Abstract

We present a novel tomographic non-local-means based despeckling technique, TNode, for optical coherence tomography. TNode is built upon a weighting similarity criterion derived for speckle in a three-dimensional similarity window. We present an implementation using a two-dimensional search window, enabling the despeckling of volumes in the presence of motion artifacts, and an implementation using a three-dimensional window with improved performance in motion-free volumes. We show that our technique provides effective speckle reduction, comparable with B-scan compounding or out-of-plane averaging, while preserving isotropic resolution, even to the level of speckle-sized structures. We demonstrate its superior despeckling performance in a phantom data set, and in an ophthalmic data set we show that small, speckle-sized retinal vessels are clearly preserved in intensity images en-face and in two orthogonal, cross-sectional views. TNode does not rely on dictionaries or segmentation and therefore can readily be applied to arbitrary optical coherence tomography volumes. We show that despeckled esophageal volumes exhibit improved image quality and detail, even in the presence of significant motion artifacts.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN

Yuhui Ma, Xinjian Chen, Weifang Zhu, Xuena Cheng, Dehui Xiang, and Fei Shi
Biomed. Opt. Express 9(11) 5129-5146 (2018)

Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images

Prabakar Puvanathasan and Kostadinka Bizheva
Opt. Express 17(2) 733-746 (2009)

Speckle noise reduction of multi-frame optical coherence tomography data using multi-linear principal component analysis

Hongli Lv, Shujun Fu, Caiming Zhang, and Lin Zhai
Opt. Express 26(9) 11804-11818 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [Crossref] [PubMed]
  3. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Express 25(8), 545–547 (2000).
  4. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22(4), 593–596 (2005).
    [Crossref]
  5. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
    [Crossref] [PubMed]
  6. A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. R. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express 15(10), 6200–6209 (2007).
    [Crossref] [PubMed]
  7. B. F. Kennedy, T. R. Hillman, A. Curatolo, and D. D. Sampson, “Speckle reduction in optical coherence tomography by strain compounding,” Opt. Lett. 35(14), 2445–2447 (2010).
    [Crossref] [PubMed]
  8. D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Speckle reduction in optical coherence tomography imaging by affine-motion image registration,” J. Biomed. Opt. 16(11), 116027 (2011).
    [Crossref] [PubMed]
  9. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
    [Crossref] [PubMed]
  10. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwesrtzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express 20(2), 1337–1359 (2012).
    [Crossref] [PubMed]
  11. M. Szkulmowski and M. Wojtkoski, “Averaging techniques for OCT imaging,” Opt. Express 21(8), 9757–9773 (2013).
    [Crossref] [PubMed]
  12. L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Tith, and S. Farsiu, “Sparsity based denoising of spectral domain optical coherence tomography images,” Biomed. Opt. Express 3(5), 927–942 (2012).
    [Crossref] [PubMed]
  13. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. 24(7), 1901–1910 (2007).
    [Crossref]
  14. H. Yu, J. Gao, and A. Li, “Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images,” Opt. Express 41(5), 994–997 (2016).
  15. J. Aum, J.-H. Kim, and J. Jeong, “Effective speckle noise suppression in optical coherence tomography images using nonlocal means denoising filter with double Gaussian anisotropic kernels,” Appl. Opt. 54(13), D43–D50 (2015).
    [Crossref]
  16. Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, and B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage,” Opt. Express 34(10), 1516–1518 (2009).
  17. Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Opt. Express 18(2), 1024–1032 (2010).
    [Crossref] [PubMed]
  18. L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquision and reconstruction of optical coherence tomography images via sparse representation,” IEEE T. Med. Imaging 32(11), 2034–2049 (2013).
    [Crossref]
  19. L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE T. Med. Imaging 16(2), 407–421 (2017).
    [Crossref]
  20. J. Cheng, D. Tao, Y. Quan, D. W. Kee Wong, G. C. Ming Cheung, M. Akiba, and J. Liu, “Speckle reduction in 3D optical coherence tomography of retina by A-scan reconstruction,” IEEE T. Med. Imaging 35(10), 2270–2279 (2016).
    [Crossref]
  21. M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express 16(16), 641–655 (2012).
  22. A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express 18(8), 8338–8352 (2010).
    [Crossref] [PubMed]
  23. B. Chong and Y. K. Zhu, “Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified BM3D filter,” Opt. Commun. 291, 461–469 (2013).
    [Crossref]
  24. L. Wang, Z. Meng, X. S. Yao, T Liu, Y. Su, and M. Qin, “Adaptive speckle reduction in OCT volume data based on block-matching and 3-D filtering,” IEEE Photonic. Tech. L. 24(20), 1802–1804 (2012).
    [Crossref]
  25. D. Yin, Y. Gu, and P. Xue, “Speckle-constrained varational methods for image restoration in optical coherence tomography,” J. Opt. Soc. Am. A 30(5), 878–885 (2013).
    [Crossref]
  26. P. P. Srinivasan, L. A. Kim, P. S. Mettu, S. W. Cousins, G. M. Comer, J. A. Izatt, and S. Farsiu, “Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images,” Biomed. Opt. Express 5(10), 3568–3577 (2014).
    [Crossref] [PubMed]
  27. Y. Gu and X. Zhang, “Spiking cortical model based non-local means method for despeckling multiframe optical coherence tomography data,” Laser Phys. Lett. 14, 056201 (2017).
    [Crossref]
  28. X. Zhang, G. Hou, J. Ma, W. Yang, B. Lin, Y. Xu, W. Chen, and Y. Feng, “Denoising MR images using non-local means filter with combined patch and pixel similarity,” PLOS ONE 9(6), e100240 (2014).
    [Crossref] [PubMed]
  29. K. Lu, N. He, and L. Li, “Nonlocal means-based denoising for medical images,” Hindawi Publishing Corporation2012, 438617 (2012).
  30. J. V. Manjón, P. Coupé, L. Martí-Bonmatí, D. L. Collins, and M. Robles, “Adaptive non-local means denoising of MR images with spatially varying noise levels,” J. Magn. Reson. Imaging 31, 192–203 (2010).
    [Crossref]
  31. C.-A. Deledalle, L. Denis, and F. Tupin, “Iterative weighted maximum likelihood denoising with probabilistic patch-based weights,” IEEE T. Image Process. 18(12), 2661–2672 (2009).
    [Crossref]
  32. C.-A. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jäger, “NL-SAR: a unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising,” IEEE Geosci. Remote. S. 53(4), 2021–2038 (2015).
    [Crossref]
  33. F. Argenti, A. Lapini, T. Bianchi, and L. Alparone, “A tutorial on speckle reduction in synthetic aperture radar images,” IEEE Geosci. Remote. S. 1(3), 6–35 (2013).
    [Crossref]
  34. J. Yu, J. Tan, and Y. Wang, “Ultrasound speckle reduction by a SUSAN-controlled anisotropic diffusion method,” Pattern Recognition 43(9), 3083–3092 (2010).
    [Crossref]
  35. P. V. Sudeep, P. Palanisamy, J. Rajan, H. Baradaran, L. Saba, A. Gupta, and J. S. Suri, “Speckle reduction in medical ultrasound images using an unbiased non-local means method,” Biomedical Signal Processing and Control 28, 1–8 (2016).
    [Crossref]
  36. J. W. Goodman, Speckle phenomena in optics (W. H. Freeman, 2010).
  37. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE T. Image Process. 16(8), 2080–2095 (2007).
    [Crossref]
  38. C.-A. Deledalle, L. Denis, and F. Tupin, “How to compare noisy patches? Patch similarity beyond Gaussian noise,” International Journal of Computer Vision 99(1), 86–102 (2012).
    [Crossref]
  39. A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4(2), 490–530 (2005).
    [Crossref]
  40. Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Baumann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang, “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express 3(12), 3127–3137 (2012).
    [Crossref] [PubMed]
  41. T. E. de Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” International Journal of Retina and Vitreous 1(5), 5 (2015).
    [Crossref] [PubMed]
  42. S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonic. Tech. L. 22(14), 1057–1059 (2010).
    [Crossref]
  43. Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007).
    [Crossref] [PubMed]
  44. S. Makita, F. Jaillon, I. Jahan, and Y. Yasuno, “Noise statistics of phase-resolved optical coherence tomography imaging: single- and dual-beam-scan Doppler optical coherence tomography,” Opt. Express 22(4), 4830–4848 (2012).
    [Crossref]
  45. “NvisionVLETM Registry System Registry,” (2014–2018), https://clinicaltrials.gov/ct2/show/NCT02215291 .
  46. H. C. Wolfsen, P. Sharma, M. B. Wallace, C. Leggett, G. Tearney, and K. K. Wang, “Safety and feasibility of volumetric laser endomicroscopy in patients with Barret’s esophagus (with videos),” Gastrointest. Endosc. 82(4), 631 (2015).
    [Crossref] [PubMed]
  47. N. Uribe-Patarroyo and B. E. Bouma, “Rotational distortion correction in endoscopic optical coherence tomography based on speckle decorrelation,” Opt. Lett. 40(23), 5518–5521 (2015).
    [Crossref] [PubMed]
  48. F. Timischl, “The contrast-to-noise ratio for image quality evaluation in scanning electron microscopy,” Scanning 37, 54–62 (2015).
    [Crossref]
  49. D. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Opt. Lett. 29(24), 2878–2880 (2004).
    [Crossref]
  50. Y. Gan and C. P. Fleming, “Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography,” Biomed. Opt. Express 4(10), 2150–2165 (2013).
    [Crossref] [PubMed]
  51. C. J. Goergen, H. Radhakrishnan, S. Sakadžić, E. T. Mandeville, E. H. Lo, D. E. Sosnovik, and V. J. Srinivasan, “Optical coherence tractography using intrinsic contrast,” Opt. Lett. 37(18), 3882–3884 (2012).
    [Crossref] [PubMed]
  52. C. M. Ambrosi, V. V. Fedorov, I. R. Efimov, R. B. Schuessler, and A. M. Rollins, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
    [Crossref] [PubMed]
  53. M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
    [Crossref] [PubMed]
  54. D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
    [Crossref] [PubMed]
  55. M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).
  56. W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
    [Crossref] [PubMed]
  57. C. Cuartas-Vélez, R. Restrepo, B. E. Bouma, and N. Uribe-Patarroyo, “Volumetric non-local-means based speckle reduction for optical coherence tomography,” figshare(2018) [retrieved 4 Apr 2018], https://doi.org/10.6084/m9.figshare.6089861.

