Abstract

We developed a technology for quantitative retinal autofluorescence (AF, or FAF for fundus AF) imaging for quantifying lipofuscin in the retinal pigment epithelium (RPE). The technology is based on simultaneous visible light optical coherence tomography (VIS-OCT) and AF imaging of the retina and a pair of reference standard targets at the intermediate retinal imaging plane with known reflectivity for the OCT and fluorescence efficiency for the FAF. The technology is able to eliminate the pre-RPE attenuation in FAF imaging by using the simultaneously acquired VIS-OCT image. With the OCT and fluorescence images of the reference targets, the effects of illumination power and detector sensitivity can be eliminated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo imaging of retinal pigment epithelium cells in age related macular degeneration

Ethan A. Rossi, Piero Rangel-Fonseca, Keith Parkins, William Fischer, Lisa R. Latchney, Margaret A. Folwell, David R. Williams, Alfredo Dubra, and Mina M. Chung
Biomed. Opt. Express 4(11) 2527-2539 (2013)

Reduced-illuminance autofluorescence imaging in ABCA4-associated retinal degenerations

Artur V. Cideciyan, Malgorzata Swider, Tomas S. Aleman, Marisa I. Roman, Alexander Sumaroka, Sharon B. Schwartz, Edwin M. Stone, and Samuel G. Jacobson
J. Opt. Soc. Am. A 24(5) 1457-1467 (2007)

Nonmydriatic fluorescence-based quantitative imaging of human macular pigment distributions

Mohsen Sharifzadeh, Paul S. Bernstein, and Werner Gellermann
J. Opt. Soc. Am. A 23(10) 2373-2387 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Sparrow and M. Boulton, “RPE lipofuscin and its role in retinal pathobiology,” Exp. Eye Res. 80(5), 595–606 (2005).
    [Crossref] [PubMed]
  2. S. R. Sadda, “Fundus autofluorescence imaging: Principles and applications,” Retin. Physician. 2, 1 (2011).
  3. N. P. Boyer, D. Higbee, M. B. Currin, L. R. Blakeley, C. Chen, Z. Ablonczy, R. K. Crouch, and Y. Koutalos, “Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal,” J. Biol. Chem. 287(26), 22276–22286 (2012).
    [Crossref] [PubMed]
  4. R. Afridi, A. Agarwal, M. A. Sadiq, M. Hassan, D. V. Do, Q. D. Nguyen, and Y. J. Sepah, “Fundus Autofluorescence Imaging in Posterior Uveitis,” in Sen H. Read R. (eds) Multimodal Imaging in Uveitis, Springer (2018).
  5. G. L. Wing, G. C. Blanchard, and J. J. Weiter, “The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 17(7), 601–607 (1978).
    [PubMed]
  6. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
    [Crossref] [PubMed]
  7. F. G. Holz, C. Bellman, S. Staudt, F. Schütt, and H. E. Völcker, “Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 42(5), 1051–1056 (2001).
    [PubMed]
  8. A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
    [Crossref] [PubMed]
  9. S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
    [Crossref] [PubMed]
  10. Y. Yonekawa, J. W. Miller, and I. K. Kim, “Age-related macular degeneration: advances in management and diagnosis,” J. Clin. Med. 4(2), 343–359 (2015).
    [Crossref] [PubMed]
  11. M. Yung, M. A. Klufas, and D. Sarraf, “Clinical applications of fundus autofluorescence in retinal disease,” Int J Retina Vitreous 2(1), 12 (2016).
    [Crossref] [PubMed]
  12. J. R. Sparrow and T. Duncker, “Fundus autofluorescence and RPE lipofuscin in age-related macular degeneration,” J. Clin. Med. 3(4), 1302–1321 (2014).
    [Crossref] [PubMed]
  13. M. Boulton and P. Dayhaw-Barker, “The role of the retinal pigment epithelium: topographical variation and ageing changes,” Eye (Lond.) 15(3), 384–389 (2001).
    [Crossref] [PubMed]
  14. M. Rudolf, S. D. Vogt, C. A. Curcio, C. Huisingh, G. McGwin, A. Wagner, S. Grisanti, and R. W. Read, “Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy,” Ophthalmology 120(4), 821–828 (2013).
    [Crossref] [PubMed]
  15. M. J. Allingham, Q. Nie, E. M. Lad, D. J. Izatt, P. S. Mettu, S. W. Cousins, and S. Farsiu, “Semiautomatic segmentation of rim area focal hyperautofluorescence predicts progression of geographic atrophy due to dry age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(4), 2283–2289 (2016).
    [Crossref] [PubMed]
  16. C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, and F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
    [Crossref] [PubMed]
  17. N. Lois, A. S. Halfyard, C. Bunce, A. C. Bird, and F. W. Fitzke, “Reproducibility of fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope,” Br. J. Ophthalmol. 83(3), 276–279 (1999).
    [Crossref] [PubMed]
  18. F. Delori, J. P. Greenberg, R. L. Woods, J. Fischer, T. Duncker, J. Sparrow, and R. T. Smith, “Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 52(13), 9379–9390 (2011).
    [Crossref] [PubMed]
  19. C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17(8), 080502 (2012).
    [Crossref] [PubMed]
  20. M. Jiang, T. Liu, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm,” Biomed. Opt. Express 5(12), 4242–4248 (2014).
    [Crossref] [PubMed]
  21. Z. Nafar, M. Jiang, R. Wen, and S. Jiao, “Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification,” Biomed. Opt. Express 7(9), 3220–3229 (2016).
    [Crossref] [PubMed]
  22. J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36(15), 2229–2247 (1996).
    [Crossref] [PubMed]
  23. J. I. Morgan and E. N. Pugh., “Scanning laser ophthalmoscope measurement of local fundus reflectance and autofluorescence changes arising from rhodopsin bleaching and regeneration,” Invest. Ophthalmol. Vis. Sci. 54(3), 2048–2059 (2013).
    [Crossref] [PubMed]
  24. A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Z. Zhang, G. E. Marti, and R. F. Vogt, “Quantitating fluorescence intensity from fluorophore: The definition of MESF assignment,” J. Res. Natl. Inst. Stand. Technol. 107(1), 83–91 (2002).
    [Crossref] [PubMed]
  25. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
    [Crossref] [PubMed]
  26. X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16(8), 080504 (2011).
    [Crossref] [PubMed]
  27. J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
    [PubMed]
  28. R. Weersink, M. S. Patterson, K. Diamond, S. Silver, and N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence /reflectance ratio technique,” Appl. Opt. 40(34), 6389–6395 (2001).
    [Crossref] [PubMed]
  29. J. Tian, B. Varga, G. M. Somfai, W. H. Lee, W. E. Smiddy, and D. C. DeBuc, “Real-time automatic segmentation of optical coherence tomography volume data of the macular region,” PLoS One 10(8), e0133908 (2015).
    [Crossref] [PubMed]
  30. E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1(6), 776–783 (1962).

