Abstract

Phantoms with tuneable optical scattering properties are essential in the development and refinement of optical based imaging techniques. Mineral oil based ‘gel wax’ phantoms are the subject of increasing interest due to their ease and speed of manufacture, non-toxic nature, ability to cast into anatomically realistic shapes, as well as their cost-effective nature of production. The addition of scatterers such as titanium dioxide powder and monodisperse silica microspheres to the gel wax allows for the creation of phantoms with a controllable optical scattering coefficient. To enable repeated use of such phantoms, the stability of the scattering properties must be determined–a property which has yet to be investigated. We present an analysis of the stability of the reduced scattering coefficient (μs') of such phantoms over time. We conclude that due to the measurable reduction in scattering coefficient over time, gel wax phantoms embedded with silica spheres may not be suitable for repeated use over time, however gel wax-TiO2 phantoms are much more temporally stable.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging

Efthymios Maneas, Wenfeng Xia, Olumide Ogunlade, Martina Fonseca, Daniil I. Nikitichev, Anna L. David, Simeon J. West, Sebastien Ourselin, Jeremy C. Hebden, Tom Vercauteren, and Adrien E. Desjardins
Biomed. Opt. Express 9(3) 1151-1163 (2018)

Geometrically complex 3D-printed phantoms for diffuse optical imaging

Laura A. Dempsey, Melissa Persad, Samuel Powell, Danial Chitnis, and Jeremy C. Hebden
Biomed. Opt. Express 8(3) 1754-1762 (2017)

Three-dimensional printed optical phantoms with customized absorption and scattering properties

Phuong Diep, Sanjana Pannem, Jordan Sweer, Justine Lo, Michael Snyder, Gabriella Stueber, Yanyu Zhao, Syeda Tabassum, Raeef Istfan, Junjie Wu, Shyamsunder Erramilli, and Darren Roblyer
Biomed. Opt. Express 6(11) 4212-4220 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
    [Crossref] [PubMed]
  2. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
    [Crossref] [PubMed]
  3. J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
    [Crossref]
  4. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
    [Crossref] [PubMed]
  5. F. S. Goerlach, N. Striffler, T. Lueddemann, and T. C. Lueth, “Multi-Layered, 3D Skin Phantoms of Human Skin in the Wavelength Range 650-850nm,” in Intelligent Informatics and Biomedical Sciences (ICIIBMS), Track 3: Bioimformatics, Medical Imaging and Neuroscience (2015), pp. 250–256.
  6. C. Böcklin, D. Baumann, F. Stuker, and J. Fröhlich, “Mixing formula for tissue-mimicking silicone phantoms in the near infrared,” J. Phys. D Appl. Phys. 48(10), 105402 (2015).
    [Crossref]
  7. C. Maughan Jones and P. R. T. Munro, “Development of a reliable and reproducible phantom manufacturing method using silica microspheres in silicone,” J. Biomed. Opt. 22(9), 1–5 (2017).
    [Crossref] [PubMed]
  8. G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
    [Crossref] [PubMed]
  9. E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
    [Crossref] [PubMed]
  10. E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
    [Crossref] [PubMed]
  11. R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
    [Crossref] [PubMed]
  12. Z. Zhao, X. Zhou, S. Shen, G. Liu, L. Yuan, Y. Meng, X. Lv, P. Shao, E. Dong, and R. X. Xu, “3D printing of tissue-simulating phantoms for calibration of biomedical optical devices,” in Proc. SPIE 10024, Optics in Health Care and Biomedical Optics VII 100240N (2016).
  13. J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil Phantom Materials for Elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
    [Crossref] [PubMed]
  14. Bangs Laboratories Inc. Indiana. USA., “TechNote 202 - Microsphere Aggregation,” .
  15. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  16. C. B. Antonio and L. F. Ceferino, “Random Laser,” U.S. patent EP 3 148 017 A1 (2017).
  17. X. Liu, B. Sui, and J. Sun, “Size- and shape-dependent effects of titanium dioxide nanoparticles on the permeabilization of the blood–brain barrier,” J. Mater. Chem. B Mater. Biol. Med. 5(48), 9558–9570 (2017).
    [Crossref]
  18. I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, and S. Sainov, “Modified design of a laser refractometer,” Nanosci. Nanotechnol. 16, 31–33 (2016).
  19. A. Aucejo, M. C. Burguet, R. Munoz, and J. L. Marques, “Densities, Viscosities, and Refractive Indices of Some n-Alkane Binary Liquid Systems at 298.15 K,” J. Chem. Eng. Data 40(1), 141–147 (1995).
    [Crossref]
  20. M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
    [Crossref] [PubMed]
  21. S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [Crossref] [PubMed]
  22. S. A. Prahl, “Everything I think you should know about inverse adding doubling,” https://omlc.org/software/iad/manual.pdf .
  23. W. Haynes, D. Lide, and T. Bruno, eds., CRC Handbook of Chemistry and Physics : A Ready-Reference Book of Chemical and Physical Data, 97th ed. (CRC Press, 2017).
  24. M. Hasan Nia, M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi, and M. Shadnush, “Stabilizing and dispersing methods of TiO 2 nanoparticles in biological studies,” J. Paramed. Sci. Spring 6, 2008– 4978 (2015).

