Abstract

All-optical ultrasound imaging, where ultrasound is generated and detected using light, has recently been demonstrated as a viable modality that is inherently insensitive to electromagnetic interference and exhibits wide bandwidths. High-quality 2D and 3D all-optical ultrasound images of tissues have previously been presented; however, to date, long acquisition times (ranging from minutes to hours) have hindered clinical application. Here, we present the first all-optical ultrasound imaging system capable of video-rate, real-time two-dimensional imaging of biological tissue. This was achieved using a spatially extended nano-composite optical ultrasound generator, a highly sensitive fibre-optic acoustic receiver, and eccentric illumination resulting in an acoustic source exhibiting optimal directivity. This source was scanned across a one-dimensional source aperture using a fast galvo mirror, thus enabling the dynamic synthesis of source arrays comprising spatially overlapping sources at non-uniform source separation distances. The resulting system achieved a sustained frame rate of 15 Hz, a dynamic range of 30 dB, a penetration depth of at least 6 mm, a resolution of 75 µm (axial) by 100 µm (lateral), and enabled the dynamics of a pulsating ex vivo carotid artery to be captured.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Pencil beam all-optical ultrasound imaging

Erwin J. Alles, Sacha Noimark, Edward Zhang, Paul C. Beard, and Adrien E. Desjardins
Biomed. Opt. Express 7(9) 3696-3704 (2016)

Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging

Richard J. Colchester, Edward Z. Zhang, Charles A. Mosse, Paul C. Beard, Ioannis Papakonstantinou, and Adrien E. Desjardins
Biomed. Opt. Express 6(4) 1502-1511 (2015)

High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system

Kathyayini Sivasubramanian and Manojit Pramanik
Biomed. Opt. Express 7(2) 312-323 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Buma, M. Spisar, and M. O.’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
    [Crossref] [PubMed]
  2. R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
    [Crossref]
  3. T. Lee, C. Zhang, Q. Li, L. J. Guo, and H. W. Baac, “Air-backed optoacoustic transmitter for high amplitude quasi-monopolar wave,” in Proceedings IEEE IUS (IEEE, 2014), pp. 878–881.
  4. E. Vannacci, L. Belsito, F. Mancarella, M. Ferri, G. P. Veronese, A. Roncaglia, and E. Biagi, “Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology,” Biomed. Microdevices 16(3), 415–426 (2014).
    [Crossref] [PubMed]
  5. W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015.
    [Crossref]
  6. S. H. Lee, Y. Lee, and J. J. Yoh, “Reduced graphene oxide coated polydimethylsiloxane film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 106(8), 081911 (2015).
    [Crossref]
  7. S-L Chen, “Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging,” Appl. Sci. 7(1), 25 (2016).
    [Crossref]
  8. S. Ermilov, R. Su, A. Conjusteau, F. Anis, V. Nadvoretskiy, M. Anastasio, and A. Oraevsky, “Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation,” Ultrasonic Imaging 38(1), 77–95 (2016).
    [Crossref]
  9. T. Lee, Q. Li, and L. J. Guo, “Out-coupling of longitudinal photoacoustic pulses by mitigating the phase cancellation,” Sci. Rep. 6, 21511 (2016).
    [Crossref] [PubMed]
  10. S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Adv. Func. Mater. 26(46), 8390–8396 (2016).
    [Crossref]
  11. E. J. Alles, N. Fook Sheung, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging,” Sci. Rep. 7, 1208 (2017).
    [Crossref] [PubMed]
  12. T. Lee and L. J. Guo, “Highly efficient photoacoustic conversion by facilitated heat transfer in ultrathin metal film sandwiched by polymer layers,” Adv. Opt. Mater. 5(2), 1600421 (2017).
    [Crossref]
  13. X. Fan, K. Ha, M. Kim, G. Kang, M. J. Choi, and J. Oh, “Fabrication and application of a carbon nanotube/poly (dimethylsiloxane) coated optoacoustic film transducer,” Japanese Journal of Applied Physics 57(7S1), 07LB10 (2018).
    [Crossref]
  14. P. C. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref]
  15. S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, and A. H. Chester, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
    [Crossref]
  16. Y. Hou, J.-S. Kim, S.-W. Huang, S. Ashkenazi, L. J. Guo, and M. O.’ Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
    [Crossref] [PubMed]
  17. H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. Jay Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
    [Crossref] [PubMed]
  18. W. Chan, T. Hies, and C.-D. Ohl, “Laser-generated focused ultrasound for arbitrary waveforms,” Appl. Phys. Lett. 109(17), 174102 (2016).
    [Crossref]
  19. B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
    [Crossref] [PubMed]
  20. E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” Journal of Sensors 2010, 917314 (2010).
  21. C. Sheaff and S. Ashkenazi, “Polyimide-etalon all-optical ultrasound transducer for high frequency applications,” Proc. SPIE BiOS 8943, 89434M (2014).
    [Crossref]
  22. Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O.’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(12), 2719–2725 (2008).
    [Crossref]
  23. C. Sheaff and S. Ashkenazi, “An all-optical thin-film high-frequency ultrasound transducer,” in Proceedings IEEE IUS (IEEE, 2011), pp. 1944–1947.
  24. E. J. Alles, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “Pencil beam all-optical ultrasound imaging,” Biomed. Opt. Express 7(9), 3696–3704 (2016).
    [Crossref] [PubMed]
  25. R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
    [Crossref] [PubMed]
  26. J. L. Johnson, J. Shragge, and K. van Wijk, “Nonconfocal all-optical laser-ultrasound and photoacoustic imaging system for angle-dependent deep tissue imaging,” J. Biomed. Opt. 22(4), 041014 (2017).
    [Crossref]
  27. Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
    [Crossref]
  28. S.-W. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O’Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE BIOS 6437, 643728 (2007).
    [Crossref]
  29. X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
    [Crossref] [PubMed]
  30. R. K. Poduval, S. Noimark, R. J. Colchester, T. J. Macdonald, I. P. Parkin, A. E. Desjardins, and I. Papakonstantinou, “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite,” Appl. Phys. Lett. 110(22), 223701 (2017).
    [Crossref] [PubMed]
  31. S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
    [Crossref] [PubMed]
  32. B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry-Pérot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation,” In Journal of Physics: Conference Series, volume 1 (IOP Publishing, 2004), 32-37.
  33. J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
    [Crossref]
  34. W. Xia, S. Noimark, S. Ourselin, S. J. West, M. C. Finlay, A. L. David, and A. E. Desjardins, “Ultrasonic needle tracking with a fibre-optic ultrasound transmitter for guidance of minimally invasive fetal surgery,” In International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2017), pp. 637–645.
  35. M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
    [Crossref]
  36. EZ Zhang and PC Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE BIOS 9323, 932311 (2015).
    [Crossref]
  37. E. Zhang, J. G. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Pérot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  38. M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(3), 429–442 (1995).
    [Crossref]
  39. J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
    [Crossref] [PubMed]
  40. N. Bilaniuk and G. S. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
    [Crossref]
  41. X. Zeng and R. J. McGough, “Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach,” The Journal of the Acoustical Society of America 125(5), 2967–2977 (2009).
    [Crossref] [PubMed]
  42. R. S. C. Cobbold, Foundations of Biomedical UltrasoundOxford University Press, USA, New York, 2007.
  43. J.-F. Synnevag, A. Austeng, and S. Holm, “Benefits of minimum-variance beamforming in medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(9), 19811990 (2009).
    [Crossref]
  44. E. J. Alles, S. Noimark, E. Maneas, W. Xia, E. Z. Zhang, P. C. Beard, I. P. Parkin, and A. E. Desjardins, “Source density apodisation in 2D all-optical ultrasound imaging,” In Proceedings IEEE IUS (IEEE, 2017), pp. 1–4.
  45. E. J. Alles, R. J. Colchester, and A. E. Desjardins, “Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(1), 83–90 (2016).
    [Crossref]
  46. G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, “The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging,” IEEE Trans. Med. Imaging 34(4), 940–949 (2015).
    [Crossref]
  47. J. J. Dahl, D. Hyun, M. Lediju, and G. E. Trahey, “Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging,” Ultrason. Imag. 33(2), 119–133 (2011).
    [Crossref] [PubMed]
  48. H. Jin, K. Yang, S. Wu, H. Wu, and J. Chen, “Sparse deconvolution method for ultrasound images based on automatic estimation of reference signals,” Ultrasonics 67, 1–8 (2016).
    [Crossref] [PubMed]

