Abstract

The femtosecond laser ablation in biological tissue produces highly fluorescent compounds that are of great significance for intrinsically labelling ablated tissue in vivo and achieving imaging-guided laser microsurgery. In this study, we analyzed the molecular structures of femtosecond laser-ablated tissues using Raman spectroscopy and transmission electron microscopy. The results showed that though laser ablation caused carbonization, no highly fluorescent nanostructures were found in the ablated tissues. Further, we found that the fluorescence properties of the newly formed compounds were spatially heterogeneous across the ablation site and the dominant fluorescent signals exhibited close similarity to the tissue directly heated at a temperature of 200 °C. The findings of our study indicated that the new fluorescent compounds were produced via the laser heating effect and their formation mechanism likely originated from the Maillard reaction, a chemical reaction between amino acids and reducing sugars in tissue.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo imaging-guided microsurgery based on femtosecond laser produced new fluorescent compounds in biological tissues

Qiqi Sun, Zhongya Qin, Wanjie Wu, Yue Lin, Congping Chen, Sicong He, Xuesong Li, Zhenguo Wu, Yi Luo, and Jianan Y. Qu
Biomed. Opt. Express 9(2) 581-590 (2018)

Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues

Zuoming Qian, Aghapi Mordovanakis, Joshua E. Schoenly, Andrés Covarrubias, Yuanfeng Feng, Lothar Lilge, and Robin S. Marjoribanks
Biomed. Opt. Express 5(1) 208-222 (2014)

Femtosecond laser nano-ablation in fixed and non-fixed cultured cells

H. Niioka, N. I. Smith, K. Fujita, Y. Inouye, and S. Kawata
Opt. Express 16(19) 14476-14495 (2008)

References

  • View by:
  • |
  • |
  • |

  1. B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
    [Crossref] [PubMed]
  2. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  3. P. S. Tsai and D. Kleinfeld, “In vivo two-photon laser scanning microscopy with concurrent plasma-mediated ablation principles and hardware realization,” in In Vivo Optical Imaging of Brain Function (CRC Press, 2009).
  4. K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
    [Crossref] [PubMed]
  5. A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
    [Crossref] [PubMed]
  6. V. Hovhannisyan, W. Lo, C. Hu, S.-J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008).
    [Crossref] [PubMed]
  7. Q. Sun, Z. Qin, W. Wu, Y. Lin, C. Chen, S. He, X. Li, Z. Wu, Y. Luo, and J. Y. Qu, “In vivo imaging-guided microsurgery based on femtosecond laser produced new fluorescent compounds in biological tissues,” Biomed. Opt. Express 9(2), 581–590 (2018).
    [Crossref] [PubMed]
  8. Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins,” Sci. Rep. 5(1), 17727 (2016).
    [Crossref] [PubMed]
  9. K. R. Millington, H. Ishii, and G. Maurdev, “Chemiluminescence from thermal oxidation of amino acids and proteins,” Amino Acids 38(5), 1395–1405 (2010).
    [Crossref] [PubMed]
  10. S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
    [Crossref] [PubMed]
  11. I. Maxwell, “Application of femtosecond lasers for subcellular nanosurgery,” PhD Thesis (2006).
  12. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
    [Crossref]
  13. A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
    [Crossref]
  14. M. Nakamizo, R. Kammereck, and P. L. Walker., “Laser Raman studies on carbons,” Carbon 12(3), 259–267 (1974).
    [Crossref]
  15. R. Galli, O. Uckermann, E. F. Andresen, K. D. Geiger, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues,” PLoS One 9(10), e110295 (2014).
    [Crossref] [PubMed]
  16. N. Morita, Y. Shimotsuma, M. Nishi, M. Sakakura, K. Miura, and K. Hirao, “Direct micro-carbonization inside polymer using focused femtosecond laser pulses,” Appl. Phys. Lett. 105(20), 201104 (2014).
    [Crossref]
  17. R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
    [Crossref] [PubMed]
  18. S. Y. Cho, Y. S. Yun, S. Lee, D. Jang, K.-Y. Park, J. K. Kim, B. H. Kim, K. Kang, D. L. Kaplan, and H.-J. Jin, “Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein,” Nat. Commun. 6(1), 7145 (2015).
    [Crossref] [PubMed]
  19. S. N. Baker and G. A. Baker, “Luminescent carbon nanodots: emergent nanolights,” Angew. Chem. Int. Ed. Engl. 49(38), 6726–6744 (2010).
    [Crossref] [PubMed]
  20. X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications,” Small 11(14), 1620–1636 (2015).
    [Crossref] [PubMed]
  21. S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, “The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective,” Nano Res. 8(2), 355–381 (2015).
    [Crossref]
  22. X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
    [Crossref]
  23. C. G. A. Davies and T. P. Labuza, “The Maillard reaction: application to confectionery products,” in Confectionary Science, International Symposium on, (1997), pp. 35–66
  24. H.-Y. Wang, H. Qian, and W.-R. Yao, “Melanoidins produced by the Maillard reaction: Structure and biological activity,” Food Chem. 128(3), 573–584 (2011).
    [Crossref]
  25. H. E. Nursten, The Maillard Reaction: Chemistry, Biochemistry and Implications (Royal Society of Chemistry, 2007).
  26. P. Naik, Biochemistry (Jaypee Brothers,Medical Publishers Pvt. Limited, 2015).
  27. S. Zhu, Y. Song, J. Shao, X. Zhao, and B. Yang, “Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units,” Angew. Chem. Int. Ed. Engl. 54(49), 14626–14637 (2015).
    [Crossref] [PubMed]
  28. W. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, and D. Zhao, “Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging,” Angew. Chem. Int. Ed. Engl. 52(31), 8151–8155 (2013).
    [Crossref] [PubMed]
  29. T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan, and X. Weng, “Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III),” Nanoscale 5(17), 8015–8021 (2013).
    [Crossref] [PubMed]
  30. Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, and Y. Liu, “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chem. Commun. (Camb.) 48(3), 380–382 (2012).
    [Crossref] [PubMed]