2018 (2)

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref] [PubMed]

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

2017 (2)

C. Maughan Jones and P. R. T. Munro, “Development of a reliable and reproducible phantom manufacturing method using silica microspheres in silicone,” J. Biomed. Opt. 22(9), 1–5 (2017).
[Crossref] [PubMed]

X. Liu, B. Sui, and J. Sun, “Size- and shape-dependent effects of titanium dioxide nanoparticles on the permeabilization of the blood–brain barrier,” J. Mater. Chem. B Mater. Biol. Med. 5(48), 9558–9570 (2017).
[Crossref]

2016 (1)

I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, and S. Sainov, “Modified design of a laser refractometer,” Nanosci. Nanotechnol. 16, 31–33 (2016).

2015 (3)

C. Böcklin, D. Baumann, F. Stuker, and J. Fröhlich, “Mixing formula for tissue-mimicking silicone phantoms in the near infrared,” J. Phys. D Appl. Phys. 48(10), 105402 (2015).
[Crossref]

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref] [PubMed]

M. Hasan Nia, M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi, and M. Shadnush, “Stabilizing and dispersing methods of TiO 2 nanoparticles in biological studies,” J. Paramed. Sci. Spring 6, 2008– 4978 (2015).

2013 (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

2012 (1)

2009 (2)

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[Crossref] [PubMed]

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil Phantom Materials for Elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

2008 (1)

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

2006 (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

1997 (1)

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

1995 (1)

A. Aucejo, M. C. Burguet, R. Munoz, and J. L. Marques, “Densities, Viscosities, and Refractive Indices of Some n-Alkane Binary Liquid Systems at 298.15 K,” J. Chem. Eng. Data 40(1), 141–147 (1995).
[Crossref]

1993 (1)

Agrawal, A.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Almasian, M.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref] [PubMed]

Aucejo, A.

A. Aucejo, M. C. Burguet, R. Munoz, and J. L. Marques, “Densities, Viscosities, and Refractive Indices of Some n-Alkane Binary Liquid Systems at 298.15 K,” J. Chem. Eng. Data 40(1), 141–147 (1995).
[Crossref]

Ballini, J. P.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

Bastard, C.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil Phantom Materials for Elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

Baumann, D.

C. Böcklin, D. Baumann, F. Stuker, and J. Fröhlich, “Mixing formula for tissue-mimicking silicone phantoms in the near infrared,” J. Phys. D Appl. Phys. 48(10), 105402 (2015).
[Crossref]

Baxi, J.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Bisaillon, C.-E.

Böcklin, C.