2018 (2)

X. Fan, K. Ha, M. Kim, G. Kang, M. J. Choi, and J. Oh, “Fabrication and application of a carbon nanotube/poly (dimethylsiloxane) coated optoacoustic film transducer,” Japanese Journal of Applied Physics 57(7S1), 07LB10 (2018).
[Crossref]

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, and A. H. Chester, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

2017 (6)

E. J. Alles, N. Fook Sheung, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging,” Sci. Rep. 7, 1208 (2017).
[Crossref] [PubMed]

T. Lee and L. J. Guo, “Highly efficient photoacoustic conversion by facilitated heat transfer in ultrathin metal film sandwiched by polymer layers,” Adv. Opt. Mater. 5(2), 1600421 (2017).
[Crossref]

J. L. Johnson, J. Shragge, and K. van Wijk, “Nonconfocal all-optical laser-ultrasound and photoacoustic imaging system for angle-dependent deep tissue imaging,” J. Biomed. Opt. 22(4), 041014 (2017).
[Crossref]

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
[Crossref]

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
[Crossref]

R. K. Poduval, S. Noimark, R. J. Colchester, T. J. Macdonald, I. P. Parkin, A. E. Desjardins, and I. Papakonstantinou, “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite,” Appl. Phys. Lett. 110(22), 223701 (2017).
[Crossref] [PubMed]

2016 (8)

E. J. Alles, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “Pencil beam all-optical ultrasound imaging,” Biomed. Opt. Express 7(9), 3696–3704 (2016).
[Crossref] [PubMed]

W. Chan, T. Hies, and C.-D. Ohl, “Laser-generated focused ultrasound for arbitrary waveforms,” Appl. Phys. Lett. 109(17), 174102 (2016).
[Crossref]

S-L Chen, “Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging,” Appl. Sci. 7(1), 25 (2016).
[Crossref]

S. Ermilov, R. Su, A. Conjusteau, F. Anis, V. Nadvoretskiy, M. Anastasio, and A. Oraevsky, “Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation,” Ultrasonic Imaging 38(1), 77–95 (2016).
[Crossref]

T. Lee, Q. Li, and L. J. Guo, “Out-coupling of longitudinal photoacoustic pulses by mitigating the phase cancellation,” Sci. Rep. 6, 21511 (2016).
[Crossref] [PubMed]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Adv. Func. Mater. 26(46), 8390–8396 (2016).
[Crossref]

E. J. Alles, R. J. Colchester, and A. E. Desjardins, “Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(1), 83–90 (2016).
[Crossref]

H. Jin, K. Yang, S. Wu, H. Wu, and J. Chen, “Sparse deconvolution method for ultrasound images based on automatic estimation of reference signals,” Ultrasonics 67, 1–8 (2016).
[Crossref] [PubMed]

2015 (6)

G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, “The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging,” IEEE Trans. Med. Imaging 34(4), 940–949 (2015).
[Crossref]

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015.
[Crossref]

S. H. Lee, Y. Lee, and J. J. Yoh, “Reduced graphene oxide coated polydimethylsiloxane film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 106(8), 081911 (2015).
[Crossref]

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

EZ Zhang and PC Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE BIOS 9323, 932311 (2015).
[Crossref]

2014 (5)

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

C. Sheaff and S. Ashkenazi, “Polyimide-etalon all-optical ultrasound transducer for high frequency applications,” Proc. SPIE BiOS 8943, 89434M (2014).
[Crossref]

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

E. Vannacci, L. Belsito, F. Mancarella, M. Ferri, G. P. Veronese, A. Roncaglia, and E. Biagi, “Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology,” Biomed. Microdevices 16(3), 415–426 (2014).
[Crossref] [PubMed]

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
[Crossref] [PubMed]

2012 (1)

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. Jay Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

2011 (2)

P. C. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

J. J. Dahl, D. Hyun, M. Lediju, and G. E. Trahey, “Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging,” Ultrason. Imag. 33(2), 119–133 (2011).
[Crossref] [PubMed]

2010 (1)

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” Journal of Sensors 2010, 917314 (2010).

2009 (2)

X. Zeng and R. J. McGough, “Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach,” The Journal of the Acoustical Society of America 125(5), 2967–2977 (2009).
[Crossref] [PubMed]

J.-F. Synnevag, A. Austeng, and S. Holm, “Benefits of minimum-variance beamforming in medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(9), 19811990 (2009).
[Crossref]

2008 (3)

Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O.’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(12), 2719–2725 (2008).
[Crossref]

E. Zhang, J. G. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Pérot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

Y. Hou, J.-S. Kim, S.-W. Huang, S. Ashkenazi, L. J. Guo, and M. O.’ Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[Crossref] [PubMed]

2007 (2)

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

S.-W. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O’Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE BIOS 6437, 643728 (2007).
[Crossref]

2006 (1)

J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
[Crossref] [PubMed]

2003 (1)

T. Buma, M. Spisar, and M. O.’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[Crossref] [PubMed]

1995 (1)

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(3), 429–442 (1995).
[Crossref]

1993 (1)

N. Bilaniuk and G. S. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

Allen, T. J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
[Crossref]

Alles, E. J.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, and A. H. Chester, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

E. J. Alles, N. Fook Sheung, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging,” Sci. Rep. 7, 1208 (2017).
[Crossref] [PubMed]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Adv. Func. Mater. 26(46), 8390–8396 (2016).
[Crossref]

E. J. Alles, R. J. Colchester, and A. E. Desjardins, “Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(1), 83–90 (2016).
[Crossref]

E. J. Alles, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “Pencil beam all-optical ultrasound imaging,” Biomed. Opt. Express 7(9), 3696–3704 (2016).
[Crossref] [PubMed]

E. J. Alles, S. Noimark, E. Maneas, W. Xia, E. Z. Zhang, P. C. Beard, I. P. Parkin, and A. E. Desjardins, “Source density apodisation in 2D all-optical ultrasound imaging,” In Proceedings IEEE IUS (IEEE, 2017), pp. 1–4.