2018 (1)

2016 (1)

Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins,” Sci. Rep. 5(1), 17727 (2016).
[Crossref] [PubMed]

2015 (5)

X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications,” Small 11(14), 1620–1636 (2015).
[Crossref] [PubMed]

S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, “The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective,” Nano Res. 8(2), 355–381 (2015).
[Crossref]

S. Zhu, Y. Song, J. Shao, X. Zhao, and B. Yang, “Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units,” Angew. Chem. Int. Ed. Engl. 54(49), 14626–14637 (2015).
[Crossref] [PubMed]

R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
[Crossref] [PubMed]

S. Y. Cho, Y. S. Yun, S. Lee, D. Jang, K.-Y. Park, J. K. Kim, B. H. Kim, K. Kang, D. L. Kaplan, and H.-J. Jin, “Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein,” Nat. Commun. 6(1), 7145 (2015).
[Crossref] [PubMed]

2014 (2)

R. Galli, O. Uckermann, E. F. Andresen, K. D. Geiger, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues,” PLoS One 9(10), e110295 (2014).
[Crossref] [PubMed]

N. Morita, Y. Shimotsuma, M. Nishi, M. Sakakura, K. Miura, and K. Hirao, “Direct micro-carbonization inside polymer using focused femtosecond laser pulses,” Appl. Phys. Lett. 105(20), 201104 (2014).
[Crossref]

2013 (2)

W. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, and D. Zhao, “Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging,” Angew. Chem. Int. Ed. Engl. 52(31), 8151–8155 (2013).
[Crossref] [PubMed]

T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan, and X. Weng, “Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III),” Nanoscale 5(17), 8015–8021 (2013).
[Crossref] [PubMed]

2012 (2)

Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, and Y. Liu, “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chem. Commun. (Camb.) 48(3), 380–382 (2012).
[Crossref] [PubMed]

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

2011 (2)

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

H.-Y. Wang, H. Qian, and W.-R. Yao, “Melanoidins produced by the Maillard reaction: Structure and biological activity,” Food Chem. 128(3), 573–584 (2011).
[Crossref]

2010 (2)

K. R. Millington, H. Ishii, and G. Maurdev, “Chemiluminescence from thermal oxidation of amino acids and proteins,” Amino Acids 38(5), 1395–1405 (2010).
[Crossref] [PubMed]

S. N. Baker and G. A. Baker, “Luminescent carbon nanodots: emergent nanolights,” Angew. Chem. Int. Ed. Engl. 49(38), 6726–6744 (2010).
[Crossref] [PubMed]

2008 (2)

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

V. Hovhannisyan, W. Lo, C. Hu, S.-J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008).
[Crossref] [PubMed]

2007 (2)

A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
[Crossref]

B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[Crossref] [PubMed]

2005 (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

2003 (1)

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

2002 (1)

1974 (1)

M. Nakamizo, R. Kammereck, and P. L. Walker., “Laser Raman studies on carbons,” Carbon 12(3), 259–267 (1974).
[Crossref]

Ananthanarayanan, A.

X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications,” Small 11(14), 1620–1636 (2015).
[Crossref] [PubMed]

Andresen, E. F.

R. Galli, O. Uckermann, E. F. Andresen, K. D. Geiger, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues,” PLoS One 9(10), e110295 (2014).
[Crossref] [PubMed]

Artigas, D.

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

Auner, G. W.

A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
[Crossref]

Baker, G. A.

S. N. Baker and G. A. Baker, “Luminescent carbon nanodots: emergent nanolights,” Angew. Chem. Int. Ed. Engl. 49(38), 6726–6744 (2010).
[Crossref] [PubMed]

Baker, S. N.

S. N. Baker and G. A. Baker, “Luminescent carbon nanodots: emergent nanolights,” Angew. Chem. Int. Ed. Engl. 49(38), 6726–6744 (2010).
[Crossref] [PubMed]

Blanco, E. M.