2017 (2)

L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE T. Med. Imaging 16(2), 407–421 (2017).
[Crossref]

Y. Gu and X. Zhang, “Spiking cortical model based non-local means method for despeckling multiframe optical coherence tomography data,” Laser Phys. Lett. 14, 056201 (2017).
[Crossref]

2016 (5)

P. V. Sudeep, P. Palanisamy, J. Rajan, H. Baradaran, L. Saba, A. Gupta, and J. S. Suri, “Speckle reduction in medical ultrasound images using an unbiased non-local means method,” Biomedical Signal Processing and Control 28, 1–8 (2016).
[Crossref]

J. Cheng, D. Tao, Y. Quan, D. W. Kee Wong, G. C. Ming Cheung, M. Akiba, and J. Liu, “Speckle reduction in 3D optical coherence tomography of retina by A-scan reconstruction,” IEEE T. Med. Imaging 35(10), 2270–2279 (2016).
[Crossref]

H. Yu, J. Gao, and A. Li, “Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images,” Opt. Express 41(5), 994–997 (2016).

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

2015 (6)

T. E. de Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” International Journal of Retina and Vitreous 1(5), 5 (2015).
[Crossref] [PubMed]

H. C. Wolfsen, P. Sharma, M. B. Wallace, C. Leggett, G. Tearney, and K. K. Wang, “Safety and feasibility of volumetric laser endomicroscopy in patients with Barret’s esophagus (with videos),” Gastrointest. Endosc. 82(4), 631 (2015).
[Crossref] [PubMed]

N. Uribe-Patarroyo and B. E. Bouma, “Rotational distortion correction in endoscopic optical coherence tomography based on speckle decorrelation,” Opt. Lett. 40(23), 5518–5521 (2015).
[Crossref] [PubMed]

F. Timischl, “The contrast-to-noise ratio for image quality evaluation in scanning electron microscopy,” Scanning 37, 54–62 (2015).
[Crossref]

J. Aum, J.-H. Kim, and J. Jeong, “Effective speckle noise suppression in optical coherence tomography images using nonlocal means denoising filter with double Gaussian anisotropic kernels,” Appl. Opt. 54(13), D43–D50 (2015).
[Crossref]

C.-A. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jäger, “NL-SAR: a unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising,” IEEE Geosci. Remote. S. 53(4), 2021–2038 (2015).
[Crossref]

2014 (2)

2013 (7)

D. Yin, Y. Gu, and P. Xue, “Speckle-constrained varational methods for image restoration in optical coherence tomography,” J. Opt. Soc. Am. A 30(5), 878–885 (2013).
[Crossref]