Anastasio, M.

S. Ermilov, R. Su, A. Conjusteau, F. Anis, V. Nadvoretskiy, M. Anastasio, and A. Oraevsky, “Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation,” Ultrasonic Imaging 38(1), 77–95 (2016).
[Crossref]

Anis, F.

S. Ermilov, R. Su, A. Conjusteau, F. Anis, V. Nadvoretskiy, M. Anastasio, and A. Oraevsky, “Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation,” Ultrasonic Imaging 38(1), 77–95 (2016).
[Crossref]

Ashkenazi, S.

C. Sheaff and S. Ashkenazi, “Polyimide-etalon all-optical ultrasound transducer for high frequency applications,” Proc. SPIE BiOS 8943, 89434M (2014).
[Crossref]

Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O.’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(12), 2719–2725 (2008).
[Crossref]

Y. Hou, J.-S. Kim, S.-W. Huang, S. Ashkenazi, L. J. Guo, and M. O.’ Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[Crossref] [PubMed]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

S.-W. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O’Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE BIOS 6437, 643728 (2007).
[Crossref]

C. Sheaff and S. Ashkenazi, “An all-optical thin-film high-frequency ultrasound transducer,” in Proceedings IEEE IUS (IEEE, 2011), pp. 1944–1947.

Ashworth, M.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, and A. H. Chester, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Austeng, A.

J.-F. Synnevag, A. Austeng, and S. Holm, “Benefits of minimum-variance beamforming in medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(9), 19811990 (2009).
[Crossref]

Baac, H. W.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. Jay Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

T. Lee, C. Zhang, Q. Li, L. J. Guo, and H. W. Baac, “Air-backed optoacoustic transmitter for high amplitude quasi-monopolar wave,” in Proceedings IEEE IUS (IEEE, 2014), pp. 878–881.

Bear, J. C.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Beard, P. C.

E. J. Alles, N. Fook Sheung, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging,” Sci. Rep. 7, 1208 (2017).
[Crossref] [PubMed]

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
[Crossref]

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
[Crossref]

E. J. Alles, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “Pencil beam all-optical ultrasound imaging,” Biomed. Opt. Express 7(9), 3696–3704 (2016).
[Crossref] [PubMed]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Adv. Func. Mater. 26(46), 8390–8396 (2016).
[Crossref]

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

P. C. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

E. Zhang, J. G. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Pérot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry-Pérot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation,” In Journal of Physics: Conference Series, volume 1 (IOP Publishing, 2004), 32-37.

E. J. Alles, S. Noimark, E. Maneas, W. Xia, E. Z. Zhang, P. C. Beard, I. P. Parkin, and A. E. Desjardins, “Source density apodisation in 2D all-optical ultrasound imaging,” In Proceedings IEEE IUS (IEEE, 2017), pp. 1–4.

Beard, PC

EZ Zhang and PC Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE BIOS 9323, 932311 (2015).
[Crossref]

Belsito, L.

E. Vannacci, L. Belsito, F. Mancarella, M. Ferri, G. P. Veronese, A. Roncaglia, and E. Biagi, “Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology,” Biomed. Microdevices 16(3), 415–426 (2014).
[Crossref] [PubMed]

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” Journal of Sensors 2010, 917314 (2010).

Bhachu, D. S.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Biagi, E.

E. Vannacci, L. Belsito, F. Mancarella, M. Ferri, G. P. Veronese, A. Roncaglia, and E. Biagi, “Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology,” Biomed. Microdevices 16(3), 415–426 (2014).
[Crossref] [PubMed]

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” Journal of Sensors 2010, 917314 (2010).

Bilaniuk, N.

N. Bilaniuk and G. S. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

Blackburn, B. J.

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Adv. Func. Mater. 26(46), 8390–8396 (2016).
[Crossref]

Buma, T.

T. Buma, M. Spisar, and M. O.’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[Crossref] [PubMed]

Caliano, G.

G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, “The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging,” IEEE Trans. Med. Imaging 34(4), 940–949 (2015).
[Crossref]

Carmalt, C. J.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Cerbai, S.

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” Journal of Sensors 2010, 917314 (2010).

Chan, W.

W. Chan, T. Hies, and C.-D. Ohl, “Laser-generated focused ultrasound for arbitrary waveforms,” Appl. Phys. Lett. 109(17), 174102 (2016).
[Crossref]

Chang, W.-Y.

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015.
[Crossref]

Chen, J.

H. Jin, K. Yang, S. Wu, H. Wu, and J. Chen, “Sparse deconvolution method for ultrasound images based on automatic estimation of reference signals,” Ultrasonics 67, 1–8 (2016).
[Crossref] [PubMed]

Chen, S.-L.

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

Chen, S-L

S-L Chen, “Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging,” Appl. Sci. 7(1), 25 (2016).
[Crossref]

Chen, Y.-C.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. Jay Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Chester, A. H.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, and A. H. Chester, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Choi, M. J.

X. Fan, K. Ha, M. Kim, G. Kang, M. J. Choi, and J. Oh, “Fabrication and application of a carbon nanotube/poly (dimethylsiloxane) coated optoacoustic film transducer,” Japanese Journal of Applied Physics 57(7S1), 07LB10 (2018).
[Crossref]

Cobbold, R. S. C.

R. S. C. Cobbold, Foundations of Biomedical UltrasoundOxford University Press, USA, New York, 2007.

Colchester, R. J.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, and A. H. Chester, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

R. K. Poduval, S. Noimark, R. J. Colchester, T. J. Macdonald, I. P. Parkin, A. E. Desjardins, and I. Papakonstantinou, “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite,” Appl. Phys. Lett. 110(22), 223701 (2017).
[Crossref] [PubMed]

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
[Crossref]

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
[Crossref]

E. J. Alles, R. J. Colchester, and A. E. Desjardins, “Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(1), 83–90 (2016).
[Crossref]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Adv. Func. Mater. 26(46), 8390–8396 (2016).
[Crossref]

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Conjusteau, A.

S. Ermilov, R. Su, A. Conjusteau, F. Anis, V. Nadvoretskiy, M. Anastasio, and A. Oraevsky, “Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation,” Ultrasonic Imaging 38(1), 77–95 (2016).
[Crossref]

Cox, B. T.

B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry-Pérot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation,” In Journal of Physics: Conference Series, volume 1 (IOP Publishing, 2004), 32-37.

Dahl, J. J.

J. J. Dahl, D. Hyun, M. Lediju, and G. E. Trahey, “Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging,” Ultrason. Imag. 33(2), 119–133 (2011).
[Crossref] [PubMed]

David, A. L.

W. Xia, S. Noimark, S. Ourselin, S. J. West, M. C. Finlay, A. L. David, and A. E. Desjardins, “Ultrasonic needle tracking with a fibre-optic ultrasound transmitter for guidance of minimally invasive fetal surgery,” In International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2017), pp. 637–645.

de Jong, N.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Desjardins, A. E.

