, Y.

H. Yu, P. Lee, K. Lee, J. Jang, J. Lim, W. Jang, Y. Jeong, and Y. Park, “In vivo deep tissue imaging using wavefront shaping optical coherence tomography,” J. Biomed. Opt. 21, 101406 (2016).
[Crossref] [PubMed]

Joannopoulos, J. D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

Judkewitz, B.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7, 300–305 (2013).
[Crossref] [PubMed]

Kadic, M.

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427 (2014).
[Crossref]

Katz, O.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photon. 6, 549–553 (2012).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and S. Yaron, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photon. 5, 372 (2011).
[Crossref]

Knuttel, A.

Ko, S.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. Ko, K. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454 (2013).
[Crossref]

Kong, J. A.

J. A. Kong, Scattering of Electromagnetic Waves (Wiley, 1986).

Krishnamachari, V. V.

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
[Crossref] [PubMed]

Kumar, G.

G. Kumar and J. M. Schmitt, “Micro-optical properties of tissue,” Proc. SPIE 2679, 106–116 (1996).
[Crossref]

Lagendijk, A.

E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Optimal concentration of light in turbid materials,” J. Opt. Soc. Am. B 28, 1200–1203 (2011).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photon. 4, 320–322 (2010).
[Crossref]

Lai, P.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

Larin, K. V.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for oct image enhancement and in-depth monitoring of molecular diffusion,” IEEE J. Sel. Top. Quantum Electron. 18, 1244 (2012).
[Crossref]

Lee, C.-H.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Lee, K.

H. Yu, P. Lee, K. Lee, J. Jang, J. Lim, W. Jang, Y. Jeong, and Y. Park, “In vivo deep tissue imaging using wavefront shaping optical coherence tomography,” J. Biomed. Opt. 21, 101406 (2016).
[Crossref] [PubMed]

Lee, P.

H. Yu, P. Lee, K. Lee, J. Jang, J. Lim, W. Jang, Y. Jeong, and Y. Park, “In vivo deep tissue imaging using wavefront shaping optical coherence tomography,” J. Biomed. Opt. 21, 101406 (2016).
[Crossref] [PubMed]

Lee, S.

Leif, R. C.

D. L. Farkas, D. V. Nicolau, R. C. Leif, S.-H. Huang, S.-J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
[Crossref]

Leprince-Wang, Y.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Liedberg, B.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Lim, J.

H. Yu, P. Lee, K. Lee, J. Jang, J. Lim, W. Jang, Y. Jeong, and Y. Park, “In vivo deep tissue imaging using wavefront shaping optical coherence tomography,” J. Biomed. Opt. 21, 101406 (2016).
[Crossref] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Liu, P. Y.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

Ma, C.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

Mathy, A.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7, 300–305 (2013).
[Crossref] [PubMed]

Mauclair, C.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Meglinski, I. V.

S. G. Proskurin and I. V. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett. 4, 824–826 (2007).
[Crossref]

Melloni, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

Mermillod-Blondin, A.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Mosk, A. P.

E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Optimal concentration of light in turbid materials,” J. Opt. Soc. Am. B 28, 1200–1203 (2011).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photon. 4, 320–322 (2010).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref] [PubMed]

Munro, P. R.

Nam, K.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. Ko, K. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454 (2013).
[Crossref]

Nicolau, D. V.

D. L. Farkas, D. V. Nicolau, R. C. Leif, S.-H. Huang, S.-J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
[Crossref]

Oh, W. Y.

Park, C.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. Ko, K. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454 (2013).
[Crossref]

Park, J.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. Ko, K. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454 (2013).
[Crossref]

Park, J. H.

Park, J.-H.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. Ko, K. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454 (2013).
[Crossref]

Park, Y.

H. Yu, P. Lee, K. Lee, J. Jang, J. Lim, W. Jang, Y. Jeong, and Y. Park, “In vivo deep tissue imaging using wavefront shaping optical coherence tomography,” J. Biomed. Opt. 21, 101406 (2016).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. Ko, K. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454 (2013).
[Crossref]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013).
[Crossref] [PubMed]

Patterson, M. S.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317 (1990).
[Crossref] [PubMed]

D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt. 28, 5243–5249 (1989).
[Crossref] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317 (1990).
[Crossref] [PubMed]

Petrov, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

Popovic, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

Potma, E. O.