B. Chong and Y. K. Zhu, “Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified BM3D filter,” Opt. Commun. 291, 461–469 (2013).
[Crossref]

F. Argenti, A. Lapini, T. Bianchi, and L. Alparone, “A tutorial on speckle reduction in synthetic aperture radar images,” IEEE Geosci. Remote. S. 1(3), 6–35 (2013).
[Crossref]

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquision and reconstruction of optical coherence tomography images via sparse representation,” IEEE T. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref]

M. Szkulmowski and M. Wojtkoski, “Averaging techniques for OCT imaging,” Opt. Express 21(8), 9757–9773 (2013).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

Y. Gan and C. P. Fleming, “Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography,” Biomed. Opt. Express 4(10), 2150–2165 (2013).
[Crossref] [PubMed]

2012 (9)

C. J. Goergen, H. Radhakrishnan, S. Sakadžić, E. T. Mandeville, E. H. Lo, D. E. Sosnovik, and V. J. Srinivasan, “Optical coherence tractography using intrinsic contrast,” Opt. Lett. 37(18), 3882–3884 (2012).
[Crossref] [PubMed]

C. M. Ambrosi, V. V. Fedorov, I. R. Efimov, R. B. Schuessler, and A. M. Rollins, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
[Crossref] [PubMed]

Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Baumann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang, “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express 3(12), 3127–3137 (2012).
[Crossref] [PubMed]

S. Makita, F. Jaillon, I. Jahan, and Y. Yasuno, “Noise statistics of phase-resolved optical coherence tomography imaging: single- and dual-beam-scan Doppler optical coherence tomography,” Opt. Express 22(4), 4830–4848 (2012).
[Crossref]

C.-A. Deledalle, L. Denis, and F. Tupin, “How to compare noisy patches? Patch similarity beyond Gaussian noise,” International Journal of Computer Vision 99(1), 86–102 (2012).
[Crossref]

L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Tith, and S. Farsiu, “Sparsity based denoising of spectral domain optical coherence tomography images,” Biomed. Opt. Express 3(5), 927–942 (2012).
[Crossref] [PubMed]

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwesrtzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express 20(2), 1337–1359 (2012).
[Crossref] [PubMed]

L. Wang, Z. Meng, X. S. Yao, T Liu, Y. Su, and M. Qin, “Adaptive speckle reduction in OCT volume data based on block-matching and 3-D filtering,” IEEE Photonic. Tech. L. 24(20), 1802–1804 (2012).
[Crossref]

M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express 16(16), 641–655 (2012).

2011 (1)

D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Speckle reduction in optical coherence tomography imaging by affine-motion image registration,” J. Biomed. Opt. 16(11), 116027 (2011).
[Crossref] [PubMed]

2010 (6)

B. F. Kennedy, T. R. Hillman, A. Curatolo, and D. D. Sampson, “Speckle reduction in optical coherence tomography by strain compounding,” Opt. Lett. 35(14), 2445–2447 (2010).
[Crossref] [PubMed]

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Opt. Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express 18(8), 8338–8352 (2010).
[Crossref] [PubMed]

J. Yu, J. Tan, and Y. Wang, “Ultrasound speckle reduction by a SUSAN-controlled anisotropic diffusion method,” Pattern Recognition 43(9), 3083–3092 (2010).
[Crossref]

J. V. Manjón, P. Coupé, L. Martí-Bonmatí, D. L. Collins, and M. Robles, “Adaptive non-local means denoising of MR images with spatially varying noise levels,” J. Magn. Reson. Imaging 31, 192–203 (2010).
[Crossref]

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonic. Tech. L. 22(14), 1057–1059 (2010).
[Crossref]

2009 (2)

C.-A. Deledalle, L. Denis, and F. Tupin, “Iterative weighted maximum likelihood denoising with probabilistic patch-based weights,” IEEE T. Image Process. 18(12), 2661–2672 (2009).
[Crossref]

Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, and B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage,” Opt. Express 34(10), 1516–1518 (2009).

2007 (4)

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. 24(7), 1901–1910 (2007).
[Crossref]

A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. R. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express 15(10), 6200–6209 (2007).
[Crossref] [PubMed]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE T. Image Process. 16(8), 2080–2095 (2007).
[Crossref]

Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007).
[Crossref] [PubMed]

2005 (2)

A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4(2), 490–530 (2005).
[Crossref]

B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22(4), 593–596 (2005).
[Crossref]

2004 (1)

2003 (2)

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
[Crossref] [PubMed]

2000 (1)

M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Express 25(8), 545–547 (2000).

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Adams, D. C.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Adler, D.

Akiba, M.

J. Cheng, D. Tao, Y. Quan, D. W. Kee Wong, G. C. Ming Cheung, M. Akiba, and J. Liu, “Speckle reduction in 3D optical coherence tomography of retina by A-scan reconstruction,” IEEE T. Med. Imaging 35(10), 2270–2279 (2016).
[Crossref]

Alonso-Caneiro, D.

D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Speckle reduction in optical coherence tomography imaging by affine-motion image registration,” J. Biomed. Opt. 16(11), 116027 (2011).
[Crossref] [PubMed]

Alparone, L.

F. Argenti, A. Lapini, T. Bianchi, and L. Alparone, “A tutorial on speckle reduction in synthetic aperture radar images,” IEEE Geosci. Remote. S. 1(3), 6–35 (2013).
[Crossref]

Ambrosi, C. M.

C. M. Ambrosi, V. V. Fedorov, I. R. Efimov, R. B. Schuessler, and A. M. Rollins, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
[Crossref] [PubMed]

Argenti, F.

F. Argenti, A. Lapini, T. Bianchi, and L. Alparone, “A tutorial on speckle reduction in synthetic aperture radar images,” IEEE Geosci. Remote. S. 1(3), 6–35 (2013).
[Crossref]

Aum, J.

Austen, W. G.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Baradaran, H.

P. V. Sudeep, P. Palanisamy, J. Rajan, H. Baradaran, L. Saba, A. Gupta, and J. S. Suri, “Speckle reduction in medical ultrasound images using an unbiased non-local means method,” Biomedical Signal Processing and Control 28, 1–8 (2016).
[Crossref]

Bashkansky, M.

M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Express 25(8), 545–547 (2000).

Baumann, B.

Bianchi, T.

F. Argenti, A. Lapini, T. Bianchi, and L. Alparone, “A tutorial on speckle reduction in synthetic aperture radar images,” IEEE Geosci. Remote. S. 1(3), 6–35 (2013).
[Crossref]

Bilenca, A.

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. 24(7), 1901–1910 (2007).
[Crossref]

Bizheva, K.

