Abstract

We demonstrate an optimized optical platform for the three-dimensional (3-D) visualization of crystalline lens opacities in vivo in the eyes of patients with different types and grades of cataracts. We developed a prototype long-depth-range swept source optical coherence tomography (SS-OCT) instrument operating at the speed of 50 kA-scans/second and at the central wavelength of 1 μm to perform high-resolution imaging of the whole anterior segment of the eye. Volumetric data sets of cataractous eyes were acquired and processed to obtain contrast-enhanced high-resolution images of lenticular structures and opacifications. The results showed lens micro- and macro-scale features related to possible cataract development such as cortical spokes, water clefts and enhanced scattering in the lens nucleus. The results demonstrate also the ability of this SS-OCT imaging to locate and characterize opacities quantitatively. The instrument might be a useful tool in the high-resolution preoperative evaluation of crystalline lens opacities in cataract patients.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye

Ireneusz Grulkowski, Silvestre Manzanera, Lukasz Cwiklinski, Franciszek Sobczuk, Karol Karnowski, and Pablo Artal
Optica 5(1) 52-59 (2018)

In vivo imaging of the rodent eye with swept source/Fourier domain OCT

Jonathan J. Liu, Ireneusz Grulkowski, Martin F. Kraus, Benjamin Potsaid, Chen D. Lu, Bernhard Baumann, Jay S. Duker, Joachim Hornegger, and James G. Fujimoto
Biomed. Opt. Express 4(2) 351-363 (2013)

Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers

Ireneusz Grulkowski, Jonathan J. Liu, Benjamin Potsaid, Vijaysekhar Jayaraman, Chen D. Lu, James Jiang, Alex E. Cable, Jay S. Duker, and James G. Fujimoto
Biomed. Opt. Express 3(11) 2733-2751 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Bassnett, Y. Shi, and G. F. J. M. Vrensen, “Biological glass: structural determinants of eye lens transparency,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1250–1264 (2011).
    [Crossref] [PubMed]
  2. R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1278–1292 (2011).
    [Crossref] [PubMed]
  3. P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photonics 6(3), 340–367 (2014).
    [Crossref]
  4. P. Artal, “Image Formation in the Living Human Eye,” Annu Rev Vis Sci 1(1), 1–17 (2015).
    [Crossref] [PubMed]
  5. L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
    [Crossref] [PubMed]
  6. B. Masters, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” Opt. Express 3(9), 332–338 (1998).
    [Crossref] [PubMed]
  7. J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, “Crystalline lens optical dysfunction through aging,” Ophthalmology 112(11), 2022–2029 (2005).
    [Crossref] [PubMed]
  8. B. J. Kirkwood, P. L. Hendicott, S. A. Read, and K. Pesudovs, “Repeatability and validity of lens densitometry measured with Scheimpflug imaging,” J. Cataract Refract. Surg. 35(7), 1210–1215 (2009).
    [Crossref] [PubMed]
  9. D. S. Grewal, G. S. Brar, and S. P. S. Grewal, “Correlation of nuclear cataract lens density using Scheimpflug images with lens opacities classification system III and visual function,” Ophthalmology 116(8), 1436–1443 (2009).
    [Crossref] [PubMed]
  10. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
    [Crossref] [PubMed]
  11. X. Weiner, M. Baumeister, T. Kohnen, and J. Bühren, “Repeatability of lens densitometry using Scheimpflug imaging,” J. Cataract Refract. Surg. 40(5), 756–763 (2014).
    [Crossref] [PubMed]
  12. C. V. Harding, L. T. Chylack, S. R. Susan, W. K. Lo, and W. F. Bobrowski, “Elemental and ultrastructural analysis of specific human lens opacities,” Invest. Ophthalmol. Vis. Sci. 23(1), 1–13 (1982).
    [PubMed]
  13. A. Antunes, M. G. Hönnicke, A. M. V. Safatle, C. Cusatis, P. S. Moraes Barros, and S. L. Morelhão, “Diffraction enhanced X-ray imaging of mammals crystalline lens,” Nucl. Instrum. Methods Phys. Res. Sect. B 238(1), 28–31 (2005).
    [Crossref]
  14. Y. E. Lee and C.-K. Joo, “Assessment of lens center using optical coherence tomography, magnetic resonance imaging, and photographs of the anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 56(9), 5512–5518 (2015).
    [Crossref] [PubMed]
  15. M. De La Hoz Polo, A. Torramilans Lluís, O. Pozuelo Segura, A. Anguera Bosque, C. Esmerado Appiani, and J. M. Caminal Mitjana, “Ocular ultrasonography focused on the posterior eye segment: what radiologists should know,” Insights Imaging 7(3), 351–364 (2016).
    [Crossref] [PubMed]
  16. T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
    [Crossref] [PubMed]
  17. T. J. T. P. van den Berg, L. Franssen, B. Kruijt, and J. E. Coppens, “History of ocular straylight measurement: A review,” Z. Med. Phys. 23(1), 6–20 (2013).
    [Crossref] [PubMed]
  18. P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
    [Crossref] [PubMed]
  19. O. Sahin, A. Pennos, H. Ginis, L. Hervella, E. A. Villegas, B. Cañizares, J. M. Marin, I. Pallikaris, and P. Artal, “Optical Measurement of Straylight in Eyes With Cataract,” J. Refract. Surg. 32(12), 846–850 (2016).
    [Crossref] [PubMed]
  20. F. Cabot, A. Saad, C. McAlinden, N. M. Haddad, A. Grise-Dulac, and D. Gatinel, “Objective assessment of crystalline lens opacity level by measuring ocular light scattering with a double-pass system,” Am. J. Ophthalmol. 155(4), 629–635 (2013).
    [Crossref] [PubMed]
  21. F. Galliot, S. R. Patel, and B. Cochener, “Objective scatter index: working toward a new quantification of cataract?” J. Refract. Surg. 32(2), 96–102 (2016).
    [Crossref] [PubMed]
  22. J. M. Bueno, D. De Brouwere, H. Ginis, I. Sgouros, and P. Artal, “Purkinje imaging system to measure anterior segment scattering in the human eye,” Opt. Lett. 32(23), 3447–3449 (2007).
    [Crossref] [PubMed]
  23. R. R. Ansari, M. B. Datiles, J. F. King, and D. Leftwood, “Measuring lens opacity: combining quasi-elastic light scattering with Scheimpflug imaging system,” Proc. SPIE 3246, 35–42 (1998).
    [Crossref]
  24. R. R. Ansari, K. I. Suh, S. Dunker, N. Kitaya, and J. Sebag, “Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering,” Exp. Eye Res. 73(6), 859–866 (2001).
    [Crossref] [PubMed]
  25. M. B. Datiles, R. R. Ansari, and G. F. Reed, “A clinical study of the human lens with a dynamic light scattering device,” Exp. Eye Res. 74(1), 93–102 (2002).
    [Crossref] [PubMed]
  26. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  27. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
    [Crossref] [PubMed]
  28. I. Grulkowski, “Anterior segment OCT,” in Handbook of Visual Optics, Volume Two: Instrumentation and Vision, P. Artal, ed. (CRC Press - Taylor & Francis Group, 2016).
  29. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
    [Crossref] [PubMed]
  30. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
    [Crossref] [PubMed]
  31. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  32. P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
    [Crossref] [PubMed]
  33. M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
    [Crossref] [PubMed]
  34. C. D. Dicarlo, W. P. Roach, D. A. Gagliano, S. A. Boppart, D. X. Hammer, A. B. Cox, and J. G. Fujimoto, “Comparison of optical coherence tomography imaging of cataracts with histopathology,” J. Biomed. Opt. 4(4), 450–458 (1999).
    [Crossref] [PubMed]
  35. A. L. Wong, C. K.-S. Leung, R. N. Weinreb, A. K. C. Cheng, C. Y. L. Cheung, P. T.-H. Lam, C. P. Pang, and D. S. C. Lam, “Quantitative assessment of lens opacities with anterior segment optical coherence tomography,” Br. J. Ophthalmol. 93(1), 61–65 (2009).
    [Crossref] [PubMed]
  36. D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
    [Crossref] [PubMed]
  37. Y. N. Kim, J. H. Park, and H. Tchah, “Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading,” J. Ophthalmol. 2016(3025413), 3025413 (2016).
    [PubMed]
  38. J. R. Kuszak, R. K. Zoltoski, and C. E. Tiedemann, “Development of lens sutures,” Int. J. Dev. Biol. 48(8-9), 889–902 (2004).
    [Crossref] [PubMed]
  39. N. A. Frost, J. M. Sparrow, and L. Moore, “Associations of human crystalline lens retrodots and waterclefts with visual impairment: An observational study,” Invest. Ophthalmol. Vis. Sci. 43(7), 2105–2109 (2002).
    [PubMed]
  40. G. F. J. M. Vrensen, “Early cortical lens opacities: a short overview,” Acta Ophthalmol. 87(6), 602–610 (2009).
    [Crossref] [PubMed]
  41. R. Michael, R. I. Barraquer, B. Willekens, J. van Marle, and G. F. J. M. Vrensen, “Morphology of age-related cuneiform cortical cataracts: The case for mechanical stress,” Vision Res. 48(4), 626–634 (2008).
    [Crossref] [PubMed]
  42. A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
    [Crossref]
  43. I. Grulkowski, S. Manzanera, L. Cwiklinski, F. Sobczuk, K. Karnowski, and P. Artal, “Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye,” Optica 5(1), 52 (2018).
    [Crossref]