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

Cao, A.

A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
[Crossref]

Chen, C.

Chen, L.

T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan, and X. Weng, “Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III),” Nanoscale 5(17), 8015–8021 (2013).
[Crossref] [PubMed]

Chen, P.

X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications,” Small 11(14), 1620–1636 (2015).
[Crossref] [PubMed]

Chen, S.-J.

Cho, S. Y.

S. Y. Cho, Y. S. Yun, S. Lee, D. Jang, K.-Y. Park, J. K. Kim, B. H. Kim, K. Kang, D. L. Kaplan, and H.-J. Jin, “Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein,” Nat. Commun. 6(1), 7145 (2015).
[Crossref] [PubMed]

Cui, J.

Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, and Y. Liu, “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chem. Commun. (Camb.) 48(3), 380–382 (2012).
[Crossref] [PubMed]

Dai, H.

A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
[Crossref]

Dong, C. Y.

Feng, S.

W. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, and D. Zhao, “Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging,” Angew. Chem. Int. Ed. Engl. 52(31), 8151–8155 (2013).
[Crossref] [PubMed]

Freeman, D. C.

A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
[Crossref]

Galli, R.

R. Galli, O. Uckermann, E. F. Andresen, K. D. Geiger, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues,” PLoS One 9(10), e110295 (2014).
[Crossref] [PubMed]

García, J. F.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Geiger, K. D.

R. Galli, O. Uckermann, E. F. Andresen, K. D. Geiger, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues,” PLoS One 9(10), e110295 (2014).
[Crossref] [PubMed]

Halbhuber, K.-J.

B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[Crossref] [PubMed]

He, S.

Hirao, K.

N. Morita, Y. Shimotsuma, M. Nishi, M. Sakakura, K. Miura, and K. Hirao, “Direct micro-carbonization inside polymer using focused femtosecond laser pulses,” Appl. Phys. Lett. 105(20), 201104 (2014).
[Crossref]

Hovhannisyan, V.

Hu, C.

Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, and Y. Liu, “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chem. Commun. (Camb.) 48(3), 380–382 (2012).
[Crossref] [PubMed]

V. Hovhannisyan, W. Lo, C. Hu, S.-J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008).
[Crossref] [PubMed]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Ishii, H.

K. R. Millington, H. Ishii, and G. Maurdev, “Chemiluminescence from thermal oxidation of amino acids and proteins,” Amino Acids 38(5), 1395–1405 (2010).
[Crossref] [PubMed]

Jang, D.

S. Y. Cho, Y. S. Yun, S. Lee, D. Jang, K.-Y. Park, J. K. Kim, B. H. Kim, K. Kang, D. L. Kaplan, and H.-J. Jin, “Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein,” Nat. Commun. 6(1), 7145 (2015).
[Crossref] [PubMed]

Jin, H.-J.

S. Y. Cho, Y. S. Yun, S. Lee, D. Jang, K.-Y. Park, J. K. Kim, B. H. Kim, K. Kang, D. L. Kaplan, and H.-J. Jin, “Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein,” Nat. Commun. 6(1), 7145 (2015).
[Crossref] [PubMed]

Kammereck, R.

M. Nakamizo, R. Kammereck, and P. L. Walker., “Laser Raman studies on carbons,” Carbon 12(3), 259–267 (1974).
[Crossref]

Kang, K.

S. Y. Cho, Y. S. Yun, S. Lee, D. Jang, K.-Y. Park, J. K. Kim, B. H. Kim, K. Kang, D. L. Kaplan, and H.-J. Jin, “Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein,” Nat. Commun. 6(1), 7145 (2015).
[Crossref] [PubMed]

Kaplan, D. L.

S. Y. Cho, Y. S. Yun, S. Lee, D. Jang, K.-Y. Park, J. K. Kim, B. H. Kim, K. Kang, D. L. Kaplan, and H.-J. Jin, “Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein,” Nat. Commun. 6(1), 7145 (2015).
[Crossref] [PubMed]

Kim, B. H.

S. Y. Cho, Y. S. Yun, S. Lee, D. Jang, K.-Y. Park, J. K. Kim, B. H. Kim, K. Kang, D. L. Kaplan, and H.-J. Jin, “Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein,” Nat. Commun. 6(1), 7145 (2015).
[Crossref] [PubMed]

Kim, J. K.

S. Y. Cho, Y. S. Yun, S. Lee, D. Jang, K.-Y. Park, J. K. Kim, B. H. Kim, K. Kang, D. L. Kaplan, and H.-J. Jin, “Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein,” Nat. Commun. 6(1), 7145 (2015).
[Crossref] [PubMed]

Kirsch, M.

R. Galli, O. Uckermann, E. F. Andresen, K. D. Geiger, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues,” PLoS One 9(10), e110295 (2014).
[Crossref] [PubMed]

Koch, E.