2016 (3)

M. Yung, M. A. Klufas, and D. Sarraf, “Clinical applications of fundus autofluorescence in retinal disease,” Int J Retina Vitreous 2(1), 12 (2016).
[Crossref] [PubMed]

M. J. Allingham, Q. Nie, E. M. Lad, D. J. Izatt, P. S. Mettu, S. W. Cousins, and S. Farsiu, “Semiautomatic segmentation of rim area focal hyperautofluorescence predicts progression of geographic atrophy due to dry age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(4), 2283–2289 (2016).
[Crossref] [PubMed]

Z. Nafar, M. Jiang, R. Wen, and S. Jiao, “Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification,” Biomed. Opt. Express 7(9), 3220–3229 (2016).
[Crossref] [PubMed]

2015 (2)

J. Tian, B. Varga, G. M. Somfai, W. H. Lee, W. E. Smiddy, and D. C. DeBuc, “Real-time automatic segmentation of optical coherence tomography volume data of the macular region,” PLoS One 10(8), e0133908 (2015).
[Crossref] [PubMed]

Y. Yonekawa, J. W. Miller, and I. K. Kim, “Age-related macular degeneration: advances in management and diagnosis,” J. Clin. Med. 4(2), 343–359 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (2)

M. Rudolf, S. D. Vogt, C. A. Curcio, C. Huisingh, G. McGwin, A. Wagner, S. Grisanti, and R. W. Read, “Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy,” Ophthalmology 120(4), 821–828 (2013).
[Crossref] [PubMed]

J. I. Morgan and E. N. Pugh., “Scanning laser ophthalmoscope measurement of local fundus reflectance and autofluorescence changes arising from rhodopsin bleaching and regeneration,” Invest. Ophthalmol. Vis. Sci. 54(3), 2048–2059 (2013).
[Crossref] [PubMed]

2012 (2)

C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17(8), 080502 (2012).
[Crossref] [PubMed]

N. P. Boyer, D. Higbee, M. B. Currin, L. R. Blakeley, C. Chen, Z. Ablonczy, R. K. Crouch, and Y. Koutalos, “Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal,” J. Biol. Chem. 287(26), 22276–22286 (2012).
[Crossref] [PubMed]

2011 (3)

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
[Crossref] [PubMed]

F. Delori, J. P. Greenberg, R. L. Woods, J. Fischer, T. Duncker, J. Sparrow, and R. T. Smith, “Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 52(13), 9379–9390 (2011).
[Crossref] [PubMed]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16(8), 080504 (2011).
[Crossref] [PubMed]

2006 (1)

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

2005 (3)

J. R. Sparrow and M. Boulton, “RPE lipofuscin and its role in retinal pathobiology,” Exp. Eye Res. 80(5), 595–606 (2005).
[Crossref] [PubMed]

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
[Crossref] [PubMed]

2003 (1)

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, and F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[Crossref] [PubMed]

2002 (1)

A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Z. Zhang, G. E. Marti, and R. F. Vogt, “Quantitating fluorescence intensity from fluorophore: The definition of MESF assignment,” J. Res. Natl. Inst. Stand. Technol. 107(1), 83–91 (2002).
[Crossref] [PubMed]

2001 (3)

R. Weersink, M. S. Patterson, K. Diamond, S. Silver, and N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence /reflectance ratio technique,” Appl. Opt. 40(34), 6389–6395 (2001).
[Crossref] [PubMed]