2018 (2)

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref]

I. Grulkowski, S. Manzanera, L. Cwiklinski, F. Sobczuk, K. Karnowski, and P. Artal, “Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye,” Optica 5(1), 52 (2018).
[Crossref]

2016 (4)

Y. N. Kim, J. H. Park, and H. Tchah, “Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading,” J. Ophthalmol. 2016(3025413), 3025413 (2016).
[PubMed]

M. De La Hoz Polo, A. Torramilans Lluís, O. Pozuelo Segura, A. Anguera Bosque, C. Esmerado Appiani, and J. M. Caminal Mitjana, “Ocular ultrasonography focused on the posterior eye segment: what radiologists should know,” Insights Imaging 7(3), 351–364 (2016).
[Crossref] [PubMed]

O. Sahin, A. Pennos, H. Ginis, L. Hervella, E. A. Villegas, B. Cañizares, J. M. Marin, I. Pallikaris, and P. Artal, “Optical Measurement of Straylight in Eyes With Cataract,” J. Refract. Surg. 32(12), 846–850 (2016).
[Crossref] [PubMed]

F. Galliot, S. R. Patel, and B. Cochener, “Objective scatter index: working toward a new quantification of cataract?” J. Refract. Surg. 32(2), 96–102 (2016).
[Crossref] [PubMed]

2015 (3)

Y. E. Lee and C.-K. Joo, “Assessment of lens center using optical coherence tomography, magnetic resonance imaging, and photographs of the anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 56(9), 5512–5518 (2015).
[Crossref] [PubMed]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref] [PubMed]

P. Artal, “Image Formation in the Living Human Eye,” Annu Rev Vis Sci 1(1), 1–17 (2015).
[Crossref] [PubMed]

2014 (4)

P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photonics 6(3), 340–367 (2014).
[Crossref]

X. Weiner, M. Baumeister, T. Kohnen, and J. Bühren, “Repeatability of lens densitometry using Scheimpflug imaging,” J. Cataract Refract. Surg. 40(5), 756–763 (2014).
[Crossref] [PubMed]

M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
[Crossref] [PubMed]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

2013 (2)

F. Cabot, A. Saad, C. McAlinden, N. M. Haddad, A. Grise-Dulac, and D. Gatinel, “Objective assessment of crystalline lens opacity level by measuring ocular light scattering with a double-pass system,” Am. J. Ophthalmol. 155(4), 629–635 (2013).
[Crossref] [PubMed]

T. J. T. P. van den Berg, L. Franssen, B. Kruijt, and J. E. Coppens, “History of ocular straylight measurement: A review,” Z. Med. Phys. 23(1), 6–20 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

S. Bassnett, Y. Shi, and G. F. J. M. Vrensen, “Biological glass: structural determinants of eye lens transparency,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1250–1264 (2011).
[Crossref] [PubMed]

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1278–1292 (2011).
[Crossref] [PubMed]

2010 (2)

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

2009 (6)

A. L. Wong, C. K.-S. Leung, R. N. Weinreb, A. K. C. Cheng, C. Y. L. Cheung, P. T.-H. Lam, C. P. Pang, and D. S. C. Lam, “Quantitative assessment of lens opacities with anterior segment optical coherence tomography,” Br. J. Ophthalmol. 93(1), 61–65 (2009).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

B. J. Kirkwood, P. L. Hendicott, S. A. Read, and K. Pesudovs, “Repeatability and validity of lens densitometry measured with Scheimpflug imaging,” J. Cataract Refract. Surg. 35(7), 1210–1215 (2009).
[Crossref] [PubMed]

D. S. Grewal, G. S. Brar, and S. P. S. Grewal, “Correlation of nuclear cataract lens density using Scheimpflug images with lens opacities classification system III and visual function,” Ophthalmology 116(8), 1436–1443 (2009).
[Crossref] [PubMed]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

G. F. J. M. Vrensen, “Early cortical lens opacities: a short overview,” Acta Ophthalmol. 87(6), 602–610 (2009).
[Crossref] [PubMed]

2008 (1)

R. Michael, R. I. Barraquer, B. Willekens, J. van Marle, and G. F. J. M. Vrensen, “Morphology of age-related cuneiform cortical cataracts: The case for mechanical stress,” Vision Res. 48(4), 626–634 (2008).
[Crossref] [PubMed]

2007 (2)

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

J. M. Bueno, D. De Brouwere, H. Ginis, I. Sgouros, and P. Artal, “Purkinje imaging system to measure anterior segment scattering in the human eye,” Opt. Lett. 32(23), 3447–3449 (2007).
[Crossref] [PubMed]

2005 (2)

J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, “Crystalline lens optical dysfunction through aging,” Ophthalmology 112(11), 2022–2029 (2005).
[Crossref] [PubMed]

A. Antunes, M. G. Hönnicke, A. M. V. Safatle, C. Cusatis, P. S. Moraes Barros, and S. L. Morelhão, “Diffraction enhanced X-ray imaging of mammals crystalline lens,” Nucl. Instrum. Methods Phys. Res. Sect. B 238(1), 28–31 (2005).
[Crossref]

2004 (1)

J. R. Kuszak, R. K. Zoltoski, and C. E. Tiedemann, “Development of lens sutures,” Int. J. Dev. Biol. 48(8-9), 889–902 (2004).
[Crossref] [PubMed]

2002 (2)

N. A. Frost, J. M. Sparrow, and L. Moore, “Associations of human crystalline lens retrodots and waterclefts with visual impairment: An observational study,” Invest. Ophthalmol. Vis. Sci. 43(7), 2105–2109 (2002).
[PubMed]

M. B. Datiles, R. R. Ansari, and G. F. Reed, “A clinical study of the human lens with a dynamic light scattering device,” Exp. Eye Res. 74(1), 93–102 (2002).
[Crossref] [PubMed]

2001 (1)