R. K. Poduval, S. Noimark, R. J. Colchester, T. J. Macdonald, I. P. Parkin, A. E. Desjardins, and I. Papakonstantinou, “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite,” Appl. Phys. Lett. 110(22), 223701 (2017).
[Crossref] [PubMed]

E. J. Alles, N. Fook Sheung, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging,” Sci. Rep. 7, 1208 (2017).
[Crossref] [PubMed]

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
[Crossref]

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
[Crossref]

E. J. Alles, R. J. Colchester, and A. E. Desjardins, “Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(1), 83–90 (2016).
[Crossref]

E. J. Alles, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “Pencil beam all-optical ultrasound imaging,” Biomed. Opt. Express 7(9), 3696–3704 (2016).
[Crossref] [PubMed]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Adv. Func. Mater. 26(46), 8390–8396 (2016).
[Crossref]

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

E. J. Alles, S. Noimark, E. Maneas, W. Xia, E. Z. Zhang, P. C. Beard, I. P. Parkin, and A. E. Desjardins, “Source density apodisation in 2D all-optical ultrasound imaging,” In Proceedings IEEE IUS (IEEE, 2017), pp. 1–4.

W. Xia, S. Noimark, S. Ourselin, S. J. West, M. C. Finlay, A. L. David, and A. E. Desjardins, “Ultrasonic needle tracking with a fibre-optic ultrasound transmitter for guidance of minimally invasive fetal surgery,” In International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2017), pp. 637–645.

Donnell, M. O.’

Y. Hou, J.-S. Kim, S.-W. Huang, S. Ashkenazi, L. J. Guo, and M. O.’ Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[Crossref] [PubMed]

Ermilov, S.

S. Ermilov, R. Su, A. Conjusteau, F. Anis, V. Nadvoretskiy, M. Anastasio, and A. Oraevsky, “Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation,” Ultrasonic Imaging 38(1), 77–95 (2016).
[Crossref]

Fan, X.

X. Fan, K. Ha, M. Kim, G. Kang, M. J. Choi, and J. Oh, “Fabrication and application of a carbon nanotube/poly (dimethylsiloxane) coated optoacoustic film transducer,” Japanese Journal of Applied Physics 57(7S1), 07LB10 (2018).
[Crossref]

Ferri, M.

E. Vannacci, L. Belsito, F. Mancarella, M. Ferri, G. P. Veronese, A. Roncaglia, and E. Biagi, “Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology,” Biomed. Microdevices 16(3), 415–426 (2014).
[Crossref] [PubMed]

Finlay, M. C.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
[Crossref]

W. Xia, S. Noimark, S. Ourselin, S. J. West, M. C. Finlay, A. L. David, and A. E. Desjardins, “Ultrasonic needle tracking with a fibre-optic ultrasound transmitter for guidance of minimally invasive fetal surgery,” In International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2017), pp. 637–645.

Fook Sheung, N.

E. J. Alles, N. Fook Sheung, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging,” Sci. Rep. 7, 1208 (2017).
[Crossref] [PubMed]

Gammelmark, K. L.

J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
[Crossref] [PubMed]

Guggenheim, J. A.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
[Crossref]

Guo, L. J.

T. Lee and L. J. Guo, “Highly efficient photoacoustic conversion by facilitated heat transfer in ultrathin metal film sandwiched by polymer layers,” Adv. Opt. Mater. 5(2), 1600421 (2017).
[Crossref]

T. Lee, Q. Li, and L. J. Guo, “Out-coupling of longitudinal photoacoustic pulses by mitigating the phase cancellation,” Sci. Rep. 6, 21511 (2016).
[Crossref] [PubMed]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

Y. Hou, J.-S. Kim, S.-W. Huang, S. Ashkenazi, L. J. Guo, and M. O.’ Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[Crossref] [PubMed]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

T. Lee, C. Zhang, Q. Li, L. J. Guo, and H. W. Baac, “Air-backed optoacoustic transmitter for high amplitude quasi-monopolar wave,” in Proceedings IEEE IUS (IEEE, 2014), pp. 878–881.

Ha, K.

X. Fan, K. Ha, M. Kim, G. Kang, M. J. Choi, and J. Oh, “Fabrication and application of a carbon nanotube/poly (dimethylsiloxane) coated optoacoustic film transducer,” Japanese Journal of Applied Physics 57(7S1), 07LB10 (2018).
[Crossref]

Hart, A. J.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. Jay Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Hies, T.

W. Chan, T. Hies, and C.-D. Ohl, “Laser-generated focused ultrasound for arbitrary waveforms,” Appl. Phys. Lett. 109(17), 174102 (2016).
[Crossref]

Holm, S.

J.-F. Synnevag, A. Austeng, and S. Holm, “Benefits of minimum-variance beamforming in medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(9), 19811990 (2009).
[Crossref]

Hou, Y.

Y. Hou, J.-S. Kim, S.-W. Huang, S. Ashkenazi, L. J. Guo, and M. O.’ Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[Crossref] [PubMed]

Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O.’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(12), 2719–2725 (2008).
[Crossref]

S.-W. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O’Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE BIOS 6437, 643728 (2007).
[Crossref]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

Hsieh, B.-Y.

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

Huang, S.-W.

Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O.’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(12), 2719–2725 (2008).
[Crossref]

Y. Hou, J.-S. Kim, S.-W. Huang, S. Ashkenazi, L. J. Guo, and M. O.’ Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[Crossref] [PubMed]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

S.-W. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O’Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE BIOS 6437, 643728 (2007).
[Crossref]

Huang, W.

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015.
[Crossref]

Hyun, D.

J. J. Dahl, D. Hyun, M. Lediju, and G. E. Trahey, “Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging,” Ultrason. Imag. 33(2), 119–133 (2011).
[Crossref] [PubMed]

Jay Guo, L.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. Jay Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Jensen, J. A.

J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
[Crossref] [PubMed]

Jiang, X.

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015.
[Crossref]

Jin, H.

H. Jin, K. Yang, S. Wu, H. Wu, and J. Chen, “Sparse deconvolution method for ultrasound images based on automatic estimation of reference signals,” Ultrasonics 67, 1–8 (2016).
[Crossref] [PubMed]

Johnson, J. L.

J. L. Johnson, J. Shragge, and K. van Wijk, “Nonconfocal all-optical laser-ultrasound and photoacoustic imaging system for angle-dependent deep tissue imaging,” J. Biomed. Opt. 22(4), 041014 (2017).
[Crossref]

Kang, G.

X. Fan, K. Ha, M. Kim, G. Kang, M. J. Choi, and J. Oh, “Fabrication and application of a carbon nanotube/poly (dimethylsiloxane) coated optoacoustic film transducer,” Japanese Journal of Applied Physics 57(7S1), 07LB10 (2018).
[Crossref]

Karaman, M.

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(3), 429–442 (1995).
[Crossref]

Kim, J.

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015.
[Crossref]

Kim, J.-S.

Y. Hou, J.-S. Kim, S.-W. Huang, S. Ashkenazi, L. J. Guo, and M. O.’ Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[Crossref] [PubMed]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

Kim, M.