M. Boulton and P. Dayhaw-Barker, “The role of the retinal pigment epithelium: topographical variation and ageing changes,” Eye (Lond.) 15(3), 384–389 (2001).
[Crossref] [PubMed]

F. G. Holz, C. Bellman, S. Staudt, F. Schütt, and H. E. Völcker, “Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 42(5), 1051–1056 (2001).
[PubMed]

1999 (1)

N. Lois, A. S. Halfyard, C. Bunce, A. C. Bird, and F. W. Fitzke, “Reproducibility of fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope,” Br. J. Ophthalmol. 83(3), 276–279 (1999).
[Crossref] [PubMed]

1996 (1)

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36(15), 2229–2247 (1996).
[Crossref] [PubMed]

1986 (1)

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
[PubMed]

1978 (1)

G. L. Wing, G. C. Blanchard, and J. J. Weiter, “The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 17(7), 601–607 (1978).
[PubMed]

1962 (1)

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1(6), 776–783 (1962).

Ablonczy, Z.

N. P. Boyer, D. Higbee, M. B. Currin, L. R. Blakeley, C. Chen, Z. Ablonczy, R. K. Crouch, and Y. Koutalos, “Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal,” J. Biol. Chem. 287(26), 22276–22286 (2012).
[Crossref] [PubMed]

Allingham, M. J.

M. J. Allingham, Q. Nie, E. M. Lad, D. J. Izatt, P. S. Mettu, S. W. Cousins, and S. Farsiu, “Semiautomatic segmentation of rim area focal hyperautofluorescence predicts progression of geographic atrophy due to dry age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(4), 2283–2289 (2016).
[Crossref] [PubMed]

An, L.

Bellman, C.

F. G. Holz, C. Bellman, S. Staudt, F. Schütt, and H. E. Völcker, “Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 42(5), 1051–1056 (2001).
[PubMed]

Bellmann, C.

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, and F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[Crossref] [PubMed]

Berendschot, T. T.

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36(15), 2229–2247 (1996).
[Crossref] [PubMed]

Bindewald, A.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

Bindewald-Wittich, A.

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

Bird, A. C.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, and F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[Crossref] [PubMed]

N. Lois, A. S. Halfyard, C. Bunce, A. C. Bird, and F. W. Fitzke, “Reproducibility of fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope,” Br. J. Ophthalmol. 83(3), 276–279 (1999).
[Crossref] [PubMed]

Blakeley, L. R.

N. P. Boyer, D. Higbee, M. B. Currin, L. R. Blakeley, C. Chen, Z. Ablonczy, R. K. Crouch, and Y. Koutalos, “Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal,” J. Biol. Chem. 287(26), 22276–22286 (2012).
[Crossref] [PubMed]

Blanchard, G. C.

G. L. Wing, G. C. Blanchard, and J. J. Weiter, “The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 17(7), 601–607 (1978).
[PubMed]

Boettner, E. A.

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1(6), 776–783 (1962).

Boulton, M.

J. R. Sparrow and M. Boulton, “RPE lipofuscin and its role in retinal pathobiology,” Exp. Eye Res. 80(5), 595–606 (2005).
[Crossref] [PubMed]

M. Boulton and P. Dayhaw-Barker, “The role of the retinal pigment epithelium: topographical variation and ageing changes,” Eye (Lond.) 15(3), 384–389 (2001).
[Crossref] [PubMed]

Boyer, N. P.

N. P. Boyer, D. Higbee, M. B. Currin, L. R. Blakeley, C. Chen, Z. Ablonczy, R. K. Crouch, and Y. Koutalos, “Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal,” J. Biol. Chem. 287(26), 22276–22286 (2012).
[Crossref] [PubMed]

Bunce, C.

N. Lois, A. S. Halfyard, C. Bunce, A. C. Bird, and F. W. Fitzke, “Reproducibility of fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope,” Br. J. Ophthalmol. 83(3), 276–279 (1999).
[Crossref] [PubMed]

Chen, C.

N. P. Boyer, D. Higbee, M. B. Currin, L. R. Blakeley, C. Chen, Z. Ablonczy, R. K. Crouch, and Y. Koutalos, “Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal,” J. Biol. Chem. 287(26), 22276–22286 (2012).
[Crossref] [PubMed]

Cousins, S. W.

M. J. Allingham, Q. Nie, E. M. Lad, D. J. Izatt, P. S. Mettu, S. W. Cousins, and S. Farsiu, “Semiautomatic segmentation of rim area focal hyperautofluorescence predicts progression of geographic atrophy due to dry age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(4), 2283–2289 (2016).
[Crossref] [PubMed]

Crouch, R. K.

N. P. Boyer, D. Higbee, M. B. Currin, L. R. Blakeley, C. Chen, Z. Ablonczy, R. K. Crouch, and Y. Koutalos, “Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal,” J. Biol. Chem. 287(26), 22276–22286 (2012).
[Crossref] [PubMed]

Curcio, C. A.

M. Rudolf, S. D. Vogt, C. A. Curcio, C. Huisingh, G. McGwin, A. Wagner, S. Grisanti, and R. W. Read, “Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy,” Ophthalmology 120(4), 821–828 (2013).
[Crossref] [PubMed]

Currin, M. B.