R. R. Ansari, K. I. Suh, S. Dunker, N. Kitaya, and J. Sebag, “Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering,” Exp. Eye Res. 73(6), 859–866 (2001).
[Crossref] [PubMed]

1999 (1)

C. D. Dicarlo, W. P. Roach, D. A. Gagliano, S. A. Boppart, D. X. Hammer, A. B. Cox, and J. G. Fujimoto, “Comparison of optical coherence tomography imaging of cataracts with histopathology,” J. Biomed. Opt. 4(4), 450–458 (1999).
[Crossref] [PubMed]

1998 (2)

R. R. Ansari, M. B. Datiles, J. F. King, and D. Leftwood, “Measuring lens opacity: combining quasi-elastic light scattering with Scheimpflug imaging system,” Proc. SPIE 3246, 35–42 (1998).
[Crossref]

B. Masters, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” Opt. Express 3(9), 332–338 (1998).
[Crossref] [PubMed]

1993 (1)

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1982 (1)

C. V. Harding, L. T. Chylack, S. R. Susan, W. K. Lo, and W. F. Bobrowski, “Elemental and ultrastructural analysis of specific human lens opacities,” Invest. Ophthalmol. Vis. Sci. 23(1), 1–13 (1982).
[PubMed]

Alcón, E.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

Alió, J. L.

J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, “Crystalline lens optical dysfunction through aging,” Ophthalmology 112(11), 2022–2029 (2005).
[Crossref] [PubMed]

Andersen, D.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Angeley, D.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Anguera Bosque, A.

M. De La Hoz Polo, A. Torramilans Lluís, O. Pozuelo Segura, A. Anguera Bosque, C. Esmerado Appiani, and J. M. Caminal Mitjana, “Ocular ultrasonography focused on the posterior eye segment: what radiologists should know,” Insights Imaging 7(3), 351–364 (2016).
[Crossref] [PubMed]

Ansari, R. R.

M. B. Datiles, R. R. Ansari, and G. F. Reed, “A clinical study of the human lens with a dynamic light scattering device,” Exp. Eye Res. 74(1), 93–102 (2002).
[Crossref] [PubMed]

R. R. Ansari, K. I. Suh, S. Dunker, N. Kitaya, and J. Sebag, “Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering,” Exp. Eye Res. 73(6), 859–866 (2001).
[Crossref] [PubMed]

R. R. Ansari, M. B. Datiles, J. F. King, and D. Leftwood, “Measuring lens opacity: combining quasi-elastic light scattering with Scheimpflug imaging system,” Proc. SPIE 3246, 35–42 (1998).
[Crossref]

Antunes, A.

A. Antunes, M. G. Hönnicke, A. M. V. Safatle, C. Cusatis, P. S. Moraes Barros, and S. L. Morelhão, “Diffraction enhanced X-ray imaging of mammals crystalline lens,” Nucl. Instrum. Methods Phys. Res. Sect. B 238(1), 28–31 (2005).
[Crossref]

Artal, P.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref]

I. Grulkowski, S. Manzanera, L. Cwiklinski, F. Sobczuk, K. Karnowski, and P. Artal, “Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye,” Optica 5(1), 52 (2018).
[Crossref]

O. Sahin, A. Pennos, H. Ginis, L. Hervella, E. A. Villegas, B. Cañizares, J. M. Marin, I. Pallikaris, and P. Artal, “Optical Measurement of Straylight in Eyes With Cataract,” J. Refract. Surg. 32(12), 846–850 (2016).
[Crossref] [PubMed]

P. Artal, “Image Formation in the Living Human Eye,” Annu Rev Vis Sci 1(1), 1–17 (2015).
[Crossref] [PubMed]

P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photonics 6(3), 340–367 (2014).
[Crossref]

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

J. M. Bueno, D. De Brouwere, H. Ginis, I. Sgouros, and P. Artal, “Purkinje imaging system to measure anterior segment scattering in the human eye,” Opt. Lett. 32(23), 3447–3449 (2007).
[Crossref] [PubMed]

Bailey, I. L.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Barraquer, R. I.

R. Michael, R. I. Barraquer, B. Willekens, J. van Marle, and G. F. J. M. Vrensen, “Morphology of age-related cuneiform cortical cataracts: The case for mechanical stress,” Vision Res. 48(4), 626–634 (2008).
[Crossref] [PubMed]

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

Bassnett, S.

S. Bassnett, Y. Shi, and G. F. J. M. Vrensen, “Biological glass: structural determinants of eye lens transparency,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1250–1264 (2011).
[Crossref] [PubMed]

Batlle, J.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Baumeister, M.

X. Weiner, M. Baumeister, T. Kohnen, and J. Bühren, “Repeatability of lens densitometry using Scheimpflug imaging,” J. Cataract Refract. Surg. 40(5), 756–763 (2014).
[Crossref] [PubMed]

Benito, A.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref]

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

Birkenfeld, J.

Blumenkranz, M. S.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Bobrowski, W. F.

C. V. Harding, L. T. Chylack, S. R. Susan, W. K. Lo, and W. F. Bobrowski, “Elemental and ultrastructural analysis of specific human lens opacities,” Invest. Ophthalmol. Vis. Sci. 23(1), 1–13 (1982).
[PubMed]

Boppart, S. A.

C. D. Dicarlo, W. P. Roach, D. A. Gagliano, S. A. Boppart, D. X. Hammer, A. B. Cox, and J. G. Fujimoto, “Comparison of optical coherence tomography imaging of cataracts with histopathology,” J. Biomed. Opt. 4(4), 450–458 (1999).
[Crossref] [PubMed]

Brar, G. S.

D. S. Grewal, G. S. Brar, and S. P. S. Grewal, “Correlation of nuclear cataract lens density using Scheimpflug images with lens opacities classification system III and visual function,” Ophthalmology 116(8), 1436–1443 (2009).
[Crossref] [PubMed]

Bron, A. J.

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1278–1292 (2011).
[Crossref] [PubMed]

Bueno, J. M.

Bühren, J.

X. Weiner, M. Baumeister, T. Kohnen, and J. Bühren, “Repeatability of lens densitometry using Scheimpflug imaging,” J. Cataract Refract. Surg. 40(5), 756–763 (2014).
[Crossref] [PubMed]

Bullimore, M. A.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Cable, A. E.

Cabot, F.

F. Cabot, A. Saad, C. McAlinden, N. M. Haddad, A. Grise-Dulac, and D. Gatinel, “Objective assessment of crystalline lens opacity level by measuring ocular light scattering with a double-pass system,” Am. J. Ophthalmol. 155(4), 629–635 (2013).
[Crossref] [PubMed]

Caminal Mitjana, J. M.

M. De La Hoz Polo, A. Torramilans Lluís, O. Pozuelo Segura, A. Anguera Bosque, C. Esmerado Appiani, and J. M. Caminal Mitjana, “Ocular ultrasonography focused on the posterior eye segment: what radiologists should know,” Insights Imaging 7(3), 351–364 (2016).
[Crossref] [PubMed]

Cañizares, B.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref]

O. Sahin, A. Pennos, H. Ginis, L. Hervella, E. A. Villegas, B. Cañizares, J. M. Marin, I. Pallikaris, and P. Artal, “Optical Measurement of Straylight in Eyes With Cataract,” J. Refract. Surg. 32(12), 846–850 (2016).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cheng, A. K. C.

A. L. Wong, C. K.-S. Leung, R. N. Weinreb, A. K. C. Cheng, C. Y. L. Cheung, P. T.-H. Lam, C. P. Pang, and D. S. C. Lam, “Quantitative assessment of lens opacities with anterior segment optical coherence tomography,” Br. J. Ophthalmol. 93(1), 61–65 (2009).
[Crossref] [PubMed]

Cheung, C. Y. L.