X. Fan, K. Ha, M. Kim, G. Kang, M. J. Choi, and J. Oh, “Fabrication and application of a carbon nanotube/poly (dimethylsiloxane) coated optoacoustic film transducer,” Japanese Journal of Applied Physics 57(7S1), 07LB10 (2018).
[Crossref]

Laufer, J. G.

E. Zhang, J. G. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Pérot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry-Pérot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation,” In Journal of Physics: Conference Series, volume 1 (IOP Publishing, 2004), 32-37.

Lediju, M.

J. J. Dahl, D. Hyun, M. Lediju, and G. E. Trahey, “Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging,” Ultrason. Imag. 33(2), 119–133 (2011).
[Crossref] [PubMed]

Lee, K.-T.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. Jay Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, Y. Lee, and J. J. Yoh, “Reduced graphene oxide coated polydimethylsiloxane film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 106(8), 081911 (2015).
[Crossref]

Lee, T.

T. Lee and L. J. Guo, “Highly efficient photoacoustic conversion by facilitated heat transfer in ultrathin metal film sandwiched by polymer layers,” Adv. Opt. Mater. 5(2), 1600421 (2017).
[Crossref]

T. Lee, Q. Li, and L. J. Guo, “Out-coupling of longitudinal photoacoustic pulses by mitigating the phase cancellation,” Sci. Rep. 6, 21511 (2016).
[Crossref] [PubMed]

T. Lee, C. Zhang, Q. Li, L. J. Guo, and H. W. Baac, “Air-backed optoacoustic transmitter for high amplitude quasi-monopolar wave,” in Proceedings IEEE IUS (IEEE, 2014), pp. 878–881.

Lee, Y.

S. H. Lee, Y. Lee, and J. J. Yoh, “Reduced graphene oxide coated polydimethylsiloxane film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 106(8), 081911 (2015).
[Crossref]

Leinders, S. M.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Li, J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
[Crossref]

Li, P.-C.

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(3), 429–442 (1995).
[Crossref]

Li, Q.

T. Lee, Q. Li, and L. J. Guo, “Out-coupling of longitudinal photoacoustic pulses by mitigating the phase cancellation,” Sci. Rep. 6, 21511 (2016).
[Crossref] [PubMed]

T. Lee, C. Zhang, Q. Li, L. J. Guo, and H. W. Baac, “Air-backed optoacoustic transmitter for high amplitude quasi-monopolar wave,” in Proceedings IEEE IUS (IEEE, 2014), pp. 878–881.

Li, S.

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015.
[Crossref]

Ling, T.

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

Macdonald, T. J.

R. K. Poduval, S. Noimark, R. J. Colchester, T. J. Macdonald, I. P. Parkin, A. E. Desjardins, and I. Papakonstantinou, “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite,” Appl. Phys. Lett. 110(22), 223701 (2017).
[Crossref] [PubMed]

Magenes, G.

G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, “The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging,” IEEE Trans. Med. Imaging 34(4), 940–949 (2015).
[Crossref]

Mancarella, F.

E. Vannacci, L. Belsito, F. Mancarella, M. Ferri, G. P. Veronese, A. Roncaglia, and E. Biagi, “Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology,” Biomed. Microdevices 16(3), 415–426 (2014).
[Crossref] [PubMed]

Maneas, E.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, and A. H. Chester, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

E. J. Alles, S. Noimark, E. Maneas, W. Xia, E. Z. Zhang, P. C. Beard, I. P. Parkin, and A. E. Desjardins, “Source density apodisation in 2D all-optical ultrasound imaging,” In Proceedings IEEE IUS (IEEE, 2017), pp. 1–4.

Masetti, G.

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” Journal of Sensors 2010, 917314 (2010).

Masotti, L.

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” Journal of Sensors 2010, 917314 (2010).

Matrone, G.

G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, “The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging,” IEEE Trans. Med. Imaging 34(4), 940–949 (2015).
[Crossref]

Maxwell, A.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. Jay Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

McGough, R. J.

X. Zeng and R. J. McGough, “Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach,” The Journal of the Acoustical Society of America 125(5), 2967–2977 (2009).
[Crossref] [PubMed]

Mosse, C. A.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
[Crossref]

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Nadvoretskiy, V.

S. Ermilov, R. Su, A. Conjusteau, F. Anis, V. Nadvoretskiy, M. Anastasio, and A. Oraevsky, “Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation,” Ultrasonic Imaging 38(1), 77–95 (2016).
[Crossref]

Nikolov, S. I.

J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
[Crossref] [PubMed]

Noimark, S.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, and A. H. Chester, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

E. J. Alles, N. Fook Sheung, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging,” Sci. Rep. 7, 1208 (2017).
[Crossref] [PubMed]

R. K. Poduval, S. Noimark, R. J. Colchester, T. J. Macdonald, I. P. Parkin, A. E. Desjardins, and I. Papakonstantinou, “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite,” Appl. Phys. Lett. 110(22), 223701 (2017).
[Crossref] [PubMed]

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
[Crossref]

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
[Crossref]

E. J. Alles, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “Pencil beam all-optical ultrasound imaging,” Biomed. Opt. Express 7(9), 3696–3704 (2016).
[Crossref] [PubMed]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Adv. Func. Mater. 26(46), 8390–8396 (2016).
[Crossref]

W. Xia, S. Noimark, S. Ourselin, S. J. West, M. C. Finlay, A. L. David, and A. E. Desjardins, “Ultrasonic needle tracking with a fibre-optic ultrasound transmitter for guidance of minimally invasive fetal surgery,” In International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2017), pp. 637–645.

E. J. Alles, S. Noimark, E. Maneas, W. Xia, E. Z. Zhang, P. C. Beard, I. P. Parkin, and A. E. Desjardins, “Source density apodisation in 2D all-optical ultrasound imaging,” In Proceedings IEEE IUS (IEEE, 2017), pp. 1–4.

O.’Donnell, M.

Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O.’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(12), 2719–2725 (2008).
[Crossref]

T. Buma, M. Spisar, and M. O.’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[Crossref] [PubMed]

O’Brien, P.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

O’Donnell, M.

S.-W. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O’Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE BIOS 6437, 643728 (2007).
[Crossref]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(3), 429–442 (1995).
[Crossref]

Ogunlade, O. O.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
[Crossref]

Oh, J.

X. Fan, K. Ha, M. Kim, G. Kang, M. J. Choi, and J. Oh, “Fabrication and application of a carbon nanotube/poly (dimethylsiloxane) coated optoacoustic film transducer,” Japanese Journal of Applied Physics 57(7S1), 07LB10 (2018).
[Crossref]

Ohl, C.-D.

W. Chan, T. Hies, and C.-D. Ohl, “Laser-generated focused ultrasound for arbitrary waveforms,” Appl. Phys. Lett. 109(17), 174102 (2016).
[Crossref]

Ok, J. G.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. Jay Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Oraevsky, A.

S. Ermilov, R. Su, A. Conjusteau, F. Anis, V. Nadvoretskiy, M. Anastasio, and A. Oraevsky, “Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation,” Ultrasonic Imaging 38(1), 77–95 (2016).
[Crossref]

Ourselin, S.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
[Crossref]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Adv. Func. Mater. 26(46), 8390–8396 (2016).
[Crossref]

W. Xia, S. Noimark, S. Ourselin, S. J. West, M. C. Finlay, A. L. David, and A. E. Desjardins, “Ultrasonic needle tracking with a fibre-optic ultrasound transmitter for guidance of minimally invasive fetal surgery,” In International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2017), pp. 637–645.