R. Galli, O. Uckermann, E. F. Andresen, K. D. Geiger, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues,” PLoS One 9(10), e110295 (2014).
[Crossref] [PubMed]

Koenig, K.

B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[Crossref] [PubMed]

K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
[Crossref] [PubMed]

Kong, B.

W. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, and D. Zhao, “Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging,” Angew. Chem. Int. Ed. Engl. 52(31), 8151–8155 (2013).
[Crossref] [PubMed]

Kong, L.

T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan, and X. Weng, “Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III),” Nanoscale 5(17), 8015–8021 (2013).
[Crossref] [PubMed]

Krauss, O.

Lai, T.

T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan, and X. Weng, “Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III),” Nanoscale 5(17), 8015–8021 (2013).
[Crossref] [PubMed]

Lee, S.

S. Y. Cho, Y. S. Yun, S. Lee, D. Jang, K.-Y. Park, J. K. Kim, B. H. Kim, K. Kang, D. L. Kaplan, and H.-J. Jin, “Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein,” Nat. Commun. 6(1), 7145 (2015).
[Crossref] [PubMed]

Li, W.

W. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, and D. Zhao, “Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging,” Angew. Chem. Int. Ed. Engl. 52(31), 8151–8155 (2013).
[Crossref] [PubMed]

Li, X.

Lin, Y.

Liu, Y.

Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, and Y. Liu, “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chem. Commun. (Camb.) 48(3), 380–382 (2012).
[Crossref] [PubMed]

Lo, W.

Loza-Alvarez, P.

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

Luo, K. Q.

X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications,” Small 11(14), 1620–1636 (2015).
[Crossref] [PubMed]

Luo, Y.

Mathew, M.

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

Maurdev, G.

K. R. Millington, H. Ishii, and G. Maurdev, “Chemiluminescence from thermal oxidation of amino acids and proteins,” Amino Acids 38(5), 1395–1405 (2010).
[Crossref] [PubMed]

Mazur, E.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Millington, K. R.

K. R. Millington, H. Ishii, and G. Maurdev, “Chemiluminescence from thermal oxidation of amino acids and proteins,” Amino Acids 38(5), 1395–1405 (2010).
[Crossref] [PubMed]

Miura, K.

N. Morita, Y. Shimotsuma, M. Nishi, M. Sakakura, K. Miura, and K. Hirao, “Direct micro-carbonization inside polymer using focused femtosecond laser pulses,” Appl. Phys. Lett. 105(20), 201104 (2014).
[Crossref]

Morita, N.

N. Morita, Y. Shimotsuma, M. Nishi, M. Sakakura, K. Miura, and K. Hirao, “Direct micro-carbonization inside polymer using focused femtosecond laser pulses,” Appl. Phys. Lett. 105(20), 201104 (2014).
[Crossref]

Naik, R.

A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
[Crossref]

Naik, V. M.

A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
[Crossref]

Nakamizo, M.

M. Nakamizo, R. Kammereck, and P. L. Walker., “Laser Raman studies on carbons,” Carbon 12(3), 259–267 (1974).
[Crossref]

Nishi, M.

N. Morita, Y. Shimotsuma, M. Nishi, M. Sakakura, K. Miura, and K. Hirao, “Direct micro-carbonization inside polymer using focused femtosecond laser pulses,” Appl. Phys. Lett. 105(20), 201104 (2014).
[Crossref]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Ochoa, M.

R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Pandya, A. K.

A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
[Crossref]

Park, K.-Y.

S. Y. Cho, Y. S. Yun, S. Lee, D. Jang, K.-Y. Park, J. K. Kim, B. H. Kim, K. Kang, D. L. Kaplan, and H.-J. Jin, “Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein,” Nat. Commun. 6(1), 7145 (2015).
[Crossref] [PubMed]

Pereira, A.

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

Qian, H.

H.-Y. Wang, H. Qian, and W.-R. Yao, “Melanoidins produced by the Maillard reaction: Structure and biological activity,” Food Chem. 128(3), 573–584 (2011).
[Crossref]

Qin, Z.

Qu, J. Y.

Qu, K.

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

Qu, X.

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

Rabah, R.

A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
[Crossref]

Rahimi, R.

R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
[Crossref] [PubMed]

Ren, J.

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

Riemann, I.

B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[Crossref] [PubMed]

K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
[Crossref] [PubMed]

Ruan, Y.

T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan, and X. Weng, “Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III),” Nanoscale 5(17), 8015–8021 (2013).
[Crossref] [PubMed]

Sakakura, M.

N. Morita, Y. Shimotsuma, M. Nishi, M. Sakakura, K. Miura, and K. Hirao, “Direct micro-carbonization inside polymer using focused femtosecond laser pulses,” Appl. Phys. Lett. 105(20), 201104 (2014).
[Crossref]

Schackert, G.

R. Galli, O. Uckermann, E. F. Andresen, K. D. Geiger, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues,” PLoS One 9(10), e110295 (2014).
[Crossref] [PubMed]

Schaffer, C. B.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Schubert, H.