A. L. Wong, C. K.-S. Leung, R. N. Weinreb, A. K. C. Cheng, C. Y. L. Cheung, P. T.-H. Lam, C. P. Pang, and D. S. C. Lam, “Quantitative assessment of lens opacities with anterior segment optical coherence tomography,” Br. J. Ophthalmol. 93(1), 61–65 (2009).
[Crossref] [PubMed]

Chylack, L. T.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

C. V. Harding, L. T. Chylack, S. R. Susan, W. K. Lo, and W. F. Bobrowski, “Elemental and ultrastructural analysis of specific human lens opacities,” Invest. Ophthalmol. Vis. Sci. 23(1), 1–13 (1982).
[PubMed]

Cochener, B.

F. Galliot, S. R. Patel, and B. Cochener, “Objective scatter index: working toward a new quantification of cataract?” J. Refract. Surg. 32(2), 96–102 (2016).
[Crossref] [PubMed]

Coeckelbergh, T.

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

Coppens, J. E.

T. J. T. P. van den Berg, L. Franssen, B. Kruijt, and J. E. Coppens, “History of ocular straylight measurement: A review,” Z. Med. Phys. 23(1), 6–20 (2013).
[Crossref] [PubMed]

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

Cox, A. B.

C. D. Dicarlo, W. P. Roach, D. A. Gagliano, S. A. Boppart, D. X. Hammer, A. B. Cox, and J. G. Fujimoto, “Comparison of optical coherence tomography imaging of cataracts with histopathology,” J. Biomed. Opt. 4(4), 450–458 (1999).
[Crossref] [PubMed]

Culbertson, W.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Cusatis, C.

A. Antunes, M. G. Hönnicke, A. M. V. Safatle, C. Cusatis, P. S. Moraes Barros, and S. L. Morelhão, “Diffraction enhanced X-ray imaging of mammals crystalline lens,” Nucl. Instrum. Methods Phys. Res. Sect. B 238(1), 28–31 (2005).
[Crossref]

Cwiklinski, L.

Datiles, M. B.

M. B. Datiles, R. R. Ansari, and G. F. Reed, “A clinical study of the human lens with a dynamic light scattering device,” Exp. Eye Res. 74(1), 93–102 (2002).
[Crossref] [PubMed]

R. R. Ansari, M. B. Datiles, J. F. King, and D. Leftwood, “Measuring lens opacity: combining quasi-elastic light scattering with Scheimpflug imaging system,” Proc. SPIE 3246, 35–42 (1998).
[Crossref]

De Brouwere, D.

De Casas, A.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

de Castro, A.

De La Hoz Polo, M.

M. De La Hoz Polo, A. Torramilans Lluís, O. Pozuelo Segura, A. Anguera Bosque, C. Esmerado Appiani, and J. M. Caminal Mitjana, “Ocular ultrasonography focused on the posterior eye segment: what radiologists should know,” Insights Imaging 7(3), 351–364 (2016).
[Crossref] [PubMed]

Dicarlo, C. D.

C. D. Dicarlo, W. P. Roach, D. A. Gagliano, S. A. Boppart, D. X. Hammer, A. B. Cox, and J. G. Fujimoto, “Comparison of optical coherence tomography imaging of cataracts with histopathology,” J. Biomed. Opt. 4(4), 450–458 (1999).
[Crossref] [PubMed]

Drexler, W.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Duker, J. S.

Dunker, S.

R. R. Ansari, K. I. Suh, S. Dunker, N. Kitaya, and J. Sebag, “Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering,” Exp. Eye Res. 73(6), 859–866 (2001).
[Crossref] [PubMed]

Emesz, M.

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

Esmerado Appiani, C.

M. De La Hoz Polo, A. Torramilans Lluís, O. Pozuelo Segura, A. Anguera Bosque, C. Esmerado Appiani, and J. M. Caminal Mitjana, “Ocular ultrasonography focused on the posterior eye segment: what radiologists should know,” Insights Imaging 7(3), 351–364 (2016).
[Crossref] [PubMed]

Feliz, R.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Franssen, L.

T. J. T. P. van den Berg, L. Franssen, B. Kruijt, and J. E. Coppens, “History of ocular straylight measurement: A review,” Z. Med. Phys. 23(1), 6–20 (2013).
[Crossref] [PubMed]

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

Friedman, N. J.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Friend, J.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Frost, N. A.

N. A. Frost, J. M. Sparrow, and L. Moore, “Associations of human crystalline lens retrodots and waterclefts with visual impairment: An observational study,” Invest. Ophthalmol. Vis. Sci. 43(7), 2105–2109 (2002).
[PubMed]

Fujimoto, J. G.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

C. D. Dicarlo, W. P. Roach, D. A. Gagliano, S. A. Boppart, D. X. Hammer, A. B. Cox, and J. G. Fujimoto, “Comparison of optical coherence tomography imaging of cataracts with histopathology,” J. Biomed. Opt. 4(4), 450–458 (1999).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gagliano, D. A.

C. D. Dicarlo, W. P. Roach, D. A. Gagliano, S. A. Boppart, D. X. Hammer, A. B. Cox, and J. G. Fujimoto, “Comparison of optical coherence tomography imaging of cataracts with histopathology,” J. Biomed. Opt. 4(4), 450–458 (1999).
[Crossref] [PubMed]

Galliot, F.

F. Galliot, S. R. Patel, and B. Cochener, “Objective scatter index: working toward a new quantification of cataract?” J. Refract. Surg. 32(2), 96–102 (2016).
[Crossref] [PubMed]

Gambra, E.

Gatinel, D.

F. Cabot, A. Saad, C. McAlinden, N. M. Haddad, A. Grise-Dulac, and D. Gatinel, “Objective assessment of crystalline lens opacity level by measuring ocular light scattering with a double-pass system,” Am. J. Ophthalmol. 155(4), 629–635 (2013).
[Crossref] [PubMed]

Ginis, H.

O. Sahin, A. Pennos, H. Ginis, L. Hervella, E. A. Villegas, B. Cañizares, J. M. Marin, I. Pallikaris, and P. Artal, “Optical Measurement of Straylight in Eyes With Cataract,” J. Refract. Surg. 32(12), 846–850 (2016).
[Crossref] [PubMed]

J. M. Bueno, D. De Brouwere, H. Ginis, I. Sgouros, and P. Artal, “Purkinje imaging system to measure anterior segment scattering in the human eye,” Opt. Lett. 32(23), 3447–3449 (2007).
[Crossref] [PubMed]

Gooding, P.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Gora, M.

Gorczynska, I.

Grabner, G.

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grewal, D. S.

D. S. Grewal, G. S. Brar, and S. P. S. Grewal, “Correlation of nuclear cataract lens density using Scheimpflug images with lens opacities classification system III and visual function,” Ophthalmology 116(8), 1436–1443 (2009).
[Crossref] [PubMed]

Grewal, S. P. S.

D. S. Grewal, G. S. Brar, and S. P. S. Grewal, “Correlation of nuclear cataract lens density using Scheimpflug images with lens opacities classification system III and visual function,” Ophthalmology 116(8), 1436–1443 (2009).
[Crossref] [PubMed]

Grise-Dulac, A.

F. Cabot, A. Saad, C. McAlinden, N. M. Haddad, A. Grise-Dulac, and D. Gatinel, “Objective assessment of crystalline lens opacity level by measuring ocular light scattering with a double-pass system,” Am. J. Ophthalmol. 155(4), 629–635 (2013).
[Crossref] [PubMed]

Grulkowski, I.

Haddad, N. M.