N. P. Boyer, D. Higbee, M. B. Currin, L. R. Blakeley, C. Chen, Z. Ablonczy, R. K. Crouch, and Y. Koutalos, “Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal,” J. Biol. Chem. 287(26), 22276–22286 (2012).
[Crossref] [PubMed]

Dai, C.

C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17(8), 080502 (2012).
[Crossref] [PubMed]

Dandekar, S. S.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

Dayhaw-Barker, P.

M. Boulton and P. Dayhaw-Barker, “The role of the retinal pigment epithelium: topographical variation and ageing changes,” Eye (Lond.) 15(3), 384–389 (2001).
[Crossref] [PubMed]

DeBuc, D. C.

J. Tian, B. Varga, G. M. Somfai, W. H. Lee, W. E. Smiddy, and D. C. DeBuc, “Real-time automatic segmentation of optical coherence tomography volume data of the macular region,” PLoS One 10(8), e0133908 (2015).
[Crossref] [PubMed]

Delori, F.

F. Delori, J. P. Greenberg, R. L. Woods, J. Fischer, T. Duncker, J. Sparrow, and R. T. Smith, “Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 52(13), 9379–9390 (2011).
[Crossref] [PubMed]

Delori, F. C.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
[PubMed]

Diamond, K.

Dolar-Szczasny, J.

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

Dreyhaupt, J.

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

Duncker, T.

J. R. Sparrow and T. Duncker, “Fundus autofluorescence and RPE lipofuscin in age-related macular degeneration,” J. Clin. Med. 3(4), 1302–1321 (2014).
[Crossref] [PubMed]

F. Delori, J. P. Greenberg, R. L. Woods, J. Fischer, T. Duncker, J. Sparrow, and R. T. Smith, “Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 52(13), 9379–9390 (2011).
[Crossref] [PubMed]

Early, E.

A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Z. Zhang, G. E. Marti, and R. F. Vogt, “Quantitating fluorescence intensity from fluorophore: The definition of MESF assignment,” J. Res. Natl. Inst. Stand. Technol. 107(1), 83–91 (2002).
[Crossref] [PubMed]

Einbock, W.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

Farsiu, S.

M. J. Allingham, Q. Nie, E. M. Lad, D. J. Izatt, P. S. Mettu, S. W. Cousins, and S. Farsiu, “Semiautomatic segmentation of rim area focal hyperautofluorescence predicts progression of geographic atrophy due to dry age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(4), 2283–2289 (2016).
[Crossref] [PubMed]

Fischer, J.

F. Delori, J. P. Greenberg, R. L. Woods, J. Fischer, T. Duncker, J. Sparrow, and R. T. Smith, “Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 52(13), 9379–9390 (2011).
[Crossref] [PubMed]

Fitch, K. A.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
[PubMed]

Fitzke, F. W.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, and F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[Crossref] [PubMed]

N. Lois, A. S. Halfyard, C. Bunce, A. C. Bird, and F. W. Fitzke, “Reproducibility of fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope,” Br. J. Ophthalmol. 83(3), 276–279 (1999).
[Crossref] [PubMed]

Gaigalas, A.

A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Z. Zhang, G. E. Marti, and R. F. Vogt, “Quantitating fluorescence intensity from fluorophore: The definition of MESF assignment,” J. Res. Natl. Inst. Stand. Technol. 107(1), 83–91 (2002).
[Crossref] [PubMed]

Greenberg, J. P.

F. Delori, J. P. Greenberg, R. L. Woods, J. Fischer, T. Duncker, J. Sparrow, and R. T. Smith, “Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 52(13), 9379–9390 (2011).
[Crossref] [PubMed]

Gregori, G.

Grisanti, S.

M. Rudolf, S. D. Vogt, C. A. Curcio, C. Huisingh, G. McGwin, A. Wagner, S. Grisanti, and R. W. Read, “Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy,” Ophthalmology 120(4), 821–828 (2013).
[Crossref] [PubMed]

Halfyard, A. S.

N. Lois, A. S. Halfyard, C. Bunce, A. C. Bird, and F. W. Fitzke, “Reproducibility of fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope,” Br. J. Ophthalmol. 83(3), 276–279 (1999).
[Crossref] [PubMed]

Higbee, D.

N. P. Boyer, D. Higbee, M. B. Currin, L. R. Blakeley, C. Chen, Z. Ablonczy, R. K. Crouch, and Y. Koutalos, “Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal,” J. Biol. Chem. 287(26), 22276–22286 (2012).
[Crossref] [PubMed]

Holz, F. G.

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

F. G. Holz, C. Bellman, S. Staudt, F. Schütt, and H. E. Völcker, “Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 42(5), 1051–1056 (2001).
[PubMed]

Huang, X.

Huisingh, C.

M. Rudolf, S. D. Vogt, C. A. Curcio, C. Huisingh, G. McGwin, A. Wagner, S. Grisanti, and R. W. Read, “Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy,” Ophthalmology 120(4), 821–828 (2013).
[Crossref] [PubMed]

Izatt, D. J.