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
[Crossref] [PubMed]

Prada, C.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63, 1933 (2000).
[Crossref]

Prahl, S. A.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A reveiw of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166 (1990).
[Crossref]

Proskurin, S. G.

S. G. Proskurin and I. V. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett. 4, 824–826 (2007).
[Crossref]

Psaltis, D.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photon. 2, 110–115 (2008).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Renner, H.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

RichardsKortum, R.

A. Dunn and R. RichardsKortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2, 898–905 (1996).
[Crossref]

Rosenfeld, A.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Roux, P.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63, 1933 (2000).
[Crossref]

A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75, 4206 (1995).
[Crossref] [PubMed]

Ruan, H.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photon. 9, 563 (2015).
[Crossref]

Saidi, I. S.

Sampson, D. D.

Schelkunoff, S. A.

S. A. Schelkunoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,” Bell Syst. Tech. 15, 92 (1936).
[Crossref]

Schittny, R.

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427 (2014).
[Crossref]

Schmitt, J. M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Ser, W.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Shin, J.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. Ko, K. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454 (2013).
[Crossref]

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photon. 6, 549–553 (2012).
[Crossref]

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photon. 6, 549–553 (2012).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and S. Yaron, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photon. 5, 372 (2011).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Stoian, R.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Sung, K.-B.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Tanifuji, T.

T. Tanifuji and M. Hijikata, “Finite difference time doniain (fdtd) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imag. 21, 181–184 (2002).
[Crossref]

Tanter, M.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63, 1933 (2000).
[Crossref]

M. Tanter, J. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223 (2000).
[Crossref] [PubMed]

Thomas, J.

M. Tanter, J. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223 (2000).
[Crossref] [PubMed]

Thomas, J.-L.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63, 1933 (2000).
[Crossref]

Thrane, L.

Tittel, F. K.

Trunina, N. A.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for oct image enhancement and in-depth monitoring of molecular diffusion,” IEEE J. Sel. Top. Quantum Electron. 18, 1244 (2012).
[Crossref]

Tseng, S. H.

D. L. Farkas, D. V. Nicolau, R. C. Leif, S.-H. Huang, S.-J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
[Crossref]

S. H. Tseng, “2-D PSTD simulation of focusing monochromatic light through a macroscopic scattering medium via optical phase conjugation,” Biomed. Opt. Express 6, 815–826 (2015).
[Crossref] [PubMed]

S. H. Tseng and C. H. Yang, “2-d pstd simulation of optical phase conjugation for turbidity suppression,” Opt. Express 15, 16005–16016 (2007).
[Crossref] [PubMed]

Tuchin, V. V.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for oct image enhancement and in-depth monitoring of molecular diffusion,” IEEE J. Sel. Top. Quantum Electron. 18, 1244 (2012).
[Crossref]

V. V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 41, 258 (2002).
[Crossref] [PubMed]

van Putten, E. G.

Vanwolleghem, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

Vellekoop, I. M.

I. M. Vellekoop, M. Cui, and C. H. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photon. 4, 320–322 (2010).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref] [PubMed]

Venugopalan, V.

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
[Crossref] [PubMed]

Wang, K.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Wang, L. V.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

G. Yao and L. V. Wang, “Monte carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref] [PubMed]

Wang, R. K.

Wang, S.-J.

D. L. Farkas, D. V. Nicolau, R. C. Leif, S.-H. Huang, S.-J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
[Crossref]

Wang, Y. M.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7, 300–305 (2013).
[Crossref] [PubMed]

Wegener, M.

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427 (2014).
[Crossref]

Welch, A. J.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A reveiw of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166 (1990).
[Crossref]

Wilson, B. C.

Wu, F.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63, 1933 (2000).
[Crossref]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317 (1990).
[Crossref] [PubMed]

D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt. 28, 5243–5249 (1989).
[Crossref] [PubMed]

Xu, X.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

V. V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 41, 258 (2002).
[Crossref] [PubMed]

Yang, C.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photon. 9, 563 (2015).
[Crossref]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7, 300–305 (2013).
[Crossref] [PubMed]

Yang, C. H.