C. Böcklin, D. Baumann, F. Stuker, and J. Fröhlich, “Mixing formula for tissue-mimicking silicone phantoms in the near infrared,” J. Phys. D Appl. Phys. 48(10), 105402 (2015).
[Crossref]

Bodurov, I.

I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, and S. Sainov, “Modified design of a laser refractometer,” Nanosci. Nanotechnol. 16, 31–33 (2016).

Bosschaart, N.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref] [PubMed]

Braichotte, D.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

Burguet, M. C.

A. Aucejo, M. C. Burguet, R. Munoz, and J. L. Marques, “Densities, Viscosities, and Refractive Indices of Some n-Alkane Binary Liquid Systems at 298.15 K,” J. Chem. Eng. Data 40(1), 141–147 (1995).
[Crossref]

Burriesci, G.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

Calhoun, W.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Campbell, G.

Capelli, C.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

Chang, C. W.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

Cheng, S.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

Curatolo, A.

Daher, B.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

David, A. L.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref] [PubMed]

Desjardins, A. E.

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref] [PubMed]

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

El-Dahdah, H.

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

Ewing, J.

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

Faber, D. J.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref] [PubMed]

Finlay, M. C.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

Fonseca, M.

Fröhlich, J.

C. Böcklin, D. Baumann, F. Stuker, and J. Fröhlich, “Mixing formula for tissue-mimicking silicone phantoms in the near infrared,” J. Phys. D Appl. Phys. 48(10), 105402 (2015).
[Crossref]

Hammer, D. X.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Hasan Nia, M.

M. Hasan Nia, M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi, and M. Shadnush, “Stabilizing and dispersing methods of TiO 2 nanoparticles in biological studies,” J. Paramed. Sci. Spring 6, 2008– 4978 (2015).

Hasanzadeh, H.

M. Hasan Nia, M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi, and M. Shadnush, “Stabilizing and dispersing methods of TiO 2 nanoparticles in biological studies,” J. Paramed. Sci. Spring 6, 2008– 4978 (2015).

Hebden, J. C.

Hillman, T. R.

Ilev, I.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jadidi, M.

M. Hasan Nia, M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi, and M. Shadnush, “Stabilizing and dispersing methods of TiO 2 nanoparticles in biological studies,” J. Paramed. Sci. Spring 6, 2008– 4978 (2015).

Joshua Pfefer, T.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Kennedy, B. F.

Kennedy, K. M.

Lamouche, G.

Liu, X.

X. Liu, B. Sui, and J. Sun, “Size- and shape-dependent effects of titanium dioxide nanoparticles on the permeabilization of the blood–brain barrier,” J. Mater. Chem. B Mater. Biol. Med. 5(48), 9558–9570 (2017).
[Crossref]

Maneas, E.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref] [PubMed]

Manimaran, M.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

Marques, J. L.

A. Aucejo, M. C. Burguet, R. Munoz, and J. L. Marques, “Densities, Viscosities, and Refractive Indices of Some n-Alkane Binary Liquid Systems at 298.15 K,” J. Chem. Eng. Data 40(1), 141–147 (1995).
[Crossref]

Masoumi, H.

M. Hasan Nia, M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi, and M. Shadnush, “Stabilizing and dispersing methods of TiO 2 nanoparticles in biological studies,” J. Paramed. Sci. Spring 6, 2008– 4978 (2015).

Maughan Jones, C.

C. Maughan Jones and P. R. T. Munro, “Development of a reliable and reproducible phantom manufacturing method using silica microspheres in silicone,” J. Biomed. Opt. 22(9), 1–5 (2017).
[Crossref] [PubMed]

McLaughlin, R. A.

Miette, V.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil Phantom Materials for Elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

Munoz, R.

A. Aucejo, M. C. Burguet, R. Munoz, and J. L. Marques, “Densities, Viscosities, and Refractive Indices of Some n-Alkane Binary Liquid Systems at 298.15 K,” J. Chem. Eng. Data 40(1), 141–147 (1995).
[Crossref]

Munro, P. R. T.