M. J. Allingham, Q. Nie, E. M. Lad, D. J. Izatt, P. S. Mettu, S. W. Cousins, and S. Farsiu, “Semiautomatic segmentation of rim area focal hyperautofluorescence predicts progression of geographic atrophy due to dry age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(4), 2283–2289 (2016).
[Crossref] [PubMed]

Jiang, M.

Jiao, S.

Jorzik, J. J.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

Kabanarou, S. A.

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, and F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[Crossref] [PubMed]

Keilhauer, C.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

Kim, I. K.

Y. Yonekawa, J. W. Miller, and I. K. Kim, “Age-related macular degeneration: advances in management and diagnosis,” J. Clin. Med. 4(2), 343–359 (2015).
[Crossref] [PubMed]

Klufas, M. A.

M. Yung, M. A. Klufas, and D. Sarraf, “Clinical applications of fundus autofluorescence in retinal disease,” Int J Retina Vitreous 2(1), 12 (2016).
[Crossref] [PubMed]

Knighton, R.

Koutalos, Y.

N. P. Boyer, D. Higbee, M. B. Currin, L. R. Blakeley, C. Chen, Z. Ablonczy, R. K. Crouch, and Y. Koutalos, “Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal,” J. Biol. Chem. 287(26), 22276–22286 (2012).
[Crossref] [PubMed]

Lad, E. M.

M. J. Allingham, Q. Nie, E. M. Lad, D. J. Izatt, P. S. Mettu, S. W. Cousins, and S. Farsiu, “Semiautomatic segmentation of rim area focal hyperautofluorescence predicts progression of geographic atrophy due to dry age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(4), 2283–2289 (2016).
[Crossref] [PubMed]

Lee, W. H.

J. Tian, B. Varga, G. M. Somfai, W. H. Lee, W. E. Smiddy, and D. C. DeBuc, “Real-time automatic segmentation of optical coherence tomography volume data of the macular region,” PLoS One 10(8), e0133908 (2015).
[Crossref] [PubMed]

Li, P.

Liu, T.

Liu, X.

Lois, N.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

N. Lois, A. S. Halfyard, C. Bunce, A. C. Bird, and F. W. Fitzke, “Reproducibility of fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope,” Br. J. Ophthalmol. 83(3), 276–279 (1999).
[Crossref] [PubMed]

Marti, G. E.

A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Z. Zhang, G. E. Marti, and R. F. Vogt, “Quantitating fluorescence intensity from fluorophore: The definition of MESF assignment,” J. Res. Natl. Inst. Stand. Technol. 107(1), 83–91 (2002).
[Crossref] [PubMed]

McGwin, G.

M. Rudolf, S. D. Vogt, C. A. Curcio, C. Huisingh, G. McGwin, A. Wagner, S. Grisanti, and R. W. Read, “Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy,” Ophthalmology 120(4), 821–828 (2013).
[Crossref] [PubMed]

Mettu, P. S.

M. J. Allingham, Q. Nie, E. M. Lad, D. J. Izatt, P. S. Mettu, S. W. Cousins, and S. Farsiu, “Semiautomatic segmentation of rim area focal hyperautofluorescence predicts progression of geographic atrophy due to dry age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(4), 2283–2289 (2016).
[Crossref] [PubMed]

Miller, J. W.

Y. Yonekawa, J. W. Miller, and I. K. Kim, “Age-related macular degeneration: advances in management and diagnosis,” J. Clin. Med. 4(2), 343–359 (2015).
[Crossref] [PubMed]

Mlynski, J.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

Morgan, J. I.

J. I. Morgan and E. N. Pugh., “Scanning laser ophthalmoscope measurement of local fundus reflectance and autofluorescence changes arising from rhodopsin bleaching and regeneration,” Invest. Ophthalmol. Vis. Sci. 54(3), 2048–2059 (2013).
[Crossref] [PubMed]

Nafar, Z.

Nie, Q.

M. J. Allingham, Q. Nie, E. M. Lad, D. J. Izatt, P. S. Mettu, S. W. Cousins, and S. Farsiu, “Semiautomatic segmentation of rim area focal hyperautofluorescence predicts progression of geographic atrophy due to dry age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(4), 2283–2289 (2016).
[Crossref] [PubMed]

Padgett, N.

Patterson, M. S.

Pauleikhoff, D.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

Pugh, E. N.

J. I. Morgan and E. N. Pugh., “Scanning laser ophthalmoscope measurement of local fundus reflectance and autofluorescence changes arising from rhodopsin bleaching and regeneration,” Invest. Ophthalmol. Vis. Sci. 54(3), 2048–2059 (2013).
[Crossref] [PubMed]

Puliafito, C.

Puliafito, C. A.

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16(8), 080504 (2011).
[Crossref] [PubMed]

Read, R. W.

M. Rudolf, S. D. Vogt, C. A. Curcio, C. Huisingh, G. McGwin, A. Wagner, S. Grisanti, and R. W. Read, “Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy,” Ophthalmology 120(4), 821–828 (2013).
[Crossref] [PubMed]

Rubin, G. S.

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, and F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[Crossref] [PubMed]

Rudolf, M.

M. Rudolf, S. D. Vogt, C. A. Curcio, C. Huisingh, G. McGwin, A. Wagner, S. Grisanti, and R. W. Read, “Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy,” Ophthalmology 120(4), 821–828 (2013).
[Crossref] [PubMed]

Sarraf, D.