Boppart, S. A.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonic. Tech. L. 22(14), 1057–1059 (2010).
[Crossref]

Bouma, B. E.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

N. Uribe-Patarroyo and B. E. Bouma, “Rotational distortion correction in endoscopic optical coherence tomography based on speckle decorrelation,” Opt. Lett. 40(23), 5518–5521 (2015).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. R. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express 15(10), 6200–6209 (2007).
[Crossref] [PubMed]

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. 24(7), 1901–1910 (2007).
[Crossref]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

C. Cuartas-Vélez, R. Restrepo, B. E. Bouma, and N. Uribe-Patarroyo, “Volumetric non-local-means based speckle reduction for optical coherence tomography,” figshare(2018) [retrieved 4 Apr 2018], https://doi.org/10.6084/m9.figshare.6089861.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Broelsch, G. F.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Buades, A.

A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4(2), 490–530 (2005).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, W.

X. Zhang, G. Hou, J. Ma, W. Yang, B. Lin, Y. Xu, W. Chen, and Y. Feng, “Denoising MR images using non-local means filter with combined patch and pixel similarity,” PLOS ONE 9(6), e100240 (2014).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Opt. Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, and B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage,” Opt. Express 34(10), 1516–1518 (2009).

Cheng, J.

J. Cheng, D. Tao, Y. Quan, D. W. Kee Wong, G. C. Ming Cheung, M. Akiba, and J. Liu, “Speckle reduction in 3D optical coherence tomography of retina by A-scan reconstruction,” IEEE T. Med. Imaging 35(10), 2270–2279 (2016).
[Crossref]

Cho, J. L.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Choi, W.

Chong, B.

B. Chong and Y. K. Zhu, “Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified BM3D filter,” Opt. Commun. 291, 461–469 (2013).
[Crossref]

Clausi, D. A.

Coll, B.

A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4(2), 490–530 (2005).
[Crossref]

Collins, D. L.

J. V. Manjón, P. Coupé, L. Martí-Bonmatí, D. L. Collins, and M. Robles, “Adaptive non-local means denoising of MR images with spatially varying noise levels,” J. Magn. Reson. Imaging 31, 192–203 (2010).
[Crossref]

Collins, M. J.

D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Speckle reduction in optical coherence tomography imaging by affine-motion image registration,” J. Biomed. Opt. 16(11), 116027 (2011).
[Crossref] [PubMed]

Comer, G. M.

Coupé, P.

J. V. Manjón, P. Coupé, L. Martí-Bonmatí, D. L. Collins, and M. Robles, “Adaptive non-local means denoising of MR images with spatially varying noise levels,” J. Magn. Reson. Imaging 31, 192–203 (2010).
[Crossref]

Cousins, S. W.

Cuartas-Vélez, C.

C. Cuartas-Vélez, R. Restrepo, B. E. Bouma, and N. Uribe-Patarroyo, “Volumetric non-local-means based speckle reduction for optical coherence tomography,” figshare(2018) [retrieved 4 Apr 2018], https://doi.org/10.6084/m9.figshare.6089861.

Cunefare, D.

L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE T. Med. Imaging 16(2), 407–421 (2017).
[Crossref]

Curatolo, A.

Dabov, K.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE T. Image Process. 16(8), 2080–2095 (2007).
[Crossref]

Daemen, J.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

de Boer, J. F.

de Bruin, D. M.

de Carlo, T. E.

T. E. de Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” International Journal of Retina and Vitreous 1(5), 5 (2015).
[Crossref] [PubMed]

Deledalle, C.-A.

C.-A. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jäger, “NL-SAR: a unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising,” IEEE Geosci. Remote. S. 53(4), 2021–2038 (2015).
[Crossref]

C.-A. Deledalle, L. Denis, and F. Tupin, “How to compare noisy patches? Patch similarity beyond Gaussian noise,” International Journal of Computer Vision 99(1), 86–102 (2012).
[Crossref]

C.-A. Deledalle, L. Denis, and F. Tupin, “Iterative weighted maximum likelihood denoising with probabilistic patch-based weights,” IEEE T. Image Process. 18(12), 2661–2672 (2009).
[Crossref]

Denis, L.

C.-A. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jäger, “NL-SAR: a unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising,” IEEE Geosci. Remote. S. 53(4), 2021–2038 (2015).
[Crossref]

C.-A. Deledalle, L. Denis, and F. Tupin, “How to compare noisy patches? Patch similarity beyond Gaussian noise,” International Journal of Computer Vision 99(1), 86–102 (2012).
[Crossref]

C.-A. Deledalle, L. Denis, and F. Tupin, “Iterative weighted maximum likelihood denoising with probabilistic patch-based weights,” IEEE T. Image Process. 18(12), 2661–2672 (2009).
[Crossref]

Desjardins, A. E.

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. 24(7), 1901–1910 (2007).
[Crossref]

A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. R. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express 15(10), 6200–6209 (2007).
[Crossref] [PubMed]

Diletti, R.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Doradla, P.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Duker, J. S.

T. E. de Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” International Journal of Retina and Vitreous 1(5), 5 (2015).
[Crossref] [PubMed]

Efimov, I. R.

C. M. Ambrosi, V. V. Fedorov, I. R. Efimov, R. B. Schuessler, and A. M. Rollins, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
[Crossref] [PubMed]

Egiazarian, K.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE T. Image Process. 16(8), 2080–2095 (2007).
[Crossref]

Fang, L.

L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE T. Med. Imaging 16(2), 407–421 (2017).
[Crossref]

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquision and reconstruction of optical coherence tomography images via sparse representation,” IEEE T. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref]

L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Tith, and S. Farsiu, “Sparsity based denoising of spectral domain optical coherence tomography images,” Biomed. Opt. Express 3(5), 927–942 (2012).
[Crossref] [PubMed]

Farsiu, S.

L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE T. Med. Imaging 16(2), 407–421 (2017).
[Crossref]

P. P. Srinivasan, L. A. Kim, P. S. Mettu, S. W. Cousins, G. M. Comer, J. A. Izatt, and S. Farsiu, “Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images,” Biomed. Opt. Express 5(10), 3568–3577 (2014).
[Crossref] [PubMed]

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquision and reconstruction of optical coherence tomography images via sparse representation,” IEEE T. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref]

L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Tith, and S. Farsiu, “Sparsity based denoising of spectral domain optical coherence tomography images,” Biomed. Opt. Express 3(5), 927–942 (2012).
[Crossref] [PubMed]

Fedorov, V. V.

C. M. Ambrosi, V. V. Fedorov, I. R. Efimov, R. B. Schuessler, and A. M. Rollins, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
[Crossref] [PubMed]

Feng, Y.