C. Maughan Jones and P. R. T. Munro, “Development of a reliable and reproducible phantom manufacturing method using silica microspheres in silicone,” J. Biomed. Opt. 22(9), 1–5 (2017).
[Crossref] [PubMed]

Nasr, R.

M. Hasan Nia, M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi, and M. Shadnush, “Stabilizing and dispersing methods of TiO 2 nanoparticles in biological studies,” J. Paramed. Sci. Spring 6, 2008– 4978 (2015).

Nguyen, Q. D.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Nikitichev, D. I.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref] [PubMed]

Nikoofar, A. R.

M. Hasan Nia, M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi, and M. Shadnush, “Stabilizing and dispersing methods of TiO 2 nanoparticles in biological studies,” J. Paramed. Sci. Spring 6, 2008– 4978 (2015).

Ogunlade, O.

Oudry, J.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil Phantom Materials for Elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

Ourselin, S.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Pazos, V.

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Povoski, S. P.

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

Prahl, S. A.

Quirk, B. C.

Rahmani, B.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

Rezaei-Tavirani, M.

M. Hasan Nia, M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi, and M. Shadnush, “Stabilizing and dispersing methods of TiO 2 nanoparticles in biological studies,” J. Paramed. Sci. Spring 6, 2008– 4978 (2015).

Sainov, S.

I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, and S. Sainov, “Modified design of a laser refractometer,” Nanosci. Nanotechnol. 16, 31–33 (2016).

Sampson, D. D.

Sandrin, L.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil Phantom Materials for Elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

Schievano, S.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

Sepah, Y. J.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Shadnush, M.

M. Hasan Nia, M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi, and M. Shadnush, “Stabilizing and dispersing methods of TiO 2 nanoparticles in biological studies,” J. Paramed. Sci. Spring 6, 2008– 4978 (2015).

Stuker, F.

C. Böcklin, D. Baumann, F. Stuker, and J. Fröhlich, “Mixing formula for tissue-mimicking silicone phantoms in the near infrared,” J. Phys. D Appl. Phys. 48(10), 105402 (2015).
[Crossref]

Sui, B.

X. Liu, B. Sui, and J. Sun, “Size- and shape-dependent effects of titanium dioxide nanoparticles on the permeabilization of the blood–brain barrier,” J. Mater. Chem. B Mater. Biol. Med. 5(48), 9558–9570 (2017).
[Crossref]

Sun, J.

X. Liu, B. Sui, and J. Sun, “Size- and shape-dependent effects of titanium dioxide nanoparticles on the permeabilization of the blood–brain barrier,” J. Mater. Chem. B Mater. Biol. Med. 5(48), 9558–9570 (2017).
[Crossref]

Utke, N.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

van den Bergh, H.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

van Gemert, M. J.

van Leeuwen, T. G.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref] [PubMed]

Vercauteren, T.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref] [PubMed]

Viraneva, A.

I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, and S. Sainov, “Modified design of a laser refractometer,” Nanosci. Nanotechnol. 16, 31–33 (2016).

Vlaeva, I.

I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, and S. Sainov, “Modified design of a laser refractometer,” Nanosci. Nanotechnol. 16, 31–33 (2016).

Wagnières, G.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

Wang, B.

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

Welch, A. J.

West, S. J.

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref] [PubMed]

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

Willinger, R.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil Phantom Materials for Elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

Wong, R. Y. J.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

Xia, W.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref] [PubMed]

Xu, R. X.

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

Yovcheva, T.

I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, and S. Sainov, “Modified design of a laser refractometer,” Nanosci. Nanotechnol. 16, 31–33 (2016).