M. Yung, M. A. Klufas, and D. Sarraf, “Clinical applications of fundus autofluorescence in retinal disease,” Int J Retina Vitreous 2(1), 12 (2016).
[Crossref] [PubMed]

Schmitz-Valckenberg, S.

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

Scholl, H. P.

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

Schütt, F.

F. G. Holz, C. Bellman, S. Staudt, F. Schütt, and H. E. Völcker, “Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 42(5), 1051–1056 (2001).
[PubMed]

Schwartz, A.

A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Z. Zhang, G. E. Marti, and R. F. Vogt, “Quantitating fluorescence intensity from fluorophore: The definition of MESF assignment,” J. Res. Natl. Inst. Stand. Technol. 107(1), 83–91 (2002).
[Crossref] [PubMed]

Shen, T. T.

Silver, S.

Smiddy, W. E.

J. Tian, B. Varga, G. M. Somfai, W. H. Lee, W. E. Smiddy, and D. C. DeBuc, “Real-time automatic segmentation of optical coherence tomography volume data of the macular region,” PLoS One 10(8), e0133908 (2015).
[Crossref] [PubMed]

Smith, R. T.

F. Delori, J. P. Greenberg, R. L. Woods, J. Fischer, T. Duncker, J. Sparrow, and R. T. Smith, “Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 52(13), 9379–9390 (2011).
[Crossref] [PubMed]

Somfai, G. M.

J. Tian, B. Varga, G. M. Somfai, W. H. Lee, W. E. Smiddy, and D. C. DeBuc, “Real-time automatic segmentation of optical coherence tomography volume data of the macular region,” PLoS One 10(8), e0133908 (2015).
[Crossref] [PubMed]

Sparrow, J.

F. Delori, J. P. Greenberg, R. L. Woods, J. Fischer, T. Duncker, J. Sparrow, and R. T. Smith, “Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 52(13), 9379–9390 (2011).
[Crossref] [PubMed]

Sparrow, J. R.

J. R. Sparrow and T. Duncker, “Fundus autofluorescence and RPE lipofuscin in age-related macular degeneration,” J. Clin. Med. 3(4), 1302–1321 (2014).
[Crossref] [PubMed]

J. R. Sparrow and M. Boulton, “RPE lipofuscin and its role in retinal pathobiology,” Exp. Eye Res. 80(5), 595–606 (2005).
[Crossref] [PubMed]

Staudt, S.

F. G. Holz, C. Bellman, S. Staudt, F. Schütt, and H. E. Völcker, “Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 42(5), 1051–1056 (2001).
[PubMed]

Staurenghi, G.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

Tian, J.

J. Tian, B. Varga, G. M. Somfai, W. H. Lee, W. E. Smiddy, and D. C. DeBuc, “Real-time automatic segmentation of optical coherence tomography volume data of the macular region,” PLoS One 10(8), e0133908 (2015).
[Crossref] [PubMed]

van de Kraats, J.

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36(15), 2229–2247 (1996).
[Crossref] [PubMed]

van Norren, D.

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36(15), 2229–2247 (1996).
[Crossref] [PubMed]

Varga, B.

J. Tian, B. Varga, G. M. Somfai, W. H. Lee, W. E. Smiddy, and D. C. DeBuc, “Real-time automatic segmentation of optical coherence tomography volume data of the macular region,” PLoS One 10(8), e0133908 (2015).
[Crossref] [PubMed]

Vogt, R. F.

A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Z. Zhang, G. E. Marti, and R. F. Vogt, “Quantitating fluorescence intensity from fluorophore: The definition of MESF assignment,” J. Res. Natl. Inst. Stand. Technol. 107(1), 83–91 (2002).
[Crossref] [PubMed]

Vogt, S. D.

M. Rudolf, S. D. Vogt, C. A. Curcio, C. Huisingh, G. McGwin, A. Wagner, S. Grisanti, and R. W. Read, “Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy,” Ophthalmology 120(4), 821–828 (2013).
[Crossref] [PubMed]

Völcker, H. E.

F. G. Holz, C. Bellman, S. Staudt, F. Schütt, and H. E. Völcker, “Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 42(5), 1051–1056 (2001).
[PubMed]

Wagner, A.

M. Rudolf, S. D. Vogt, C. A. Curcio, C. Huisingh, G. McGwin, A. Wagner, S. Grisanti, and R. W. Read, “Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy,” Ophthalmology 120(4), 821–828 (2013).
[Crossref] [PubMed]

Wang, L.

A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Z. Zhang, G. E. Marti, and R. F. Vogt, “Quantitating fluorescence intensity from fluorophore: The definition of MESF assignment,” J. Res. Natl. Inst. Stand. Technol. 107(1), 83–91 (2002).
[Crossref] [PubMed]

Wang, R.

Weersink, R.

Weiter, J. J.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
[PubMed]

G. L. Wing, G. C. Blanchard, and J. J. Weiter, “The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 17(7), 601–607 (1978).
[PubMed]

Wen, R.

Wing, G. L.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
[PubMed]

G. L. Wing, G. C. Blanchard, and J. J. Weiter, “The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 17(7), 601–607 (1978).
[PubMed]

Wolf, S.