Papakonstantinou, I.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
[Crossref]

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
[Crossref]

R. K. Poduval, S. Noimark, R. J. Colchester, T. J. Macdonald, I. P. Parkin, A. E. Desjardins, and I. Papakonstantinou, “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite,” Appl. Phys. Lett. 110(22), 223701 (2017).
[Crossref] [PubMed]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Adv. Func. Mater. 26(46), 8390–8396 (2016).
[Crossref]

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Parkin, I. P.

R. K. Poduval, S. Noimark, R. J. Colchester, T. J. Macdonald, I. P. Parkin, A. E. Desjardins, and I. Papakonstantinou, “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite,” Appl. Phys. Lett. 110(22), 223701 (2017).
[Crossref] [PubMed]

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
[Crossref]

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
[Crossref]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Adv. Func. Mater. 26(46), 8390–8396 (2016).
[Crossref]

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

E. J. Alles, S. Noimark, E. Maneas, W. Xia, E. Z. Zhang, P. C. Beard, I. P. Parkin, and A. E. Desjardins, “Source density apodisation in 2D all-optical ultrasound imaging,” In Proceedings IEEE IUS (IEEE, 2017), pp. 1–4.

Pedersen, M. H.

J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
[Crossref] [PubMed]

Poduval, R. K.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, and A. H. Chester, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

R. K. Poduval, S. Noimark, R. J. Colchester, T. J. Macdonald, I. P. Parkin, A. E. Desjardins, and I. Papakonstantinou, “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite,” Appl. Phys. Lett. 110(22), 223701 (2017).
[Crossref] [PubMed]

Pozo, J.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Roncaglia, A.

E. Vannacci, L. Belsito, F. Mancarella, M. Ferri, G. P. Veronese, A. Roncaglia, and E. Biagi, “Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology,” Biomed. Microdevices 16(3), 415–426 (2014).
[Crossref] [PubMed]

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” Journal of Sensors 2010, 917314 (2010).

Savoia, A. S.

G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, “The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging,” IEEE Trans. Med. Imaging 34(4), 940–949 (2015).
[Crossref]

Schilling, R. J.

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
[Crossref]

Sheaff, C.

C. Sheaff and S. Ashkenazi, “Polyimide-etalon all-optical ultrasound transducer for high frequency applications,” Proc. SPIE BiOS 8943, 89434M (2014).
[Crossref]

C. Sheaff and S. Ashkenazi, “An all-optical thin-film high-frequency ultrasound transducer,” in Proceedings IEEE IUS (IEEE, 2011), pp. 1944–1947.

Shragge, J.

J. L. Johnson, J. Shragge, and K. van Wijk, “Nonconfocal all-optical laser-ultrasound and photoacoustic imaging system for angle-dependent deep tissue imaging,” J. Biomed. Opt. 22(4), 041014 (2017).
[Crossref]

Snyder, B.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Speciale, N.

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” Journal of Sensors 2010, 917314 (2010).

Spisar, M.

T. Buma, M. Spisar, and M. O.’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[Crossref] [PubMed]

Su, R.

S. Ermilov, R. Su, A. Conjusteau, F. Anis, V. Nadvoretskiy, M. Anastasio, and A. Oraevsky, “Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation,” Ultrasonic Imaging 38(1), 77–95 (2016).
[Crossref]

Synnevag, J.-F.

J.-F. Synnevag, A. Austeng, and S. Holm, “Benefits of minimum-variance beamforming in medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(9), 19811990 (2009).
[Crossref]

Tian, Y.

Trahey, G. E.

J. J. Dahl, D. Hyun, M. Lediju, and G. E. Trahey, “Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging,” Ultrason. Imag. 33(2), 119–133 (2011).
[Crossref] [PubMed]

Treeby, B. E.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Tsolaki, E.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, and A. H. Chester, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Urbach, H. P.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

van Neer, P. L. M. J.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

van Wijk, K.

J. L. Johnson, J. Shragge, and K. van Wijk, “Nonconfocal all-optical laser-ultrasound and photoacoustic imaging system for angle-dependent deep tissue imaging,” J. Biomed. Opt. 22(4), 041014 (2017).
[Crossref]

Vannacci, E.

E. Vannacci, L. Belsito, F. Mancarella, M. Ferri, G. P. Veronese, A. Roncaglia, and E. Biagi, “Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology,” Biomed. Microdevices 16(3), 415–426 (2014).
[Crossref] [PubMed]

Veronese, G. P.

E. Vannacci, L. Belsito, F. Mancarella, M. Ferri, G. P. Veronese, A. Roncaglia, and E. Biagi, “Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology,” Biomed. Microdevices 16(3), 415–426 (2014).
[Crossref] [PubMed]

Verweij, M. D.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Wang, X.

West, S. J.

W. Xia, S. Noimark, S. Ourselin, S. J. West, M. C. Finlay, A. L. David, and A. E. Desjardins, “Ultrasonic needle tracking with a fibre-optic ultrasound transmitter for guidance of minimally invasive fetal surgery,” In International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2017), pp. 637–645.

Westerveld, W. J.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

Witte, R. S.

S.-W. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O’Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE BIOS 6437, 643728 (2007).
[Crossref]

Wong, G. S.

N. Bilaniuk and G. S. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

Wu, H.

H. Jin, K. Yang, S. Wu, H. Wu, and J. Chen, “Sparse deconvolution method for ultrasound images based on automatic estimation of reference signals,” Ultrasonics 67, 1–8 (2016).
[Crossref] [PubMed]

Wu, N.

Wu, S.

H. Jin, K. Yang, S. Wu, H. Wu, and J. Chen, “Sparse deconvolution method for ultrasound images based on automatic estimation of reference signals,” Ultrasonics 67, 1–8 (2016).
[Crossref] [PubMed]

Xia, W.

E. J. Alles, S. Noimark, E. Maneas, W. Xia, E. Z. Zhang, P. C. Beard, I. P. Parkin, and A. E. Desjardins, “Source density apodisation in 2D all-optical ultrasound imaging,” In Proceedings IEEE IUS (IEEE, 2017), pp. 1–4.

W. Xia, S. Noimark, S. Ourselin, S. J. West, M. C. Finlay, A. L. David, and A. E. Desjardins, “Ultrasonic needle tracking with a fibre-optic ultrasound transmitter for guidance of minimally invasive fetal surgery,” In International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2017), pp. 637–645.

Xu, Z.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. Jay Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Yang, K.

H. Jin, K. Yang, S. Wu, H. Wu, and J. Chen, “Sparse deconvolution method for ultrasound images based on automatic estimation of reference signals,” Ultrasonics 67, 1–8 (2016).
[Crossref] [PubMed]

Yoh, J. J.

S. H. Lee, Y. Lee, and J. J. Yoh, “Reduced graphene oxide coated polydimethylsiloxane film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 106(8), 081911 (2015).
[Crossref]

Yoon, E.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. Jay Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

Zeng, X.