B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[Crossref] [PubMed]

Serhatkulu, G. K.

A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
[Crossref]

Shao, J.

S. Zhu, Y. Song, J. Shao, X. Zhao, and B. Yang, “Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units,” Angew. Chem. Int. Ed. Engl. 54(49), 14626–14637 (2015).
[Crossref] [PubMed]

S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, “The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective,” Nano Res. 8(2), 355–381 (2015).
[Crossref]

Shimotsuma, Y.

N. Morita, Y. Shimotsuma, M. Nishi, M. Sakakura, K. Miura, and K. Hirao, “Direct micro-carbonization inside polymer using focused femtosecond laser pulses,” Appl. Phys. Lett. 105(20), 201104 (2014).
[Crossref]

Song, Y.

S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, “The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective,” Nano Res. 8(2), 355–381 (2015).
[Crossref]

S. Zhu, Y. Song, J. Shao, X. Zhao, and B. Yang, “Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units,” Angew. Chem. Int. Ed. Engl. 54(49), 14626–14637 (2015).
[Crossref] [PubMed]

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Steiner, G.

R. Galli, O. Uckermann, E. F. Andresen, K. D. Geiger, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues,” PLoS One 9(10), e110295 (2014).
[Crossref] [PubMed]

Sun, Q.

Tan, S.

Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, and Y. Liu, “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chem. Commun. (Camb.) 48(3), 380–382 (2012).
[Crossref] [PubMed]

Thakur, J. S.

A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
[Crossref]

Thayil, A. K. N.

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

Uckermann, O.

R. Galli, O. Uckermann, E. F. Andresen, K. D. Geiger, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues,” PLoS One 9(10), e110295 (2014).
[Crossref] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Walker, P. L.

M. Nakamizo, R. Kammereck, and P. L. Walker., “Laser Raman studies on carbons,” Carbon 12(3), 259–267 (1974).
[Crossref]

Wang, B.-G.

B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[Crossref] [PubMed]

Wang, H.

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Wang, H.-Y.

H.-Y. Wang, H. Qian, and W.-R. Yao, “Melanoidins produced by the Maillard reaction: Structure and biological activity,” Food Chem. 128(3), 573–584 (2011).
[Crossref]

Wang, J.

W. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, and D. Zhao, “Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging,” Angew. Chem. Int. Ed. Engl. 52(31), 8151–8155 (2013).
[Crossref] [PubMed]

Wang, L.

W. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, and D. Zhao, “Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging,” Angew. Chem. Int. Ed. Engl. 52(31), 8151–8155 (2013).
[Crossref] [PubMed]

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Wang, X.

T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan, and X. Weng, “Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III),” Nanoscale 5(17), 8015–8021 (2013).
[Crossref] [PubMed]

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

Weber, R. E.

A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
[Crossref]

Wei, L.

Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins,” Sci. Rep. 5(1), 17727 (2016).
[Crossref] [PubMed]

Weng, X.

T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan, and X. Weng, “Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III),” Nanoscale 5(17), 8015–8021 (2013).
[Crossref] [PubMed]

Wu, P.

W. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, and D. Zhao, “Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging,” Angew. Chem. Int. Ed. Engl. 52(31), 8151–8155 (2013).
[Crossref] [PubMed]

Wu, W.

Wu, Z.

Xiao, L.

Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins,” Sci. Rep. 5(1), 17727 (2016).
[Crossref] [PubMed]

Xiao, Y.

Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, and Y. Liu, “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chem. Commun. (Camb.) 48(3), 380–382 (2012).
[Crossref] [PubMed]

Xu, B.

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

Yang, B.

S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, “The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective,” Nano Res. 8(2), 355–381 (2015).
[Crossref]

S. Zhu, Y. Song, J. Shao, X. Zhao, and B. Yang, “Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units,” Angew. Chem. Int. Ed. Engl. 54(49), 14626–14637 (2015).
[Crossref] [PubMed]

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Yang, J.

W. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, and D. Zhao, “Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging,” Angew. Chem. Int. Ed. Engl. 52(31), 8151–8155 (2013).
[Crossref] [PubMed]

Yang, Q.

Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins,” Sci. Rep. 5(1), 17727 (2016).
[Crossref] [PubMed]

Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, and Y. Liu, “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chem. Commun. (Camb.) 48(3), 380–382 (2012).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, and Y. Liu, “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chem. Commun. (Camb.) 48(3), 380–382 (2012).
[Crossref] [PubMed]

Yao, W.-R.

H.-Y. Wang, H. Qian, and W.-R. Yao, “Melanoidins produced by the Maillard reaction: Structure and biological activity,” Food Chem. 128(3), 573–584 (2011).
[Crossref]

You, C.

T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan, and X. Weng, “Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III),” Nanoscale 5(17), 8015–8021 (2013).
[Crossref] [PubMed]

Yu, W.

R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
[Crossref] [PubMed]

Yun, Y. S.