F. Cabot, A. Saad, C. McAlinden, N. M. Haddad, A. Grise-Dulac, and D. Gatinel, “Objective assessment of crystalline lens opacity level by measuring ocular light scattering with a double-pass system,” Am. J. Ophthalmol. 155(4), 629–635 (2013).
[Crossref] [PubMed]

Hammer, D. X.

C. D. Dicarlo, W. P. Roach, D. A. Gagliano, S. A. Boppart, D. X. Hammer, A. B. Cox, and J. G. Fujimoto, “Comparison of optical coherence tomography imaging of cataracts with histopathology,” J. Biomed. Opt. 4(4), 450–458 (1999).
[Crossref] [PubMed]

Harding, C. V.

C. V. Harding, L. T. Chylack, S. R. Susan, W. K. Lo, and W. F. Bobrowski, “Elemental and ultrastructural analysis of specific human lens opacities,” Invest. Ophthalmol. Vis. Sci. 23(1), 1–13 (1982).
[PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heine, C.

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

Hendicott, P. L.

B. J. Kirkwood, P. L. Hendicott, S. A. Read, and K. Pesudovs, “Repeatability and validity of lens densitometry measured with Scheimpflug imaging,” J. Cataract Refract. Surg. 35(7), 1210–1215 (2009).
[Crossref] [PubMed]

Hervella, L.

O. Sahin, A. Pennos, H. Ginis, L. Hervella, E. A. Villegas, B. Cañizares, J. M. Marin, I. Pallikaris, and P. Artal, “Optical Measurement of Straylight in Eyes With Cataract,” J. Refract. Surg. 32(12), 846–850 (2016).
[Crossref] [PubMed]

Hönnicke, M. G.

A. Antunes, M. G. Hönnicke, A. M. V. Safatle, C. Cusatis, P. S. Moraes Barros, and S. L. Morelhão, “Diffraction enhanced X-ray imaging of mammals crystalline lens,” Nucl. Instrum. Methods Phys. Res. Sect. B 238(1), 28–31 (2005).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Jayaraman, V.

Jiang, J.

Joo, C.-K.

Y. E. Lee and C.-K. Joo, “Assessment of lens center using optical coherence tomography, magnetic resonance imaging, and photographs of the anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 56(9), 5512–5518 (2015).
[Crossref] [PubMed]

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Karnowski, K.

Kim, Y. N.

Y. N. Kim, J. H. Park, and H. Tchah, “Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading,” J. Ophthalmol. 2016(3025413), 3025413 (2016).
[PubMed]

King, J. F.

R. R. Ansari, M. B. Datiles, J. F. King, and D. Leftwood, “Measuring lens opacity: combining quasi-elastic light scattering with Scheimpflug imaging system,” Proc. SPIE 3246, 35–42 (1998).
[Crossref]

Kirkwood, B. J.

B. J. Kirkwood, P. L. Hendicott, S. A. Read, and K. Pesudovs, “Repeatability and validity of lens densitometry measured with Scheimpflug imaging,” J. Cataract Refract. Surg. 35(7), 1210–1215 (2009).
[Crossref] [PubMed]

Kitaya, N.

R. R. Ansari, K. I. Suh, S. Dunker, N. Kitaya, and J. Sebag, “Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering,” Exp. Eye Res. 73(6), 859–866 (2001).
[Crossref] [PubMed]

Kohnen, T.

X. Weiner, M. Baumeister, T. Kohnen, and J. Bühren, “Repeatability of lens densitometry using Scheimpflug imaging,” J. Cataract Refract. Surg. 40(5), 756–763 (2014).
[Crossref] [PubMed]

Kowalczyk, A.

Kruijt, B.

T. J. T. P. van den Berg, L. Franssen, B. Kruijt, and J. E. Coppens, “History of ocular straylight measurement: A review,” Z. Med. Phys. 23(1), 6–20 (2013).
[Crossref] [PubMed]

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Kuszak, J. R.

J. R. Kuszak, R. K. Zoltoski, and C. E. Tiedemann, “Development of lens sutures,” Int. J. Dev. Biol. 48(8-9), 889–902 (2004).
[Crossref] [PubMed]

Lam, D. S. C.

A. L. Wong, C. K.-S. Leung, R. N. Weinreb, A. K. C. Cheng, C. Y. L. Cheung, P. T.-H. Lam, C. P. Pang, and D. S. C. Lam, “Quantitative assessment of lens opacities with anterior segment optical coherence tomography,” Br. J. Ophthalmol. 93(1), 61–65 (2009).
[Crossref] [PubMed]

Lam, P. T.-H.

A. L. Wong, C. K.-S. Leung, R. N. Weinreb, A. K. C. Cheng, C. Y. L. Cheung, P. T.-H. Lam, C. P. Pang, and D. S. C. Lam, “Quantitative assessment of lens opacities with anterior segment optical coherence tomography,” Br. J. Ophthalmol. 93(1), 61–65 (2009).
[Crossref] [PubMed]

Lee, Y. E.

Y. E. Lee and C.-K. Joo, “Assessment of lens center using optical coherence tomography, magnetic resonance imaging, and photographs of the anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 56(9), 5512–5518 (2015).
[Crossref] [PubMed]

Leftwood, D.

R. R. Ansari, M. B. Datiles, J. F. King, and D. Leftwood, “Measuring lens opacity: combining quasi-elastic light scattering with Scheimpflug imaging system,” Proc. SPIE 3246, 35–42 (1998).
[Crossref]

Leitgeb, R. A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Leske, M. C.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Leung, C. K.-S.

A. L. Wong, C. K.-S. Leung, R. N. Weinreb, A. K. C. Cheng, C. Y. L. Cheung, P. T.-H. Lam, C. P. Pang, and D. S. C. Lam, “Quantitative assessment of lens opacities with anterior segment optical coherence tomography,” Br. J. Ophthalmol. 93(1), 61–65 (2009).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, J. J.

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Lo, W. K.

C. V. Harding, L. T. Chylack, S. R. Susan, W. K. Lo, and W. F. Bobrowski, “Elemental and ultrastructural analysis of specific human lens opacities,” Invest. Ophthalmol. Vis. Sci. 23(1), 1–13 (1982).
[PubMed]

Lu, C. D.

Manzanera, S.

I. Grulkowski, S. Manzanera, L. Cwiklinski, F. Sobczuk, K. Karnowski, and P. Artal, “Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye,” Optica 5(1), 52 (2018).
[Crossref]

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref]

Marcellino, G.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Marcos, S.

Marin, J. M.

O. Sahin, A. Pennos, H. Ginis, L. Hervella, E. A. Villegas, B. Cañizares, J. M. Marin, I. Pallikaris, and P. Artal, “Optical Measurement of Straylight in Eyes With Cataract,” J. Refract. Surg. 32(12), 846–850 (2016).
[Crossref] [PubMed]

Marín, J. M.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref]

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

Martínez, D.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref]

Martinez-Enriquez, E.

Masters, B.

McAlinden, C.

F. Cabot, A. Saad, C. McAlinden, N. M. Haddad, A. Grise-Dulac, and D. Gatinel, “Objective assessment of crystalline lens opacity level by measuring ocular light scattering with a double-pass system,” Am. J. Ophthalmol. 155(4), 629–635 (2013).
[Crossref] [PubMed]

McCarthy, D.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Michael, R.

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1278–1292 (2011).
[Crossref] [PubMed]

R. Michael, R. I. Barraquer, B. Willekens, J. van Marle, and G. F. J. M. Vrensen, “Morphology of age-related cuneiform cortical cataracts: The case for mechanical stress,” Vision Res. 48(4), 626–634 (2008).
[Crossref] [PubMed]

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

Mompeán, J.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref]

Montés-Micó, R.