I. M. Vellekoop, M. Cui, and C. H. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photon. 2, 110–115 (2008).
[Crossref]

S. H. Tseng and C. H. Yang, “2-d pstd simulation of optical phase conjugation for turbidity suppression,” Opt. Express 15, 16005–16016 (2007).
[Crossref] [PubMed]

Yao, G.

G. Yao and L. V. Wang, “Monte carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref] [PubMed]

Yap, P. H.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photon. 2, 110–115 (2008).
[Crossref]

Yaron, S.

O. Katz, E. Small, Y. Bromberg, and S. Yaron, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photon. 5, 372 (2011).
[Crossref]

Yu, H.

H. Yu, P. Lee, K. Lee, J. Jang, J. Lim, W. Jang, Y. Jeong, and Y. Park, “In vivo deep tissue imaging using wavefront shaping optical coherence tomography,” J. Biomed. Opt. 21, 101406 (2016).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. Ko, K. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454 (2013).
[Crossref]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013).
[Crossref] [PubMed]

Yu, Z.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

Yura, H. T.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

I. M. Vellekoop, M. Cui, and C. H. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
[Crossref]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Bell Syst. Tech. (1)

S. A. Schelkunoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,” Bell Syst. Tech. 15, 92 (1936).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A reveiw of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for oct image enhancement and in-depth monitoring of molecular diffusion,” IEEE J. Sel. Top. Quantum Electron. 18, 1244 (2012).
[Crossref]

A. Dunn and R. RichardsKortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2, 898–905 (1996).
[Crossref]

IEEE Trans. Med. Imag. (1)

T. Tanifuji and M. Hijikata, “Finite difference time doniain (fdtd) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imag. 21, 181–184 (2002).
[Crossref]

J. Acoust. Soc. Am. (1)

M. Tanter, J. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223 (2000).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

H. Yu, P. Lee, K. Lee, J. Jang, J. Lim, W. Jang, Y. Jeong, and Y. Park, “In vivo deep tissue imaging using wavefront shaping optical coherence tomography,” J. Biomed. Opt. 21, 101406 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Lab Chip. (1)

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip. 16, 634 (2016).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

S. G. Proskurin and I. V. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett. 4, 824–826 (2007).
[Crossref]

Nat. Commun. (1)

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

Nat. Photon. (7)

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photon. 9, 563 (2015).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photon. 4, 320–322 (2010).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photon. 2, 110–115 (2008).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photon. 6, 549–553 (2012).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and S. Yaron, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photon. 5, 372 (2011).
[Crossref]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. Ko, K. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454 (2013).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photon. 7, 579 (2013).
[Crossref]

Nat. Photonics (1)

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (trove),” Nat. Photonics 7, 300–305 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Med. Biol. (3)

G. Yao and L. V. Wang, “Monte carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317 (1990).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref] [PubMed]

A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75, 4206 (1995).
[Crossref] [PubMed]

Proc. SPIE (2)

D. L. Farkas, D. V. Nicolau, R. C. Leif, S.-H. Huang, S.-J. Wang, and S. H. Tseng, “Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation,” Proc. SPIE 9328, 93281T (2015).
[Crossref]

G. Kumar and J. M. Schmitt, “Micro-optical properties of tissue,” Proc. SPIE 2679, 106–116 (1996).
[Crossref]

Rep. Prog. Phys. (1)

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63, 1933 (2000).
[Crossref]

Science (2)

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427 (2014).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Other (4)

W. Drexler and J. G. Fugimoto, Optical coherence tomography: Technology and Applications (Springer, New York, 2008).
[Crossref]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