X. Zeng and R. J. McGough, “Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach,” The Journal of the Acoustical Society of America 125(5), 2967–2977 (2009).
[Crossref] [PubMed]

Zhang, C.

T. Lee, C. Zhang, Q. Li, L. J. Guo, and H. W. Baac, “Air-backed optoacoustic transmitter for high amplitude quasi-monopolar wave,” in Proceedings IEEE IUS (IEEE, 2014), pp. 878–881.

Zhang, E.

Zhang, E. Z.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, and A. H. Chester, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
[Crossref]

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
[Crossref]

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Adv. Func. Mater. 26(46), 8390–8396 (2016).
[Crossref]

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
[Crossref] [PubMed]

E. J. Alles, S. Noimark, E. Maneas, W. Xia, E. Z. Zhang, P. C. Beard, I. P. Parkin, and A. E. Desjardins, “Source density apodisation in 2D all-optical ultrasound imaging,” In Proceedings IEEE IUS (IEEE, 2017), pp. 1–4.

B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry-Pérot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation,” In Journal of Physics: Conference Series, volume 1 (IOP Publishing, 2004), 32-37.

Zhang, EZ

EZ Zhang and PC Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE BIOS 9323, 932311 (2015).
[Crossref]

Zhao, T.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, and A. H. Chester, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Zou, X.

Adv. Func. Mater. (1)

S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin, and A. E. Desjardins, “Carbon-nanotube-PDMS composite coatings on optical fibres for all-optical ultrasound imaging,” Adv. Func. Mater. 26(46), 8390–8396 (2016).
[Crossref]

Adv. Funct. Mater. (1)

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, and A. H. Chester, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Adv. Opt. Mater. (1)

T. Lee and L. J. Guo, “Highly efficient photoacoustic conversion by facilitated heat transfer in ultrathin metal film sandwiched by polymer layers,” Adv. Opt. Mater. 5(2), 1600421 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett. 107(16), 161903 (2015.
[Crossref]

S. H. Lee, Y. Lee, and J. J. Yoh, “Reduced graphene oxide coated polydimethylsiloxane film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation,” Appl. Phys. Lett. 106(8), 081911 (2015).
[Crossref]

W. Chan, T. Hies, and C.-D. Ohl, “Laser-generated focused ultrasound for arbitrary waveforms,” Appl. Phys. Lett. 109(17), 174102 (2016).
[Crossref]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

R. K. Poduval, S. Noimark, R. J. Colchester, T. J. Macdonald, I. P. Parkin, A. E. Desjardins, and I. Papakonstantinou, “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite,” Appl. Phys. Lett. 110(22), 223701 (2017).
[Crossref] [PubMed]

Appl. Sci. (1)

S-L Chen, “Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging,” Appl. Sci. 7(1), 25 (2016).
[Crossref]

Biomed. Microdevices (1)

E. Vannacci, L. Belsito, F. Mancarella, M. Ferri, G. P. Veronese, A. Roncaglia, and E. Biagi, “Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology,” Biomed. Microdevices 16(3), 415–426 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

IEEE Trans. Med. Imaging (1)

G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, “The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging,” IEEE Trans. Med. Imaging 34(4), 940–949 (2015).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (6)

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(3), 429–442 (1995).
[Crossref]

J.-F. Synnevag, A. Austeng, and S. Holm, “Benefits of minimum-variance beamforming in medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(9), 19811990 (2009).
[Crossref]

E. J. Alles, R. J. Colchester, and A. E. Desjardins, “Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(1), 83–90 (2016).
[Crossref]

Y. Hou, S. Ashkenazi, S.-W. Huang, and M. O.’Donnell, “An integrated optoacoustic transducer combining etalon and black PDMS structures,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(12), 2719–2725 (2008).
[Crossref]

T. Buma, M. Spisar, and M. O.’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[Crossref] [PubMed]

Y. Hou, J.-S. Kim, S.-W. Huang, S. Ashkenazi, L. J. Guo, and M. O.’ Donnell, “Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(8), 1867–1877 (2008).
[Crossref] [PubMed]

Interface Focus (1)

P. C. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

J. Acoust. Soc. Am. (1)

N. Bilaniuk and G. S. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

J. Biomed. Opt. (1)

J. L. Johnson, J. Shragge, and K. van Wijk, “Nonconfocal all-optical laser-ultrasound and photoacoustic imaging system for angle-dependent deep tissue imaging,” J. Biomed. Opt. 22(4), 041014 (2017).
[Crossref]

Japanese Journal of Applied Physics (1)

X. Fan, K. Ha, M. Kim, G. Kang, M. J. Choi, and J. Oh, “Fabrication and application of a carbon nanotube/poly (dimethylsiloxane) coated optoacoustic film transducer,” Japanese Journal of Applied Physics 57(7S1), 07LB10 (2018).
[Crossref]

Journal of Sensors (1)

E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale, “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions,” Journal of Sensors 2010, 917314 (2010).

Light: Science & Applications (1)

M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schilling, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study,” Light: Science & Applications 6(12), e17103 (2017).
[Crossref]

Nat. Photon. (1)

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photon. 11(11), 714–719 (2017).
[Crossref]

Opt. Express (1)

Photoacoustics (1)

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic imaging - imaging mode switching by dichroic filtering,” Photoacoustics 2(1), 39–46 (2014).
[Crossref] [PubMed]

Proc. SPIE BiOS (1)

C. Sheaff and S. Ashkenazi, “Polyimide-etalon all-optical ultrasound transducer for high frequency applications,” Proc. SPIE BiOS 8943, 89434M (2014).
[Crossref]

EZ Zhang and PC Beard, “Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection,” Proc. SPIE BIOS 9323, 932311 (2015).
[Crossref]

S.-W. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O’Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE BIOS 6437, 643728 (2007).
[Crossref]

Sci. Rep. (4)

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5, 14328 (2015).
[Crossref] [PubMed]

E. J. Alles, N. Fook Sheung, S. Noimark, E. Zhang, P. C. Beard, and A. E. Desjardins, “A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging,” Sci. Rep. 7, 1208 (2017).
[Crossref] [PubMed]

T. Lee, Q. Li, and L. J. Guo, “Out-coupling of longitudinal photoacoustic pulses by mitigating the phase cancellation,” Sci. Rep. 6, 21511 (2016).
[Crossref] [PubMed]

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. Jay Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[Crossref] [PubMed]

The Journal of the Acoustical Society of America (1)

X. Zeng and R. J. McGough, “Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach,” The Journal of the Acoustical Society of America 125(5), 2967–2977 (2009).
[Crossref] [PubMed]

Ultrason. Imag. (1)

J. J. Dahl, D. Hyun, M. Lediju, and G. E. Trahey, “Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging,” Ultrason. Imag. 33(2), 119–133 (2011).
[Crossref] [PubMed]

Ultrasonic Imaging (1)

S. Ermilov, R. Su, A. Conjusteau, F. Anis, V. Nadvoretskiy, M. Anastasio, and A. Oraevsky, “Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation,” Ultrasonic Imaging 38(1), 77–95 (2016).
[Crossref]

Ultrasonics (2)

H. Jin, K. Yang, S. Wu, H. Wu, and J. Chen, “Sparse deconvolution method for ultrasound images based on automatic estimation of reference signals,” Ultrasonics 67, 1–8 (2016).
[Crossref] [PubMed]

J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
[Crossref] [PubMed]

Other (6)

R. S. C. Cobbold, Foundations of Biomedical UltrasoundOxford University Press, USA, New York, 2007.

E. J. Alles, S. Noimark, E. Maneas, W. Xia, E. Z. Zhang, P. C. Beard, I. P. Parkin, and A. E. Desjardins, “Source density apodisation in 2D all-optical ultrasound imaging,” In Proceedings IEEE IUS (IEEE, 2017), pp. 1–4.