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

Wolter, J. R.

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1(6), 776–783 (1962).

Woods, R. L.

F. Delori, J. P. Greenberg, R. L. Woods, J. Fischer, T. Duncker, J. Sparrow, and R. T. Smith, “Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 52(13), 9379–9390 (2011).
[Crossref] [PubMed]

Yonekawa, Y.

Y. Yonekawa, J. W. Miller, and I. K. Kim, “Age-related macular degeneration: advances in management and diagnosis,” J. Clin. Med. 4(2), 343–359 (2015).
[Crossref] [PubMed]

Yung, M.

M. Yung, M. A. Klufas, and D. Sarraf, “Clinical applications of fundus autofluorescence in retinal disease,” Int J Retina Vitreous 2(1), 12 (2016).
[Crossref] [PubMed]

Zhang, H. F.

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16(8), 080504 (2011).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16(8), 080504 (2011).
[Crossref] [PubMed]

Zhang, Y. Z.

A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Z. Zhang, G. E. Marti, and R. F. Vogt, “Quantitating fluorescence intensity from fluorophore: The definition of MESF assignment,” J. Res. Natl. Inst. Stand. Technol. 107(1), 83–91 (2002).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (3)

Br. J. Ophthalmol. (2)

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, and F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[Crossref] [PubMed]

N. Lois, A. S. Halfyard, C. Bunce, A. C. Bird, and F. W. Fitzke, “Reproducibility of fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope,” Br. J. Ophthalmol. 83(3), 276–279 (1999).
[Crossref] [PubMed]

Exp. Eye Res. (1)

J. R. Sparrow and M. Boulton, “RPE lipofuscin and its role in retinal pathobiology,” Exp. Eye Res. 80(5), 595–606 (2005).
[Crossref] [PubMed]

Eye (Lond.) (1)

M. Boulton and P. Dayhaw-Barker, “The role of the retinal pigment epithelium: topographical variation and ageing changes,” Eye (Lond.) 15(3), 384–389 (2001).
[Crossref] [PubMed]

Int J Retina Vitreous (1)

M. Yung, M. A. Klufas, and D. Sarraf, “Clinical applications of fundus autofluorescence in retinal disease,” Int J Retina Vitreous 2(1), 12 (2016).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (9)

F. Delori, J. P. Greenberg, R. L. Woods, J. Fischer, T. Duncker, J. Sparrow, and R. T. Smith, “Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 52(13), 9379–9390 (2011).
[Crossref] [PubMed]

F. G. Holz, C. Bellman, S. Staudt, F. Schütt, and H. E. Völcker, “Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 42(5), 1051–1056 (2001).
[PubMed]

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[Crossref] [PubMed]

S. Schmitz-Valckenberg, A. Bindewald-Wittich, J. Dolar-Szczasny, J. Dreyhaupt, S. Wolf, H. P. Scholl, and F. G. Holz, “Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD,” Invest. Ophthalmol. Vis. Sci. 47(6), 2648–2654 (2006).
[Crossref] [PubMed]

G. L. Wing, G. C. Blanchard, and J. J. Weiter, “The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 17(7), 601–607 (1978).
[PubMed]

M. J. Allingham, Q. Nie, E. M. Lad, D. J. Izatt, P. S. Mettu, S. W. Cousins, and S. Farsiu, “Semiautomatic segmentation of rim area focal hyperautofluorescence predicts progression of geographic atrophy due to dry age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 57(4), 2283–2289 (2016).
[Crossref] [PubMed]

J. I. Morgan and E. N. Pugh., “Scanning laser ophthalmoscope measurement of local fundus reflectance and autofluorescence changes arising from rhodopsin bleaching and regeneration,” Invest. Ophthalmol. Vis. Sci. 54(3), 2048–2059 (2013).
[Crossref] [PubMed]

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27(2), 145–152 (1986).
[PubMed]

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1(6), 776–783 (1962).

J. Biol. Chem. (1)

N. P. Boyer, D. Higbee, M. B. Currin, L. R. Blakeley, C. Chen, Z. Ablonczy, R. K. Crouch, and Y. Koutalos, “Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal,” J. Biol. Chem. 287(26), 22276–22286 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17(8), 080502 (2012).
[Crossref] [PubMed]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16(8), 080504 (2011).
[Crossref] [PubMed]

J. Clin. Med. (2)

J. R. Sparrow and T. Duncker, “Fundus autofluorescence and RPE lipofuscin in age-related macular degeneration,” J. Clin. Med. 3(4), 1302–1321 (2014).
[Crossref] [PubMed]

Y. Yonekawa, J. W. Miller, and I. K. Kim, “Age-related macular degeneration: advances in management and diagnosis,” J. Clin. Med. 4(2), 343–359 (2015).
[Crossref] [PubMed]

J. Res. Natl. Inst. Stand. Technol. (1)

A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Z. Zhang, G. E. Marti, and R. F. Vogt, “Quantitating fluorescence intensity from fluorophore: The definition of MESF assignment,” J. Res. Natl. Inst. Stand. Technol. 107(1), 83–91 (2002).
[Crossref] [PubMed]