J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, “Crystalline lens optical dysfunction through aging,” Ophthalmology 112(11), 2022–2029 (2005).
[Crossref] [PubMed]

Moore, L.

N. A. Frost, J. M. Sparrow, and L. Moore, “Associations of human crystalline lens retrodots and waterclefts with visual impairment: An observational study,” Invest. Ophthalmol. Vis. Sci. 43(7), 2105–2109 (2002).
[PubMed]

Moraes Barros, P. S.

A. Antunes, M. G. Hönnicke, A. M. V. Safatle, C. Cusatis, P. S. Moraes Barros, and S. L. Morelhão, “Diffraction enhanced X-ray imaging of mammals crystalline lens,” Nucl. Instrum. Methods Phys. Res. Sect. B 238(1), 28–31 (2005).
[Crossref]

Morelhão, S. L.

A. Antunes, M. G. Hönnicke, A. M. V. Safatle, C. Cusatis, P. S. Moraes Barros, and S. L. Morelhão, “Diffraction enhanced X-ray imaging of mammals crystalline lens,” Nucl. Instrum. Methods Phys. Res. Sect. B 238(1), 28–31 (2005).
[Crossref]

Negri, H. P.

J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, “Crystalline lens optical dysfunction through aging,” Ophthalmology 112(11), 2022–2029 (2005).
[Crossref] [PubMed]

Nischler, C.

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

Ortiz, S.

Palanker, D. V.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Pallikaris, I.

O. Sahin, A. Pennos, H. Ginis, L. Hervella, E. A. Villegas, B. Cañizares, J. M. Marin, I. Pallikaris, and P. Artal, “Optical Measurement of Straylight in Eyes With Cataract,” J. Refract. Surg. 32(12), 846–850 (2016).
[Crossref] [PubMed]

Pang, C. P.

A. L. Wong, C. K.-S. Leung, R. N. Weinreb, A. K. C. Cheng, C. Y. L. Cheung, P. T.-H. Lam, C. P. Pang, and D. S. C. Lam, “Quantitative assessment of lens opacities with anterior segment optical coherence tomography,” Br. J. Ophthalmol. 93(1), 61–65 (2009).
[Crossref] [PubMed]

Park, J. H.

Y. N. Kim, J. H. Park, and H. Tchah, “Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading,” J. Ophthalmol. 2016(3025413), 3025413 (2016).
[PubMed]

Patel, S. R.

F. Galliot, S. R. Patel, and B. Cochener, “Objective scatter index: working toward a new quantification of cataract?” J. Refract. Surg. 32(2), 96–102 (2016).
[Crossref] [PubMed]

Pennos, A.

O. Sahin, A. Pennos, H. Ginis, L. Hervella, E. A. Villegas, B. Cañizares, J. M. Marin, I. Pallikaris, and P. Artal, “Optical Measurement of Straylight in Eyes With Cataract,” J. Refract. Surg. 32(12), 846–850 (2016).
[Crossref] [PubMed]

Pérez, G. M.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

Pérez-Merino, P.

Pesudovs, K.

B. J. Kirkwood, P. L. Hendicott, S. A. Read, and K. Pesudovs, “Repeatability and validity of lens densitometry measured with Scheimpflug imaging,” J. Cataract Refract. Surg. 35(7), 1210–1215 (2009).
[Crossref] [PubMed]

Potsaid, B.

Pozuelo Segura, O.

M. De La Hoz Polo, A. Torramilans Lluís, O. Pozuelo Segura, A. Anguera Bosque, C. Esmerado Appiani, and J. M. Caminal Mitjana, “Ocular ultrasonography focused on the posterior eye segment: what radiologists should know,” Insights Imaging 7(3), 351–364 (2016).
[Crossref] [PubMed]

Pujol, J.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Read, S. A.

B. J. Kirkwood, P. L. Hendicott, S. A. Read, and K. Pesudovs, “Repeatability and validity of lens densitometry measured with Scheimpflug imaging,” J. Cataract Refract. Surg. 35(7), 1210–1215 (2009).
[Crossref] [PubMed]

Reed, G. F.

M. B. Datiles, R. R. Ansari, and G. F. Reed, “A clinical study of the human lens with a dynamic light scattering device,” Exp. Eye Res. 74(1), 93–102 (2002).
[Crossref] [PubMed]

Roach, W. P.

C. D. Dicarlo, W. P. Roach, D. A. Gagliano, S. A. Boppart, D. X. Hammer, A. B. Cox, and J. G. Fujimoto, “Comparison of optical coherence tomography imaging of cataracts with histopathology,” J. Biomed. Opt. 4(4), 450–458 (1999).
[Crossref] [PubMed]

Rosales, P.

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

Saad, A.

F. Cabot, A. Saad, C. McAlinden, N. M. Haddad, A. Grise-Dulac, and D. Gatinel, “Objective assessment of crystalline lens opacity level by measuring ocular light scattering with a double-pass system,” Am. J. Ophthalmol. 155(4), 629–635 (2013).
[Crossref] [PubMed]

Safatle, A. M. V.

A. Antunes, M. G. Hönnicke, A. M. V. Safatle, C. Cusatis, P. S. Moraes Barros, and S. L. Morelhão, “Diffraction enhanced X-ray imaging of mammals crystalline lens,” Nucl. Instrum. Methods Phys. Res. Sect. B 238(1), 28–31 (2005).
[Crossref]

Sahin, O.

O. Sahin, A. Pennos, H. Ginis, L. Hervella, E. A. Villegas, B. Cañizares, J. M. Marin, I. Pallikaris, and P. Artal, “Optical Measurement of Straylight in Eyes With Cataract,” J. Refract. Surg. 32(12), 846–850 (2016).
[Crossref] [PubMed]

Schimchak, P.

J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, “Crystalline lens optical dysfunction through aging,” Ophthalmology 112(11), 2022–2029 (2005).
[Crossref] [PubMed]

Schuele, G.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sebag, J.

R. R. Ansari, K. I. Suh, S. Dunker, N. Kitaya, and J. Sebag, “Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering,” Exp. Eye Res. 73(6), 859–866 (2001).
[Crossref] [PubMed]

Seibel, B.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Sgouros, I.

Shi, Y.

S. Bassnett, Y. Shi, and G. F. J. M. Vrensen, “Biological glass: structural determinants of eye lens transparency,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1250–1264 (2011).
[Crossref] [PubMed]

Siedlecki, D.

Simoneau, M.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Singer, D. M.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Sobczuk, F.

Sparrow, J. M.

N. A. Frost, J. M. Sparrow, and L. Moore, “Associations of human crystalline lens retrodots and waterclefts with visual impairment: An observational study,” Invest. Ophthalmol. Vis. Sci. 43(7), 2105–2109 (2002).
[PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Suh, K. I.

R. R. Ansari, K. I. Suh, S. Dunker, N. Kitaya, and J. Sebag, “Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering,” Exp. Eye Res. 73(6), 859–866 (2001).
[Crossref] [PubMed]

Sun, M.

Susan, S. R.

C. V. Harding, L. T. Chylack, S. R. Susan, W. K. Lo, and W. F. Bobrowski, “Elemental and ultrastructural analysis of specific human lens opacities,” Invest. Ophthalmol. Vis. Sci. 23(1), 1–13 (1982).
[PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szkulmowski, M.

Szlag, D.

Talamo, J.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Tchah, H.

Y. N. Kim, J. H. Park, and H. Tchah, “Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading,” J. Ophthalmol. 2016(3025413), 3025413 (2016).
[PubMed]

Tiedemann, C. E.