T. Lee, C. Zhang, Q. Li, L. J. Guo, and H. W. Baac, “Air-backed optoacoustic transmitter for high amplitude quasi-monopolar wave,” in Proceedings IEEE IUS (IEEE, 2014), pp. 878–881.

B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry-Pérot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation,” In Journal of Physics: Conference Series, volume 1 (IOP Publishing, 2004), 32-37.

W. Xia, S. Noimark, S. Ourselin, S. J. West, M. C. Finlay, A. L. David, and A. E. Desjardins, “Ultrasonic needle tracking with a fibre-optic ultrasound transmitter for guidance of minimally invasive fetal surgery,” In International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2017), pp. 637–645.

C. Sheaff and S. Ashkenazi, “An all-optical thin-film high-frequency ultrasound transducer,” in Proceedings IEEE IUS (IEEE, 2011), pp. 1944–1947.

Supplementary Material (2)

NameDescription
» Visualization 1       Dynamic imaging (frame rate: 15 Hz) of an ex vivo porcine carotid artery fixed to a rigid backing. Using a syringe filled with water, the artery was manually pressurised and released thrice (pressure onset occurs at times t = 3, 5 and 7 s). The exper
» Visualization 2       Dynamic imaging (frame rate: 15 Hz) of an ex vivo porcine carotid artery fixed to a rigid backing. Initially the artery is filled with water, and at time t = 1 s a syringe filled with glass bubble-loaded water is manually compressed. The bolus of gla

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optical ultrasound generation and detection. (a) Using a cylindrical lens, excitation light was delivered to a small, eccentric area of an optically absorbing membrane comprising a nano-composite. Ultrasound was generated photoacoustically in this area, and a linear acoustic aperture was scanned sequentially by translating the focal spot across the membrane using a galvo mirror. (b) Schematic of the set-up used to optically generate (red box) and detect (green box) ultrasound. A fibre-optic acoustic receiver, comprising a Fabry-Pérot cavity fabricated at its tip, was interrogated using a tuneable continuous wave laser. Using an optical splitter, 10% of the reflected light was recorded using a low frequency photodiode to record the cavity transfer function in order to identify the resonance wavelength; the remaining 90% was coupled into a high-frequency photodiode to record the acoustic signal. CW: continuous-wave; LF/HF: low-/high-frequency photodiode; DAQ: data acquisition.
Fig. 2
Fig. 2 Characterisation of the acoustic sources. (a) Peak acoustic pressure generated by a single source measured across a plane placed 2.7 mm away from the ultrasound-generating membrane. The green contour indicates the full-width-at-half-maximum (FWHM) of the acoustic pressure; the blue dot indicates the location where the corresponding pressure data (shown in blue) of panels (b-c) were recorded. (b) Temporal pressure profiles emitted by three optical ultrasound sources positioned at lateral co-ordinates of 2.5 mm (green), 8.8 mm (blue; corresponding to the pressure field displayed in panel (a)) and 17.4 mm (red). These profiles were recorded at a distance of 2.7 mm and measured directly in front of each source. (c) Power spectra (normalised to 0 dB) of the three temporal pressure profiles displayed in panel (b). The dotted red line corresponds to the −6 dB level used to determine the acoustic bandwidth. (d) Compound image of the peak pressure at the surface of the ultrasound-generating membrane. The contours correspond to the FWHM obtained for each of the 31 sequentially addressed sources, and are representative of the size of the acoustical sources. The green contour corresponds to the source measured in panel (a).
Fig. 3
Fig. 3 Artefact reduction through source density apodisation. (a) A-scan for an optical ultrasound source positioned in the centre of the aperture. Pulse-echo data were acquired of a phantom comprising two layers of tungsten wires (diameter: 27 µm). No signal averaging was performed to acquire these data. (b) Pulse-echo B-scan across the entire source aperture. Pulse-echo events of the shallow and deep layers occur at times 3.5 < t < 6.5 µs and 7.5 < t < 9.5 µs, respectively. The events prior to the cut-off times indicated by the gray dashed curve correspond to sound waves that propagated from the optical acoustic sources directly to the receiver (“direct cross-talk”); this cross-talk was removed by setting all samples prior to the cut-off indicated in grey to zero. (c) Schematic of the experimental geometry, where 256 sources were positioned along a linear aperture, and the fibre-optic receiver was centered laterally and offset axially. Two layers of wires were placed perpendicular to the image plane. (d) Schematic of the source locations corresponding to top-hat, asin and Hamming source density apodisation. To improve visibility, the locations of only 64 sources are shown. Horizontal and vertical ticks correspond to 2 mm and 0.5 mm, respectively. (e–g) All-optical ultrasound images of the wire phantom obtained using top-hat, asin and Hamming source density apodisation, respectively. Images were reconstructed using both top-hat (left) and Hamming (right) amplitude apodisation.
Fig. 4
Fig. 4 Ultrasound images of an ex vivo zebrafish. Images were obtained with both a conventional high-frequency piezoelectric array probe (a–b) and the presented all-optical set-up (c–d). Conventional and all-optical images were merged (e–f) to facilitate comparison. Panels (a) and (c) were obtained from single images along the coronal plane through the eye; panel (d) was extracted from a stack of 26 images acquired in transverse planes spaced 0.5 mm apart. Panel (g) shows the location of the single coronal plane (green line), as well as the individual transverse planes (red dotted lines) and the extracted image plane (solid red line).
Fig. 5
Fig. 5 Dynamic 2D all-optical ultrasound imaging of an ex vivo swine carotid artery. (a) Schematic of the phantom geometry. A section of carotid artery was fixed to a rigid backing and connected to a syringe. Both syringe and artery were filled with water. (b) M-mode image of the line through the centre of the artery. With the distal end of the artery clamped shut, images were continuously recorded (frame rate: 15 Hz) while the syringe was manually compressed and released thrice. (c) M-mode image obtained during flushing of the artery with water loaded with glass bubbles. (d–e) B-mode images obtained before and after the arrival of the bubble bolus, respectively. These images were acquired at the time points indicated by the green and blue dashed lines in panel (c). The real-time, video-rate reconstructed B-mode images corresponding to the compression and flushing experiments can be viewed in Visualization 1 and Visualization 2, respectively. Time points corresponding to pressure onset are indicated ( boe-9-8-3481-i001.jpg).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = i = 1 N S i ( t = | r r s , i | + | r d r | c ) ,

Metrics