Ophthalmology (1)

M. Rudolf, S. D. Vogt, C. A. Curcio, C. Huisingh, G. McGwin, A. Wagner, S. Grisanti, and R. W. Read, “Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy,” Ophthalmology 120(4), 821–828 (2013).
[Crossref] [PubMed]

Opt. Express (1)

PLoS One (1)

J. Tian, B. Varga, G. M. Somfai, W. H. Lee, W. E. Smiddy, and D. C. DeBuc, “Real-time automatic segmentation of optical coherence tomography volume data of the macular region,” PLoS One 10(8), e0133908 (2015).
[Crossref] [PubMed]

Vision Res. (1)

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36(15), 2229–2247 (1996).
[Crossref] [PubMed]

Other (2)

R. Afridi, A. Agarwal, M. A. Sadiq, M. Hassan, D. V. Do, Q. D. Nguyen, and Y. J. Sepah, “Fundus Autofluorescence Imaging in Posterior Uveitis,” in Sen H. Read R. (eds) Multimodal Imaging in Uveitis, Springer (2018).

S. R. Sadda, “Fundus autofluorescence imaging: Principles and applications,” Retin. Physician. 2, 1 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the simultaneous VIS-OCT and AF imaging system: VIS-OCT (blue), NIR-OCT (red) and AF (green). SLD: Superluminescent Diod; SC: Supercontinuum; PMT: Photo Multiplier Tube; SPEC1-2: Spectrometer; ISO: Isolator; M1-3: Reference arm mirrors; IRIS1-2: iris; G1-2: BK7 glass plates; BS: beam splitter; FC1-2: fiber coupler; FP1-6: collimation fiber ports; PC1-2: polarization controller; GM: galvanometer scanner; DM1-2: dichroic mirrors; PH: pinhole, L1-3: lens; LPF: long-pass filter; ND filter (OD: 10).
Fig. 2
Fig. 2 Quantitative AF signals from the model eye and the standard reference at different imaging conditions. a) AF signals vs OD value of the ND filter in front of the model eye at 90% light source power and different PMT control voltage (0.50V – 0.56V); b) AF signals vs OD value of the ND filter in front of the model eye at fixed PMT control voltage (0.56V) and different light source power (75% – 90% output power); c) The calculated log10(FAF/RAF) vs OD value of the ND filter in front of the model eye at all the different imaging conditions; d) Schematic of the model eye used in the experiments.
Fig. 3
Fig. 3 OCT reflectance signals from the model eye at different OD values of the ND filter and from the standard reference at different imaging conditions; a) The source power was changed from 75% to 90%; b) OCT reflectance of the model eye normalized to the reference target (qOCT) for the data in (a); c) qAF, qOCT, and qAF/qOCT ratio. d) qAF, qOCT, and qAF/qOCT ratio for the model eye with the TexasRed slide at the retinal plane.
Fig. 4
Fig. 4 a) Absorption spectrums of green and red fluorescent slides. b) Fluorescence emission spectrums of green and red fluorescent slides.
Fig. 5
Fig. 5 Simultaneous fundus AF and OCT images of a 2-months-old albino rat. a) AF image normalized to the fluorescence reference. b) Fundus OCT projection normalized to the reflectance reference. c) qOCT projection of the segmented RPE. d) OCT B-Scan at the location marked with a yellow dashed line. Bar: 200µm.
Fig. 6
Fig. 6 Simultaneous fundus AF and OCT images of a 14-months-old albino rat. a) AF image normalized to the fluorescence reference. b) Fundus OCT projection normalized to the reflectance reference. c) qOCT projection of the segmented RPE. d) OCT B-Scan at the location marked with a yellow dashed line. Bar: 200µm.
Fig. 7
Fig. 7 Comparison of the qAF, qOCT, and qAF/qOCT in three groups of albino and pigmented rats.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I=  R r I r + R s I s +2 R r I r R s I s G( ν )cos( Δϕ )dν=  I DC + I AC ,
I DC = R r I r + R s I s ,
I AC =2 R r I r R s I s 0 G( ν )cos( Δϕ )dν .
R s I s R r I r , I DC R r I r .
R OCT = I AC 2 / I DC R s I s
I FAF I RAF = I 0 τ pre 2 (λ) [ 1 ρ pre (λ) ] 2 ξ RPE A d π 4 α 2 I 0 ξ R A d π 4 α ' 2 = τ pre 2 (λ) [ 1 ρ pre (λ) ] 2 ξ RPE π 4 α 2 ξ R π 4 α ' 2 ,
R OCTRPE R OCTR = I 0 τ pre 2 (λ) [ 1 ρ pre (λ) ] 2 ρ RPE (λ) π 4 α 2 I 0 ρ R (λ) π 4 α ' 2 = τ pre 2 (λ) [ 1 ρ pre (λ) ] 2 ρ RPE (λ) π 4 α 2 ρ R (λ) π 4 α ' 2 ,
I FAF / I RAF R OCTRPE / R OCTR = C L Q L ε L d RPE / C R Q R ε R d R ρ RPE / ρ R .
C R 465 495 ε R (λ)  Q R η R dλ C G 465 495 ε G (λ) Q G η G dλ =0.72,

Metrics