S. Y. Cho, Y. S. Yun, S. Lee, D. Jang, K.-Y. Park, J. K. Kim, B. H. Kim, K. Kang, D. L. Kaplan, and H.-J. Jin, “Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein,” Nat. Commun. 6(1), 7145 (2015).
[Crossref] [PubMed]

Zhang, F.

W. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, and D. Zhao, “Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging,” Angew. Chem. Int. Ed. Engl. 52(31), 8151–8155 (2013).
[Crossref] [PubMed]

Zhang, G.

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Zhang, J.

S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, “The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective,” Nano Res. 8(2), 355–381 (2015).
[Crossref]

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Zhang, Z.

W. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, and D. Zhao, “Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging,” Angew. Chem. Int. Ed. Engl. 52(31), 8151–8155 (2013).
[Crossref] [PubMed]

Zhao, D.

W. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, and D. Zhao, “Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging,” Angew. Chem. Int. Ed. Engl. 52(31), 8151–8155 (2013).
[Crossref] [PubMed]

Zhao, X.

S. Zhu, Y. Song, J. Shao, X. Zhao, and B. Yang, “Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units,” Angew. Chem. Int. Ed. Engl. 54(49), 14626–14637 (2015).
[Crossref] [PubMed]

S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, “The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective,” Nano Res. 8(2), 355–381 (2015).
[Crossref]

Zheng, E.

T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan, and X. Weng, “Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III),” Nanoscale 5(17), 8015–8021 (2013).
[Crossref] [PubMed]

Zheng, M.

Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, and Y. Liu, “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chem. Commun. (Camb.) 48(3), 380–382 (2012).
[Crossref] [PubMed]

Zheng, X.

Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins,” Sci. Rep. 5(1), 17727 (2016).
[Crossref] [PubMed]

Zheng, X. T.

X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications,” Small 11(14), 1620–1636 (2015).
[Crossref] [PubMed]

Zhu, S.

S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, “The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective,” Nano Res. 8(2), 355–381 (2015).
[Crossref]

S. Zhu, Y. Song, J. Shao, X. Zhao, and B. Yang, “Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units,” Angew. Chem. Int. Ed. Engl. 54(49), 14626–14637 (2015).
[Crossref] [PubMed]

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Ziaie, B.

R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
[Crossref] [PubMed]

Amino Acids (1)

K. R. Millington, H. Ishii, and G. Maurdev, “Chemiluminescence from thermal oxidation of amino acids and proteins,” Amino Acids 38(5), 1395–1405 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (3)

S. N. Baker and G. A. Baker, “Luminescent carbon nanodots: emergent nanolights,” Angew. Chem. Int. Ed. Engl. 49(38), 6726–6744 (2010).
[Crossref] [PubMed]

S. Zhu, Y. Song, J. Shao, X. Zhao, and B. Yang, “Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units,” Angew. Chem. Int. Ed. Engl. 54(49), 14626–14637 (2015).
[Crossref] [PubMed]

W. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, and D. Zhao, “Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging,” Angew. Chem. Int. Ed. Engl. 52(31), 8151–8155 (2013).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Appl. Phys. Lett. (1)

N. Morita, Y. Shimotsuma, M. Nishi, M. Sakakura, K. Miura, and K. Hirao, “Direct micro-carbonization inside polymer using focused femtosecond laser pulses,” Appl. Phys. Lett. 105(20), 201104 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Biomed. Opt. Express (1)

Carbon (1)

M. Nakamizo, R. Kammereck, and P. L. Walker., “Laser Raman studies on carbons,” Carbon 12(3), 259–267 (1974).
[Crossref]

Cell Tissue Res. (1)

B.-G. Wang, I. Riemann, H. Schubert, K.-J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (2)

S. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, H. Wang, and B. Yang, “A general route to make non-conjugated linear polymers luminescent,” Chem. Commun. (Camb.) 48(88), 10889–10891 (2012).
[Crossref] [PubMed]

Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, and Y. Liu, “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chem. Commun. (Camb.) 48(3), 380–382 (2012).
[Crossref] [PubMed]

Food Chem. (1)

H.-Y. Wang, H. Qian, and W.-R. Yao, “Melanoidins produced by the Maillard reaction: Structure and biological activity,” Food Chem. 128(3), 573–584 (2011).
[Crossref]

J. Mater. Chem. (1)

X. Wang, K. Qu, B. Xu, J. Ren, and X. Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents,” J. Mater. Chem. 21(8), 2445 (2011).
[Crossref]

J. Microsc. (1)

A. K. N. Thayil, A. Pereira, M. Mathew, D. Artigas, E. M. Blanco, and P. Loza-Alvarez, “Decrease in laser ablation threshold for epithelial tissue microsurgery in a living Drosophila embryo during dorsal closure,” J. Microsc. 232(2), 362–368 (2008).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, V. M. Naik, R. Naik, G. W. Auner, R. Rabah, and D. C. Freeman, “A robust method for automated background subtraction of tissue fluorescence,” J. Raman Spectrosc. 38(9), 1199–1205 (2007).
[Crossref]