J. A. Kong, Scattering of Electromagnetic Waves (Wiley, 1986).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of reciprocal system coupled with multiple ports. The arrows indicate the scattered and incident wave amplitude.
Fig. 2
Fig. 2 Schematic illustrations of conceptual experiments that find and utilize the optimal wavefronts for WS-OCT. (a) A focused Gaussian beam is launched toward the surface from the target depth. The beam propagates through the turbid medium and is collected outside the sample surface. (b) Optimal wavefronts for WS-OCT, obtained by conjugating the phase of the collected beam, is launched into the turbid medium and form a desired focused spot at the target location. (c) The back-scattered light is collected outside the sample to be used for coherence tomography. This becomes the model case against which realistic WS-OCTs can be compared.
Fig. 3
Fig. 3 Simulated electric field amplitude profile at 1000 nm wavelength, when an optical beam is launched from the top side. (a) A Gaussian beam is launched into a uniform medium with a refractive index of 1.35, showing a well-focused spot at the target depth. (b) A Gaussian beam is launched into a turbid medium, showing the effect of multiple scattering. (c) The optimal beam is launched into the same turbid medium, showing a well-focused spot at the target depth. (d–f) Magnified phase profiles of the white dashed region in (a–c), respectively.
Fig. 4
Fig. 4 Simulated electric field amplitude profiles of a shaped-wavefront beam, phase-conjugated at 1000 nm, at various wavelength of (a) 1000 nm, (b) 990 nm, and (c) 980 nm. (d–f) Corresponding lateral electric field intensity along the white dashed line, respectively.
Fig. 5
Fig. 5 Simulated electric field amplitude profiles of a shaped-wavefront beam inside the turbid medium with absorption coefficient of (a) 0.1, and (b) 2 mm−1. (c) Lateral profile of the electric field intensity at the target depth for various absorption coefficients of the turbid medium. (d) Optical power reaching the focusing spot at the target depth, normalized by the input beam power. The dashed line and red dots correspond to the theoretically derived and simulated values, respectively.
Fig. 6
Fig. 6 OCT signal intensity for the WS-OCT at the target depth of 400 µm; the dashed green line and solid blue line represent the signal levels of the conventional OCT and the WS-OCT, respectively. The red shaded area indicates the depth range over which a significant enhancement of the signal intensity occurs.
Fig. 7
Fig. 7 Simulated electric field amplitude profiles of optimal beams at different target depths of (a) 100, (b) 200, and (c) 300 µm. (d) Longitudinal profiles of the focusing efficacy of the optimal beams and a Gaussian beam. Square markers represent the transmittance of optical power from a virtual Gaussian source at the target depth to the field monitors near the sample surface.
Fig. 8
Fig. 8 Composite OCT A-line signal from four WS-OCTs with individual target depths of 100, 200, 300, and 400 µm (solid blue line) is compared to that of a conventional OCT using a Gaussian beam (dashed green line). Significant signal enhancement is observed at all depths except at 50 µm, at which the conventional OCT also performs well.
Fig. 9
Fig. 9 (a) Electric field intensity of Gaussian beam and of shaped-wavefront beam with NA of 0.1, 0.15, 0.35, 0.5, 0.75, and 1 at depth of 300 µm. (b) Signal enhancement of WS-OCT modeled with corresponding NA. Star mark represents signal enhancement for ideal case, for which full spatial information is used.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

( E 2 J 1 ) d v = ( E 1 J 2 ) d v ,
P total = i = 1 N | a i | 2 = i = 1 N | t i 1 a 1 + | 2 = i = 1 N ( | t i 1 | | a 1 + | ) 2 = i = 1 N ( | t i 1 | 2 | a 1 + | 2 ) = ( i = 1 N | t i 1 | 2 ) | a 1 + | 2 .
b 1 = i = 1 N t 1 i b i + = i = 1 N t i 1 b i + .
P 1 = | b 1 | 2 = | i = 1 N t i 1 b i + | 2 .
| i = 1 N t i 1 b i + | 2 = ( i = 1 N t i 1 b i + ) ( i = 1 N t i 1 b i + ) ( i = 1 N t i 1 t i 1 ) ( i = 1 N b i + b i + ) = i = 1 N | t i 1 | 2 i = 1 N | b i + | 2 = ( 1 A 1 ) P + ,
b 1 = i = 1 N t i 1 b i + = i = 1 N t i 1 t i 1 + P + 1 A 1 = ( i = 1 N | t 1 i | 2 ) P + 1 A 1 = ( 1 A 1 ) P + .
I ( λ ) = | E scat ( λ ) + E ref ( λ ) | 2 = | E scat ( λ ) | 2 + | E ref ( λ ) | 2 + 2 R e ( E scat ( λ ) E ref ( λ ) ) ,
I O C T = | E scat ( λ ) + e 2 i k d | 2 d λ .