X. Zhang, G. Hou, J. Ma, W. Yang, B. Lin, Y. Xu, W. Chen, and Y. Feng, “Denoising MR images using non-local means filter with combined patch and pixel similarity,” PLOS ONE 9(6), e100240 (2014).
[Crossref] [PubMed]

Fercher, A. F.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
[Crossref] [PubMed]

Fleming, C. P.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Foi, A.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE T. Image Process. 16(8), 2080–2095 (2007).
[Crossref]

Fujimoto, J. G.

Gan, Y.

Gao, J.

H. Yu, J. Gao, and A. Li, “Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images,” Opt. Express 41(5), 994–997 (2016).

Gargesha, M.

M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express 16(16), 641–655 (2012).

Goergen, C. J.

Golberg, A.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Goodman, J. W.

J. W. Goodman, Speckle phenomena in optics (W. H. Freeman, 2010).

Gorczynska, I.

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Griffith, J. W.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Gu, Y.

Y. Gu and X. Zhang, “Spiking cortical model based non-local means method for despeckling multiframe optical coherence tomography data,” Laser Phys. Lett. 14, 056201 (2017).
[Crossref]

D. Yin, Y. Gu, and P. Xue, “Speckle-constrained varational methods for image restoration in optical coherence tomography,” J. Opt. Soc. Am. A 30(5), 878–885 (2013).
[Crossref]

Gupta, A.

P. V. Sudeep, P. Palanisamy, J. Rajan, H. Baradaran, L. Saba, A. Gupta, and J. S. Suri, “Speckle reduction in medical ultrasound images using an unbiased non-local means method,” Biomedical Signal Processing and Control 28, 1–8 (2016).
[Crossref]

Hamilos, D. L.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Hariri, L. P.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Hassler, K.

He, N.

K. Lu, N. He, and L. Li, “Nonlocal means-based denoising for medical images,” Hindawi Publishing Corporation2012, 438617 (2012).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hillman, T. R.

Hitzenberger, C. K.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
[Crossref] [PubMed]

Holz, J. A.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Hou, G.

X. Zhang, G. Hou, J. Ma, W. Yang, B. Lin, Y. Xu, W. Chen, and Y. Feng, “Denoising MR images using non-local means filter with combined patch and pixel similarity,” PLOS ONE 9(6), e100240 (2014).
[Crossref] [PubMed]

Huang, D.

Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Baumann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang, “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express 3(12), 3127–3137 (2012).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Iftimia, N.

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

Izatt, J. A.

Jäger, M.

C.-A. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jäger, “NL-SAR: a unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising,” IEEE Geosci. Remote. S. 53(4), 2021–2038 (2015).
[Crossref]

Jahan, I.

Jaillon, F.

Jenkins, M. W.

M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express 16(16), 641–655 (2012).

Jeong, J.

Jia, Y.

Jian, Z.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Opt. Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, and B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage,” Opt. Express 34(10), 1516–1518 (2009).

Jung, W.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonic. Tech. L. 22(14), 1057–1059 (2010).
[Crossref]

Karamata, B.

Karanasos, A.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Katkovnik, V.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE T. Image Process. 16(8), 2080–2095 (2007).
[Crossref]

Kee Wong, D. W.

J. Cheng, D. Tao, Y. Quan, D. W. Kee Wong, G. C. Ming Cheung, M. Akiba, and J. Liu, “Speckle reduction in 3D optical coherence tomography of retina by A-scan reconstruction,” IEEE T. Med. Imaging 35(10), 2270–2279 (2016).
[Crossref]

Kennedy, B. F.

Kerbage, C.

Khan, S.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Kim, J.-H.

Kim, L. A.

Ko, T. H.

Kowalczyk, A.

Kuo, A. N.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquision and reconstruction of optical coherence tomography images via sparse representation,” IEEE T. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref]

Lapini, A.

F. Argenti, A. Lapini, T. Bianchi, and L. Alparone, “A tutorial on speckle reduction in synthetic aperture radar images,” IEEE Geosci. Remote. S. 1(3), 6–35 (2013).
[Crossref]

Lasser, T.

Laubscher, M.

Leggett, C.

H. C. Wolfsen, P. Sharma, M. B. Wallace, C. Leggett, G. Tearney, and K. K. Wang, “Safety and feasibility of volumetric laser endomicroscopy in patients with Barret’s esophagus (with videos),” Gastrointest. Endosc. 82(4), 631 (2015).
[Crossref] [PubMed]

Leitgeb, R.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
[Crossref] [PubMed]

Li, A.

H. Yu, J. Gao, and A. Li, “Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images,” Opt. Express 41(5), 994–997 (2016).

Li, L.

K. Lu, N. He, and L. Li, “Nonlocal means-based denoising for medical images,” Hindawi Publishing Corporation2012, 438617 (2012).

Li, S.

L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE T. Med. Imaging 16(2), 407–421 (2017).
[Crossref]

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquision and reconstruction of optical coherence tomography images via sparse representation,” IEEE T. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref]

L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Tith, and S. Farsiu, “Sparsity based denoising of spectral domain optical coherence tomography images,” Biomed. Opt. Express 3(5), 927–942 (2012).
[Crossref] [PubMed]

Lian, C. G.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Libby, P.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Lin, B.

X. Zhang, G. Hou, J. Ma, W. Yang, B. Lin, Y. Xu, W. Chen, and Y. Feng, “Denoising MR images using non-local means filter with combined patch and pixel similarity,” PLOS ONE 9(6), e100240 (2014).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lippok, N.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Liu, J.

J. Cheng, D. Tao, Y. Quan, D. W. Kee Wong, G. C. Ming Cheung, M. Akiba, and J. Liu, “Speckle reduction in 3D optical coherence tomography of retina by A-scan reconstruction,” IEEE T. Med. Imaging 35(10), 2270–2279 (2016).
[Crossref]

Liu, T

L. Wang, Z. Meng, X. S. Yao, T Liu, Y. Su, and M. Qin, “Adaptive speckle reduction in OCT volume data based on block-matching and 3-D filtering,” IEEE Photonic. Tech. L. 24(20), 1802–1804 (2012).
[Crossref]

Lo, E. H.

Lo, W. C. Y.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Lombardi, L.

Lu, C. D.

Lu, K.

K. Lu, N. He, and L. Li, “Nonlocal means-based denoising for medical images,” Hindawi Publishing Corporation2012, 438617 (2012).

Luster, A. D.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Ma, J.