Zellweger, M.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (2)

J. Biomed. Opt. (4)

C. Maughan Jones and P. R. T. Munro, “Development of a reliable and reproducible phantom manufacturing method using silica microspheres in silicone,” J. Biomed. Opt. 22(9), 1–5 (2017).
[Crossref] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref] [PubMed]

J. Chem. Eng. Data (1)

A. Aucejo, M. C. Burguet, R. Munoz, and J. L. Marques, “Densities, Viscosities, and Refractive Indices of Some n-Alkane Binary Liquid Systems at 298.15 K,” J. Chem. Eng. Data 40(1), 141–147 (1995).
[Crossref]

J. Mater. Chem. B Mater. Biol. Med. (1)

X. Liu, B. Sui, and J. Sun, “Size- and shape-dependent effects of titanium dioxide nanoparticles on the permeabilization of the blood–brain barrier,” J. Mater. Chem. B Mater. Biol. Med. 5(48), 9558–9570 (2017).
[Crossref]

J. Paramed. Sci. Spring (1)

M. Hasan Nia, M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi, and M. Shadnush, “Stabilizing and dispersing methods of TiO 2 nanoparticles in biological studies,” J. Paramed. Sci. Spring 6, 2008– 4978 (2015).

J. Phys. D Appl. Phys. (1)

C. Böcklin, D. Baumann, F. Stuker, and J. Fröhlich, “Mixing formula for tissue-mimicking silicone phantoms in the near infrared,” J. Phys. D Appl. Phys. 48(10), 105402 (2015).
[Crossref]

Nanosci. Nanotechnol. (1)

I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, and S. Sainov, “Modified design of a laser refractometer,” Nanosci. Nanotechnol. 16, 31–33 (2016).

Opt. Express (1)

Phys. Med. Biol. (3)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C. W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref] [PubMed]

Technol. Cancer Res. Treat. (1)

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

Ultrasound Med. Biol. (1)

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil Phantom Materials for Elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

Other (6)

Bangs Laboratories Inc. Indiana. USA., “TechNote 202 - Microsphere Aggregation,” .

F. S. Goerlach, N. Striffler, T. Lueddemann, and T. C. Lueth, “Multi-Layered, 3D Skin Phantoms of Human Skin in the Wavelength Range 650-850nm,” in Intelligent Informatics and Biomedical Sciences (ICIIBMS), Track 3: Bioimformatics, Medical Imaging and Neuroscience (2015), pp. 250–256.

Z. Zhao, X. Zhou, S. Shen, G. Liu, L. Yuan, Y. Meng, X. Lv, P. Shao, E. Dong, and R. X. Xu, “3D printing of tissue-simulating phantoms for calibration of biomedical optical devices,” in Proc. SPIE 10024, Optics in Health Care and Biomedical Optics VII 100240N (2016).

C. B. Antonio and L. F. Ceferino, “Random Laser,” U.S. patent EP 3 148 017 A1 (2017).

S. A. Prahl, “Everything I think you should know about inverse adding doubling,” https://omlc.org/software/iad/manual.pdf .

W. Haynes, D. Lide, and T. Bruno, eds., CRC Handbook of Chemistry and Physics : A Ready-Reference Book of Chemical and Physical Data, 97th ed. (CRC Press, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Outline of gel wax phantom manufacture.
Fig. 2
Fig. 2 The relationship between scatterer concentration of and initial µ's value calculated using the spectrophotometer for (left) gel wax and silica sphere and (right) gel wax and TiO2 powder phantoms.
Fig. 3
Fig. 3 µ's (left) and µa (right) values of silicone and TiO2 powder phantoms, at a wavelength of 589 nm, over time. Error bars show +/− 1 standard deviation
Fig. 4
Fig. 4 µ's (left) and µa (right) values of gel wax and silica microsphere phantoms, at a wavelength of 589 nm, over time. Error bars show +/− 1 standard deviation.
Fig. 5
Fig. 5 µ's (left) and µ'a (right) values of gel wax and TiO2 microsphere phantoms, at a wavelength of 589 nm, over time. Error bars show +/− 1 standard deviation.

Tables (1)

Tables Icon

Table 1 Summary of gel wax phantom properties

Metrics