Nano Res. (1)

S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, “The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective,” Nano Res. 8(2), 355–381 (2015).
[Crossref]

Nanoscale (1)

T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan, and X. Weng, “Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III),” Nanoscale 5(17), 8015–8021 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Y. Cho, Y. S. Yun, S. Lee, D. Jang, K.-Y. Park, J. K. Kim, B. H. Kim, K. Kang, D. L. Kaplan, and H.-J. Jin, “Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein,” Nat. Commun. 6(1), 7145 (2015).
[Crossref] [PubMed]

Opt. Express (2)

PLoS One (1)

R. Galli, O. Uckermann, E. F. Andresen, K. D. Geiger, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues,” PLoS One 9(10), e110295 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

Q. Yang, L. Wei, X. Zheng, and L. Xiao, “Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins,” Sci. Rep. 5(1), 17727 (2016).
[Crossref] [PubMed]

Small (1)

X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications,” Small 11(14), 1620–1636 (2015).
[Crossref] [PubMed]

Other (5)

C. G. A. Davies and T. P. Labuza, “The Maillard reaction: application to confectionery products,” in Confectionary Science, International Symposium on, (1997), pp. 35–66

H. E. Nursten, The Maillard Reaction: Chemistry, Biochemistry and Implications (Royal Society of Chemistry, 2007).

P. Naik, Biochemistry (Jaypee Brothers,Medical Publishers Pvt. Limited, 2015).

P. S. Tsai and D. Kleinfeld, “In vivo two-photon laser scanning microscopy with concurrent plasma-mediated ablation principles and hardware realization,” in In Vivo Optical Imaging of Brain Function (CRC Press, 2009).