X. Zhang, G. Hou, J. Ma, W. Yang, B. Lin, Y. Xu, W. Chen, and Y. Feng, “Denoising MR images using non-local means filter with combined patch and pixel similarity,” PLOS ONE 9(6), e100240 (2014).
[Crossref] [PubMed]

Makita, S.

Mandeville, E. T.

Manjón, J. V.

J. V. Manjón, P. Coupé, L. Martí-Bonmatí, D. L. Collins, and M. Robles, “Adaptive non-local means denoising of MR images with spatially varying noise levels,” J. Magn. Reson. Imaging 31, 192–203 (2010).
[Crossref]

Martí-Bonmatí, L.

J. V. Manjón, P. Coupé, L. Martí-Bonmatí, D. L. Collins, and M. Robles, “Adaptive non-local means denoising of MR images with spatially varying noise levels,” J. Magn. Reson. Imaging 31, 192–203 (2010).
[Crossref]

McNabb, R. P.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquision and reconstruction of optical coherence tomography images via sparse representation,” IEEE T. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref]

Medoff, B. D.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Meng, Z.

L. Wang, Z. Meng, X. S. Yao, T Liu, Y. Su, and M. Qin, “Adaptive speckle reduction in OCT volume data based on block-matching and 3-D filtering,” IEEE Photonic. Tech. L. 24(20), 1802–1804 (2012).
[Crossref]

Mettu, P. S.

Miller, A. J.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Ming Cheung, G. C.

J. Cheng, D. Tao, Y. Quan, D. W. Kee Wong, G. C. Ming Cheung, M. Akiba, and J. Liu, “Speckle reduction in 3D optical coherence tomography of retina by A-scan reconstruction,” IEEE T. Med. Imaging 35(10), 2270–2279 (2016).
[Crossref]

Mishra, A.

Morel, J. M.

A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4(2), 490–530 (2005).
[Crossref]

Morrison, J. C.

Motaghiannezam, S. M. R.

Nadkarni, S. K.

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Nie, Q.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquision and reconstruction of optical coherence tomography images via sparse representation,” IEEE T. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref]

L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Tith, and S. Farsiu, “Sparsity based denoising of spectral domain optical coherence tomography images,” Biomed. Opt. Express 3(5), 927–942 (2012).
[Crossref] [PubMed]

Oh, W. Y.

Oh, W.-Y.

Otsuka, K.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Ozcan, A.

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. 24(7), 1901–1910 (2007).
[Crossref]

Palanisamy, P.

P. V. Sudeep, P. Palanisamy, J. Rajan, H. Baradaran, L. Saba, A. Gupta, and J. S. Suri, “Speckle reduction in medical ultrasound images using an unbiased non-local means method,” Biomedical Signal Processing and Control 28, 1–8 (2016).
[Crossref]

Pircher, M.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qin, M.

L. Wang, Z. Meng, X. S. Yao, T Liu, Y. Su, and M. Qin, “Adaptive speckle reduction in OCT volume data based on block-matching and 3-D filtering,” IEEE Photonic. Tech. L. 24(20), 1802–1804 (2012).
[Crossref]

Quan, Y.

J. Cheng, D. Tao, Y. Quan, D. W. Kee Wong, G. C. Ming Cheung, M. Akiba, and J. Liu, “Speckle reduction in 3D optical coherence tomography of retina by A-scan reconstruction,” IEEE T. Med. Imaging 35(10), 2270–2279 (2016).
[Crossref]

Radhakrishnan, H.

Rajan, J.

P. V. Sudeep, P. Palanisamy, J. Rajan, H. Baradaran, L. Saba, A. Gupta, and J. S. Suri, “Speckle reduction in medical ultrasound images using an unbiased non-local means method,” Biomedical Signal Processing and Control 28, 1–8 (2016).
[Crossref]

Rao, B.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Opt. Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, and B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage,” Opt. Express 34(10), 1516–1518 (2009).

Read, S. A.

D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Speckle reduction in optical coherence tomography imaging by affine-motion image registration,” J. Biomed. Opt. 16(11), 116027 (2011).
[Crossref] [PubMed]

Regar, E.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Reigber, A.

C.-A. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jäger, “NL-SAR: a unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising,” IEEE Geosci. Remote. S. 53(4), 2021–2038 (2015).
[Crossref]

Reintjes, J.

M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Express 25(8), 545–547 (2000).

Ren, J.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Restrepo, R.

C. Cuartas-Vélez, R. Restrepo, B. E. Bouma, and N. Uribe-Patarroyo, “Volumetric non-local-means based speckle reduction for optical coherence tomography,” figshare(2018) [retrieved 4 Apr 2018], https://doi.org/10.6084/m9.figshare.6089861.

Robles, M.

J. V. Manjón, P. Coupé, L. Martí-Bonmatí, D. L. Collins, and M. Robles, “Adaptive non-local means denoising of MR images with spatially varying noise levels,” J. Magn. Reson. Imaging 31, 192–203 (2010).
[Crossref]

Rollins, A. M.

M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express 16(16), 641–655 (2012).

C. M. Ambrosi, V. V. Fedorov, I. R. Efimov, R. B. Schuessler, and A. M. Rollins, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
[Crossref] [PubMed]

Romano, A.

T. E. de Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” International Journal of Retina and Vitreous 1(5), 5 (2015).
[Crossref] [PubMed]

Saba, L.

P. V. Sudeep, P. Palanisamy, J. Rajan, H. Baradaran, L. Saba, A. Gupta, and J. S. Suri, “Speckle reduction in medical ultrasound images using an unbiased non-local means method,” Biomedical Signal Processing and Control 28, 1–8 (2016).
[Crossref]

Sakadžic, S.

Sampson, D. D.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Schuessler, R. B.

C. M. Ambrosi, V. V. Fedorov, I. R. Efimov, R. B. Schuessler, and A. M. Rollins, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Scott Harris, R.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Sharma, P.

H. C. Wolfsen, P. Sharma, M. B. Wallace, C. Leggett, G. Tearney, and K. K. Wang, “Safety and feasibility of volumetric laser endomicroscopy in patients with Barret’s esophagus (with videos),” Gastrointest. Endosc. 82(4), 631 (2015).
[Crossref] [PubMed]

Sharma, U.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonic. Tech. L. 22(14), 1057–1059 (2010).
[Crossref]

Shin, S.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonic. Tech. L. 22(14), 1057–1059 (2010).
[Crossref]

Shishkov, M.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Sosnovik, D. E.

Srinivasan, P. P.

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Su, Y.

L. Wang, Z. Meng, X. S. Yao, T Liu, Y. Su, and M. Qin, “Adaptive speckle reduction in OCT volume data based on block-matching and 3-D filtering,” IEEE Photonic. Tech. L. 24(20), 1802–1804 (2012).
[Crossref]

Sudeep, P. V.