J. R. Kuszak, R. K. Zoltoski, and C. E. Tiedemann, “Development of lens sutures,” Int. J. Dev. Biol. 48(8-9), 889–902 (2004).
[Crossref] [PubMed]

Torramilans Lluís, A.

M. De La Hoz Polo, A. Torramilans Lluís, O. Pozuelo Segura, A. Anguera Bosque, C. Esmerado Appiani, and J. M. Caminal Mitjana, “Ocular ultrasonography focused on the posterior eye segment: what radiologists should know,” Insights Imaging 7(3), 351–364 (2016).
[Crossref] [PubMed]

Unterhuber, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

van den Berg, T. J. T. P.

T. J. T. P. van den Berg, L. Franssen, B. Kruijt, and J. E. Coppens, “History of ocular straylight measurement: A review,” Z. Med. Phys. 23(1), 6–20 (2013).
[Crossref] [PubMed]

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

van Marle, J.

R. Michael, R. I. Barraquer, B. Willekens, J. van Marle, and G. F. J. M. Vrensen, “Morphology of age-related cuneiform cortical cataracts: The case for mechanical stress,” Vision Res. 48(4), 626–634 (2008).
[Crossref] [PubMed]

Van Rijn, L. J.

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

Velasco-Ocana, M.

Villegas, E. A.

O. Sahin, A. Pennos, H. Ginis, L. Hervella, E. A. Villegas, B. Cañizares, J. M. Marin, I. Pallikaris, and P. Artal, “Optical Measurement of Straylight in Eyes With Cataract,” J. Refract. Surg. 32(12), 846–850 (2016).
[Crossref] [PubMed]

Vrensen, G. F. J. M.

S. Bassnett, Y. Shi, and G. F. J. M. Vrensen, “Biological glass: structural determinants of eye lens transparency,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1250–1264 (2011).
[Crossref] [PubMed]

G. F. J. M. Vrensen, “Early cortical lens opacities: a short overview,” Acta Ophthalmol. 87(6), 602–610 (2009).
[Crossref] [PubMed]

R. Michael, R. I. Barraquer, B. Willekens, J. van Marle, and G. F. J. M. Vrensen, “Morphology of age-related cuneiform cortical cataracts: The case for mechanical stress,” Vision Res. 48(4), 626–634 (2008).
[Crossref] [PubMed]

Weiner, X.

X. Weiner, M. Baumeister, T. Kohnen, and J. Bühren, “Repeatability of lens densitometry using Scheimpflug imaging,” J. Cataract Refract. Surg. 40(5), 756–763 (2014).
[Crossref] [PubMed]

Weinreb, R. N.

A. L. Wong, C. K.-S. Leung, R. N. Weinreb, A. K. C. Cheng, C. Y. L. Cheung, P. T.-H. Lam, C. P. Pang, and D. S. C. Lam, “Quantitative assessment of lens opacities with anterior segment optical coherence tomography,” Br. J. Ophthalmol. 93(1), 61–65 (2009).
[Crossref] [PubMed]

Wilhelm, H.

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

Willekens, B.

R. Michael, R. I. Barraquer, B. Willekens, J. van Marle, and G. F. J. M. Vrensen, “Morphology of age-related cuneiform cortical cataracts: The case for mechanical stress,” Vision Res. 48(4), 626–634 (2008).
[Crossref] [PubMed]

Wiltberger, M.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Wojtkowski, M.

Wolfe, J. K.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Wong, A. L.

A. L. Wong, C. K.-S. Leung, R. N. Weinreb, A. K. C. Cheng, C. Y. L. Cheung, P. T.-H. Lam, C. P. Pang, and D. S. C. Lam, “Quantitative assessment of lens opacities with anterior segment optical coherence tomography,” Br. J. Ophthalmol. 93(1), 61–65 (2009).
[Crossref] [PubMed]

Woodley, B.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Wu, S. Y.

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Zoltoski, R. K.

J. R. Kuszak, R. K. Zoltoski, and C. E. Tiedemann, “Development of lens sutures,” Int. J. Dev. Biol. 48(8-9), 889–902 (2004).
[Crossref] [PubMed]

Acta Ophthalmol. (1)

G. F. J. M. Vrensen, “Early cortical lens opacities: a short overview,” Acta Ophthalmol. 87(6), 602–610 (2009).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photonics 6(3), 340–367 (2014).
[Crossref]

Am. J. Ophthalmol. (2)

T. J. T. P. Van Den Berg, L. J. Van Rijn, R. Michael, C. Heine, T. Coeckelbergh, C. Nischler, H. Wilhelm, G. Grabner, M. Emesz, R. I. Barraquer, J. E. Coppens, and L. Franssen, “Straylight effects with aging and lens extraction,” Am. J. Ophthalmol. 144(3), 358–363 (2007).
[Crossref] [PubMed]

F. Cabot, A. Saad, C. McAlinden, N. M. Haddad, A. Grise-Dulac, and D. Gatinel, “Objective assessment of crystalline lens opacity level by measuring ocular light scattering with a double-pass system,” Am. J. Ophthalmol. 155(4), 629–635 (2013).
[Crossref] [PubMed]

Annu Rev Vis Sci (1)

P. Artal, “Image Formation in the Living Human Eye,” Annu Rev Vis Sci 1(1), 1–17 (2015).
[Crossref] [PubMed]

Arch. Ophthalmol. (1)

L. T. Chylack, J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, “The lens opacities classification system III,” Arch. Ophthalmol. 111(6), 831–836 (1993).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Br. J. Ophthalmol. (1)

A. L. Wong, C. K.-S. Leung, R. N. Weinreb, A. K. C. Cheng, C. Y. L. Cheung, P. T.-H. Lam, C. P. Pang, and D. S. C. Lam, “Quantitative assessment of lens opacities with anterior segment optical coherence tomography,” Br. J. Ophthalmol. 93(1), 61–65 (2009).
[Crossref] [PubMed]

Exp. Eye Res. (2)

R. R. Ansari, K. I. Suh, S. Dunker, N. Kitaya, and J. Sebag, “Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering,” Exp. Eye Res. 73(6), 859–866 (2001).
[Crossref] [PubMed]

M. B. Datiles, R. R. Ansari, and G. F. Reed, “A clinical study of the human lens with a dynamic light scattering device,” Exp. Eye Res. 74(1), 93–102 (2002).
[Crossref] [PubMed]

Insights Imaging (1)

M. De La Hoz Polo, A. Torramilans Lluís, O. Pozuelo Segura, A. Anguera Bosque, C. Esmerado Appiani, and J. M. Caminal Mitjana, “Ocular ultrasonography focused on the posterior eye segment: what radiologists should know,” Insights Imaging 7(3), 351–364 (2016).
[Crossref] [PubMed]

Int. J. Dev. Biol. (1)

J. R. Kuszak, R. K. Zoltoski, and C. E. Tiedemann, “Development of lens sutures,” Int. J. Dev. Biol. 48(8-9), 889–902 (2004).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

N. A. Frost, J. M. Sparrow, and L. Moore, “Associations of human crystalline lens retrodots and waterclefts with visual impairment: An observational study,” Invest. Ophthalmol. Vis. Sci. 43(7), 2105–2109 (2002).
[PubMed]

Y. E. Lee and C.-K. Joo, “Assessment of lens center using optical coherence tomography, magnetic resonance imaging, and photographs of the anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 56(9), 5512–5518 (2015).
[Crossref] [PubMed]

C. V. Harding, L. T. Chylack, S. R. Susan, W. K. Lo, and W. F. Bobrowski, “Elemental and ultrastructural analysis of specific human lens opacities,” Invest. Ophthalmol. Vis. Sci. 23(1), 1–13 (1982).
[PubMed]

Investig. Ophthalmol. Vis. Sci. (1)