I. Maxwell, “Application of femtosecond lasers for subcellular nanosurgery,” PhD Thesis (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1 Fluorescence image of line cutting in albumin sample by using 740 nm femtosecond laser with different powers. Red dashed line: laser cutting path. Laser cutting speed: 100 μm/s. Field of view: 50 μm × 50 μm.
Fig. 2
Fig. 2 Fluorescence intensities of mouse skin, muscle, and brain tissue and albumin without treatment (origin) and thermally treated at 100 °C, 200 °C, 300 °C and 400 °C. (a) Single-photon (440 nm) excited fluorescence intensities. (b) Two-photon (880 nm) excited fluorescence intensities. The intensities are normalized to the maximum (i.e., intensity at 200 °C) respectively. *: the signals from 400 °C-heated samples via single-photon excitation were too weak to be detected. Error bars represent ± SD.
Fig. 3
Fig. 3 Fluorescence properties of biological tissues and protein heated at 200 °C. (a) Mouse skin, (b) muscle, (c) brain tissue and (d) albumin. Left column: single-photon excited (370 nm to 440 nm) fluorescence emission spectra; middle column: two-photon excited (740 nm to 880 nm) fluorescence emission spectra; right column: single- and two-photon excited fluorescence lifetimes. Error bars represent ± SD.
Fig. 4
Fig. 4 Two-photon excited fluorescence properties of laser-ablated and thermal-treated albumin samples (740 nm excitation). Fluorescence intensity (a), spectra (b) and lifetimes (c) of the laser ablated albumin sample measured at different distances away from the focal point of ablation laser. Inset of (a) shows the image of laser ablated albumin sample (ablation laser power: 250 mW, details in Fig. 1). The fluorescence properties (intensities, spectra and lifetimes) were averaged along the dashed line and moved downwards from the center of laser ablation line. Fluorescence intensity (d), spectra (e) and lifetimes (f) of albumin sample heated at different temperatures. * The fluorescence decay curves are the same as system response (~200 ps), meaning that the lifetimes are much shorter than 200 ps. Error bars represent ± SD.
Fig. 5
Fig. 5 Normalized Raman spectra of (a) mouse skin, (b) muscle, (c) brain tissue and (d) albumin before (blue line) and after (red line) laser ablation.
Fig. 6
Fig. 6 TEM image and its EDX spectra in skin tissue heated at 400°C. (a) TEM image of several amorphous nanoparticles. (b) The EDX spectrum of an amorphous nanoparticle (red arrow head in (a)). (c) The EDX spectrum of amorphous bulk areas. Cu signals in (b) and (c) are from the copper grid used in the TEM measurement.
Fig. 7
Fig. 7 Fluorescence properties of lysine heated at 200 °C. (a) Single-photon excited (370 nm to 440 nm) fluorescence emission spectra; (b) two-photon excited (740 nm to 880 nm) fluorescence emission spectra; (c) single- and two-photon excited fluorescence lifetimes. Error bars represent ± SD.
Fig. 8
Fig. 8 (a) Photos of albumin, glucose and their mixture heated at different temperatures; (b) fluorescence intensity of albumin and glucose mixture heated at 100 °C. The single-photon (440 nm) and two-photon (880 nm) excited fluorescence intensities are normalized to the intensities of albumin heated at 200 °C, respectively. Error bars represent SD.
Fig. 9
Fig. 9 Fluorescence properties of (a) mixture of albumin and glucose heated at 100 °C; (b) mixture of lysine and glucose heated at 65 °C. Left column: single-photon excited (370 nm to 440 nm) fluorescence emission spectra; middle column: two-photon excited (740 nm to 880 nm) fluorescence emission spectra; right column: single- and two-photon excited fluorescence lifetimes. Error bars represent ± SD.
Fig. 10
Fig. 10 Fluorescence image (740 nm excitation and 400-600 nm detection) of laser-ablated muscle tissue. The laser ablation was performed using a 740 nm femtosecond laser (250 mW) focused at a fixed point for 2 seconds. Field of view: 35 μm × 35 μm.
Fig. 11
Fig. 11 Fluorescence properties of biological tissues and protein before laser ablation and heating treatment. (a) Mouse skin, (b) muscle, (c) brain tissue and (d) albumin. Left column: single-photon excited (370 nm to 440 nm) fluorescence emission spectra; middle column: two-photon excited (740 nm to 880 nm) fluorescence emission spectra; right column: single- and two-photon excited fluorescence lifetimes. Error bars represent ± SD.
Fig. 12
Fig. 12 Fluorescence properties of biological tissues and protein heated at 100 °C. (a) Mouse skin, (b) muscle, (c) brain tissue and (d) albumin. Left column: single-photon excited (370 nm to 440 nm) fluorescence emission spectra; middle column: two-photon excited (740 nm to 880 nm) fluorescence emission spectra; right column: single- and two-photon excited fluorescence lifetimes. Error bars represent ± SD.
Fig. 13
Fig. 13 Fluorescence properties of biological tissues and protein heated at 300 °C. (a) Mouse skin, (b) muscle, (c) brain tissue and (d) albumin. Left column: single-photon excited (370 nm to 440 nm) fluorescence emission spectra; right column: two-photon excited (740 nm to 880 nm) fluorescence emission spectra. The fluorescence decay curves are the same as system response (~200 ps), meaning that the lifetimes are much shorter than 200 ps. Error bars represent ± SD.
Fig. 14
Fig. 14 Two-photon excited (740 nm to 880 nm) fluorescence emission spectra of biological tissues and protein heated at 400 °C. (a) Mouse skin, (b) muscle, (c) brain tissue and (d) albumin. The signals via single-photon excitation were too weak to be detected. The fluorescence decay curves are the same as system response (~200 ps), meaning that the lifetimes are much shorter than 200 ps. Error bars represent ± SD.
Fig. 15
Fig. 15 Two-photon excited fluorescence properties of laser-ablated and thermal-treated mouse muscle tissue (740 nm excitation). (a) Fluorescence intensity as a function of distance from the focal spot of ablation laser (Inset shows the image of laser ablated muscle tissue and details are shown in Fig. 10). Fluorescence spectra (b) and lifetimes (c) of the laser ablated muscle sample measured at different distances away from the focal point of ablation laser. Fluorescence intensity (d), spectra (e) and lifetimes (f) of the muscle sample heated at different temperatures. *The fluorescence decay curves are the same as system response (~200 ps), meaning that the lifetimes are much shorter than 200 ps. Due to the inhomogeneity of heat diffusion in muscle tissue, the laser produced fluorescent compounds are not as even distributed as in albumin sample (Fig. 4). In addition, endogenous fluorophores such as NADH caused interference to the characterization of fluorescence properties in the region far from the heating center. This results in that fluorescence properties in the region far away from the heating center are not identical to the low temperature heated samples (100 °C). Error bars represent ± SD.
Fig. 16
Fig. 16 Raman spectra of mouse skin, muscle, brain tissue and albumin heated at 400 °C.
Fig. 17
Fig. 17 TEM images of (a) skin, (b) muscle, (c) brain tissue and (d) albumin heated at 200 °C.
Fig. 18
Fig. 18 Photos of biological tissues and albumin heated at different temperatures.
Fig. 19
Fig. 19 Photos and fluorescence intensities of amino acid samples heated at different temperatures. (a) Photos of amino acid samples; (b) single-photon (440 nm) excited fluorescence intensities; (c) two-photon (880 nm) excited fluorescence intensities. All single- and two-photon fluorescence intensities are normalized to the intensities of albumin heated at 200 °C respectively. Error bars represent ± SD.
Fig. 20
Fig. 20 Photos and fluorescence intensities of amino acid and glucose samples heated at different temperatures. (a) Photos of samples heated at different temperatures; (b) single-photon (440 nm) excited fluorescence intensities; (c) two-photon (880 nm) excited fluorescence intensities. All single- and two-photon fluorescence intensities are normalized to the intensities of albumin heated at 200 °C respectively. Error bars represent ± SD.

Metrics