P. V. Sudeep, P. Palanisamy, J. Rajan, H. Baradaran, L. Saba, A. Gupta, and J. S. Suri, “Speckle reduction in medical ultrasound images using an unbiased non-local means method,” Biomedical Signal Processing and Control 28, 1–8 (2016).
[Crossref]

Suri, J. S.

P. V. Sudeep, P. Palanisamy, J. Rajan, H. Baradaran, L. Saba, A. Gupta, and J. S. Suri, “Speckle reduction in medical ultrasound images using an unbiased non-local means method,” Biomedical Signal Processing and Control 28, 1–8 (2016).
[Crossref]

Suter, M. J.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sylwesrtzak, M.

Szabari, M. V.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Szkulmowski, M.

Szlag, D.

Tan, J.

J. Yu, J. Tan, and Y. Wang, “Ultrasound speckle reduction by a SUSAN-controlled anisotropic diffusion method,” Pattern Recognition 43(9), 3083–3092 (2010).
[Crossref]

Tan, O.

Tao, D.

J. Cheng, D. Tao, Y. Quan, D. W. Kee Wong, G. C. Ming Cheung, M. Akiba, and J. Liu, “Speckle reduction in 3D optical coherence tomography of retina by A-scan reconstruction,” IEEE T. Med. Imaging 35(10), 2270–2279 (2016).
[Crossref]

Tearney, G.

H. C. Wolfsen, P. Sharma, M. B. Wallace, C. Leggett, G. Tearney, and K. K. Wang, “Safety and feasibility of volumetric laser endomicroscopy in patients with Barret’s esophagus (with videos),” Gastrointest. Endosc. 82(4), 631 (2015).
[Crossref] [PubMed]

Tearney, G. J.

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. 24(7), 1901–1910 (2007).
[Crossref]

A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. R. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express 15(10), 6200–6209 (2007).
[Crossref] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

Timischl, F.

F. Timischl, “The contrast-to-noise ratio for image quality evaluation in scanning electron microscopy,” Scanning 37, 54–62 (2015).
[Crossref]

Tith, C. A.

Tokayer, J.

Toth, C. A.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquision and reconstruction of optical coherence tomography images via sparse representation,” IEEE T. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref]

Tromberg, B. J.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Opt. Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, and B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage,” Opt. Express 34(10), 1516–1518 (2009).

Tu, H.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonic. Tech. L. 22(14), 1057–1059 (2010).
[Crossref]

Tupin, F.

C.-A. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jäger, “NL-SAR: a unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising,” IEEE Geosci. Remote. S. 53(4), 2021–2038 (2015).
[Crossref]

C.-A. Deledalle, L. Denis, and F. Tupin, “How to compare noisy patches? Patch similarity beyond Gaussian noise,” International Journal of Computer Vision 99(1), 86–102 (2012).
[Crossref]

C.-A. Deledalle, L. Denis, and F. Tupin, “Iterative weighted maximum likelihood denoising with probabilistic patch-based weights,” IEEE T. Image Process. 18(12), 2661–2672 (2009).
[Crossref]

Uribe-Patarroyo, N.

N. Uribe-Patarroyo and B. E. Bouma, “Rotational distortion correction in endoscopic optical coherence tomography based on speckle decorrelation,” Opt. Lett. 40(23), 5518–5521 (2015).
[Crossref] [PubMed]

C. Cuartas-Vélez, R. Restrepo, B. E. Bouma, and N. Uribe-Patarroyo, “Volumetric non-local-means based speckle reduction for optical coherence tomography,” figshare(2018) [retrieved 4 Apr 2018], https://doi.org/10.6084/m9.figshare.6089861.

Vakoc, B. J.

van Geuns, R.-J.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

van Soest, G.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Villiger, M.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Waheed, N. K.

T. E. de Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” International Journal of Retina and Vitreous 1(5), 5 (2015).
[Crossref] [PubMed]

Wallace, M. B.

H. C. Wolfsen, P. Sharma, M. B. Wallace, C. Leggett, G. Tearney, and K. K. Wang, “Safety and feasibility of volumetric laser endomicroscopy in patients with Barret’s esophagus (with videos),” Gastrointest. Endosc. 82(4), 631 (2015).
[Crossref] [PubMed]

Wang, K. K.

H. C. Wolfsen, P. Sharma, M. B. Wallace, C. Leggett, G. Tearney, and K. K. Wang, “Safety and feasibility of volumetric laser endomicroscopy in patients with Barret’s esophagus (with videos),” Gastrointest. Endosc. 82(4), 631 (2015).
[Crossref] [PubMed]

Wang, L.

L. Wang, Z. Meng, X. S. Yao, T Liu, Y. Su, and M. Qin, “Adaptive speckle reduction in OCT volume data based on block-matching and 3-D filtering,” IEEE Photonic. Tech. L. 24(20), 1802–1804 (2012).
[Crossref]

Wang, Y.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

J. Yu, J. Tan, and Y. Wang, “Ultrasound speckle reduction by a SUSAN-controlled anisotropic diffusion method,” Pattern Recognition 43(9), 3083–3092 (2010).
[Crossref]

Wilson, D. L.

M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express 16(16), 641–655 (2012).

Wojtkoski, M.

Wojtkowski, M.

Wolfsen, H. C.

H. C. Wolfsen, P. Sharma, M. B. Wallace, C. Leggett, G. Tearney, and K. K. Wang, “Safety and feasibility of volumetric laser endomicroscopy in patients with Barret’s esophagus (with videos),” Gastrointest. Endosc. 82(4), 631 (2015).
[Crossref] [PubMed]

Wong, A.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Xu, Y.

X. Zhang, G. Hou, J. Ma, W. Yang, B. Lin, Y. Xu, W. Chen, and Y. Feng, “Denoising MR images using non-local means filter with combined patch and pixel similarity,” PLOS ONE 9(6), e100240 (2014).
[Crossref] [PubMed]

Xue, P.

Yang, W.

X. Zhang, G. Hou, J. Ma, W. Yang, B. Lin, Y. Xu, W. Chen, and Y. Feng, “Denoising MR images using non-local means filter with combined patch and pixel similarity,” PLOS ONE 9(6), e100240 (2014).
[Crossref] [PubMed]

Yao, X. S.

L. Wang, Z. Meng, X. S. Yao, T Liu, Y. Su, and M. Qin, “Adaptive speckle reduction in OCT volume data based on block-matching and 3-D filtering,” IEEE Photonic. Tech. L. 24(20), 1802–1804 (2012).
[Crossref]

Yarmush, M.