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Investig. Ophthalmol. Vis. Sci. 59(2), 897–903 (2018).
[Crossref]

J. Biomed. Opt. (2)

C. D. Dicarlo, W. P. Roach, D. A. Gagliano, S. A. Boppart, D. X. Hammer, A. B. Cox, and J. G. Fujimoto, “Comparison of optical coherence tomography imaging of cataracts with histopathology,” J. Biomed. Opt. 4(4), 450–458 (1999).
[Crossref] [PubMed]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (2)

X. Weiner, M. Baumeister, T. Kohnen, and J. Bühren, “Repeatability of lens densitometry using Scheimpflug imaging,” J. Cataract Refract. Surg. 40(5), 756–763 (2014).
[Crossref] [PubMed]

B. J. Kirkwood, P. L. Hendicott, S. A. Read, and K. Pesudovs, “Repeatability and validity of lens densitometry measured with Scheimpflug imaging,” J. Cataract Refract. Surg. 35(7), 1210–1215 (2009).
[Crossref] [PubMed]

J. Ophthalmol. (1)

Y. N. Kim, J. H. Park, and H. Tchah, “Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading,” J. Ophthalmol. 2016(3025413), 3025413 (2016).
[PubMed]

J. Refract. Surg. (3)

O. Sahin, A. Pennos, H. Ginis, L. Hervella, E. A. Villegas, B. Cañizares, J. M. Marin, I. Pallikaris, and P. Artal, “Optical Measurement of Straylight in Eyes With Cataract,” J. Refract. Surg. 32(12), 846–850 (2016).
[Crossref] [PubMed]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

F. Galliot, S. R. Patel, and B. Cochener, “Objective scatter index: working toward a new quantification of cataract?” J. Refract. Surg. 32(2), 96–102 (2016).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. Sect. B (1)

A. Antunes, M. G. Hönnicke, A. M. V. Safatle, C. Cusatis, P. S. Moraes Barros, and S. L. Morelhão, “Diffraction enhanced X-ray imaging of mammals crystalline lens,” Nucl. Instrum. Methods Phys. Res. Sect. B 238(1), 28–31 (2005).
[Crossref]

Ophthalmology (2)

J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, “Crystalline lens optical dysfunction through aging,” Ophthalmology 112(11), 2022–2029 (2005).
[Crossref] [PubMed]

D. S. Grewal, G. S. Brar, and S. P. S. Grewal, “Correlation of nuclear cataract lens density using Scheimpflug images with lens opacities classification system III and visual function,” Ophthalmology 116(8), 1436–1443 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Philos. Trans. R. Soc. Lond. B Biol. Sci. (2)

S. Bassnett, Y. Shi, and G. F. J. M. Vrensen, “Biological glass: structural determinants of eye lens transparency,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1250–1264 (2011).
[Crossref] [PubMed]

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1278–1292 (2011).
[Crossref] [PubMed]

PLoS One (1)

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6(2), e16823 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

R. R. Ansari, M. B. Datiles, J. F. King, and D. Leftwood, “Measuring lens opacity: combining quasi-elastic light scattering with Scheimpflug imaging system,” Proc. SPIE 3246, 35–42 (1998).
[Crossref]

Sci. Transl. Med. (1)

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Vision Res. (1)

R. Michael, R. I. Barraquer, B. Willekens, J. van Marle, and G. F. J. M. Vrensen, “Morphology of age-related cuneiform cortical cataracts: The case for mechanical stress,” Vision Res. 48(4), 626–634 (2008).
[Crossref] [PubMed]

Z. Med. Phys. (1)

T. J. T. P. van den Berg, L. Franssen, B. Kruijt, and J. E. Coppens, “History of ocular straylight measurement: A review,” Z. Med. Phys. 23(1), 6–20 (2013).
[Crossref] [PubMed]

Other (1)

I. Grulkowski, “Anterior segment OCT,” in Handbook of Visual Optics, Volume Two: Instrumentation and Vision, P. Artal, ed. (CRC Press - Taylor & Francis Group, 2016).

Supplementary Material (3)

NameDescription
» Visualization 1       Signal from the lens of the motion-corrected volumetric data is segmented. Anterior and posterior capsule, anterior and posterior cortex and the nucleus are segmented to enable determination of different parameters in those components
» Visualization 2       Cortical cataract in the right eye of 62-yo patient
» Visualization 3       Left eye of 63-yo patient

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental set-up. (a) Prototype SS-OCT system for whole anterior segment imaging. PDB – balanced photodetector, SC – galvanometric scanners, 80/20 – fiber coupler. (b) Detection configuration for the measurement of the coherence function of the swept light source. (c) Details of the experiment aiming at optimization of the objective lens in the SS-OCT system interface (sample arm).
Fig. 2
Fig. 2 Performance of the SS-OCT instrument for anterior segment imaging. (a) Coherence function (dotted) and signal roll-off with depth. (b) Impact of different factors on signal drop for optimum system configuration. The legend corresponds to the symbols used in Eq. (1).
Fig. 3
Fig. 3 Optimization of the objective lens. Images of the entire anterior segment of the eye for different positions of the eye vs. focal plane. The signal position vs. zero delay line was kept constant to be independent on the signal drop with depth. The image quality is more degraded when shorter focal length objective is used in the sample arm.
Fig. 4
Fig. 4 Post-processing of volumetric SS-OCT data of the 26-yo healthy young subject. (a) Signal from the lens of the motion-corrected volumetric data is segmented. Anterior and posterior capsule, anterior and posterior cortex and the nucleus are segmented to enable determination of different parameters in those components (Visualization 1). (b) Sagittal (side) projection (MIP) of the crystalline lens. (c) Examples of en-face projections of the lens capsule, nucleus and the cortex. Images were not corrected for light refraction.
Fig. 5
Fig. 5 SS-OCT imaging of the eyes of cataract suspects. (a) Left eye of 73-yo subject. (b) Right eye of 80-yo subject. (c) Left eye of 77-yo subject. High-definition cross-sectional images. MIP sagittal views and en-face MIP map and MIDP of the cortex overlaid with maximum intensity map. Images were not corrected for light refraction.
Fig. 6
Fig. 6 SS-OCT imaging of cortical and nuclear cataract in the lens. (a) Cortical and nuclear (mixed) cataract in right eye of 73-yo patient. (b) Cortical cataract in the right eye of 62-yo patient (Visualization 2). (c) Cortical cataract in the right eye of 69-yo patient. (d) Nuclear cataract in left eye of 65-yo patient. The columns represent: HD cross-sectional image, MIP sagittal view, MIDP overlaid with maximum intensity map for anterior and posterior cortex (brightness indicates maximum intensity). Images were not corrected for light refraction.
Fig. 7
Fig. 7 SS-OCT imaging of subcapsular cataract. (a) Left eye of 36-yo patient. (b) Left eye of 63-yo patient (Visualization 3). The columns represent: HD cross-sectional image, MIP sagittal view, MIP map of the anterior and posterior capsule. Images were not corrected for light refraction.
Fig. 8
Fig. 8 Quantitative analysis of SS-OCT volumetric data of crystalline lenses (a) Representative SS-OCT en-face projection maps of crystalline lenses of patients with different cataract types and grades. Rows from the top represent: MIP and MIDP maps of the cortex, AVP map of the nucleus and MIP map of the posterior capsule. (b) Dependence of the integrated maximum intensity of the cortex, intensity median of the nucleus and the median of maximum intensity of the posterior capsule on the LOCS III grading. Images were not corrected for light refraction.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S SSOCT ( z )=C( z ) S illum ( z ) S PDB ( z ) S ADC ( z ).
I( k,z ) I s ( k ) I r ( k ) cos( 2kz )