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Yasuno, Y.

Yin, D.

Yu, H.

H. Yu, J. Gao, and A. Li, “Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images,” Opt. Express 41(5), 994–997 (2016).

Yu, J.

J. Yu, J. Tan, and Y. Wang, “Ultrasound speckle reduction by a SUSAN-controlled anisotropic diffusion method,” Pattern Recognition 43(9), 3083–3092 (2010).
[Crossref]

Yu, L.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Opt. Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, and B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage,” Opt. Express 34(10), 1516–1518 (2009).

Yu, Z.

Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, and B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage,” Opt. Express 34(10), 1516–1518 (2009).

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Zhang, E. Z.

Zhang, X.

Y. Gu and X. Zhang, “Spiking cortical model based non-local means method for despeckling multiframe optical coherence tomography data,” Laser Phys. Lett. 14, 056201 (2017).
[Crossref]

X. Zhang, G. Hou, J. Ma, W. Yang, B. Lin, Y. Xu, W. Chen, and Y. Feng, “Denoising MR images using non-local means filter with combined patch and pixel similarity,” PLOS ONE 9(6), e100240 (2014).
[Crossref] [PubMed]

Zhu, Y. K.

B. Chong and Y. K. Zhu, “Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified BM3D filter,” Opt. Commun. 291, 461–469 (2013).
[Crossref]

Zijlstra, F.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

Appl. Opt. (1)

Biomed. Opt. Express (4)

Biomedical Signal Processing and Control (1)

P. V. Sudeep, P. Palanisamy, J. Rajan, H. Baradaran, L. Saba, A. Gupta, and J. S. Suri, “Speckle reduction in medical ultrasound images using an unbiased non-local means method,” Biomedical Signal Processing and Control 28, 1–8 (2016).
[Crossref]

Gastrointest. Endosc. (1)

H. C. Wolfsen, P. Sharma, M. B. Wallace, C. Leggett, G. Tearney, and K. K. Wang, “Safety and feasibility of volumetric laser endomicroscopy in patients with Barret’s esophagus (with videos),” Gastrointest. Endosc. 82(4), 631 (2015).
[Crossref] [PubMed]

IEEE Geosci. Remote. S. (2)

C.-A. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jäger, “NL-SAR: a unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising,” IEEE Geosci. Remote. S. 53(4), 2021–2038 (2015).
[Crossref]

F. Argenti, A. Lapini, T. Bianchi, and L. Alparone, “A tutorial on speckle reduction in synthetic aperture radar images,” IEEE Geosci. Remote. S. 1(3), 6–35 (2013).
[Crossref]

IEEE Photonic. Tech. L. (2)

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonic. Tech. L. 22(14), 1057–1059 (2010).
[Crossref]

L. Wang, Z. Meng, X. S. Yao, T Liu, Y. Su, and M. Qin, “Adaptive speckle reduction in OCT volume data based on block-matching and 3-D filtering,” IEEE Photonic. Tech. L. 24(20), 1802–1804 (2012).
[Crossref]

IEEE T. Image Process. (2)

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE T. Image Process. 16(8), 2080–2095 (2007).
[Crossref]

C.-A. Deledalle, L. Denis, and F. Tupin, “Iterative weighted maximum likelihood denoising with probabilistic patch-based weights,” IEEE T. Image Process. 18(12), 2661–2672 (2009).
[Crossref]

IEEE T. Med. Imaging (3)

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquision and reconstruction of optical coherence tomography images via sparse representation,” IEEE T. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref]

L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE T. Med. Imaging 16(2), 407–421 (2017).
[Crossref]

J. Cheng, D. Tao, Y. Quan, D. W. Kee Wong, G. C. Ming Cheung, M. Akiba, and J. Liu, “Speckle reduction in 3D optical coherence tomography of retina by A-scan reconstruction,” IEEE T. Med. Imaging 35(10), 2270–2279 (2016).
[Crossref]

International Journal of Computer Vision (1)

C.-A. Deledalle, L. Denis, and F. Tupin, “How to compare noisy patches? Patch similarity beyond Gaussian noise,” International Journal of Computer Vision 99(1), 86–102 (2012).
[Crossref]

International Journal of Retina and Vitreous (1)

T. E. de Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” International Journal of Retina and Vitreous 1(5), 5 (2015).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Speckle reduction in optical coherence tomography imaging by affine-motion image registration,” J. Biomed. Opt. 16(11), 116027 (2011).
[Crossref] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003).
[Crossref] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

C. M. Ambrosi, V. V. Fedorov, I. R. Efimov, R. B. Schuessler, and A. M. Rollins, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt. 17(7), 071309 (2012).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

J. Magn. Reson. Imaging (1)

J. V. Manjón, P. Coupé, L. Martí-Bonmatí, D. L. Collins, and M. Robles, “Adaptive non-local means denoising of MR images with spatially varying noise levels,” J. Magn. Reson. Imaging 31, 192–203 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. 24(7), 1901–1910 (2007).
[Crossref]

J. Opt. Soc. Am. A (2)

Laser Phys. Lett. (1)

Y. Gu and X. Zhang, “Spiking cortical model based non-local means method for despeckling multiframe optical coherence tomography data,” Laser Phys. Lett. 14, 056201 (2017).
[Crossref]

Multiscale Model. Simul. (1)

A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4(2), 490–530 (2005).
[Crossref]

Opt. Commun. (1)

B. Chong and Y. K. Zhu, “Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified BM3D filter,” Opt. Commun. 291, 461–469 (2013).
[Crossref]

Opt. Express (12)

Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, and B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage,” Opt. Express 34(10), 1516–1518 (2009).

M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Express 25(8), 545–547 (2000).

H. Yu, J. Gao, and A. Li, “Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images,” Opt. Express 41(5), 994–997 (2016).

M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express 16(16), 641–655 (2012).

M. Szkulmowski and M. Wojtkoski, “Averaging techniques for OCT imaging,” Opt. Express 21(8), 9757–9773 (2013).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

S. Makita, F. Jaillon, I. Jahan, and Y. Yasuno, “Noise statistics of phase-resolved optical coherence tomography imaging: single- and dual-beam-scan Doppler optical coherence tomography,” Opt. Express 22(4), 4830–4848 (2012).
[Crossref]

A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. R. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express 15(10), 6200–6209 (2007).
[Crossref] [PubMed]

Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007).
[Crossref] [PubMed]

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Opt. Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express 18(8), 8338–8352 (2010).
[Crossref] [PubMed]

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwesrtzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express 20(2), 1337–1359 (2012).
[Crossref] [PubMed]

Opt. Lett. (4)

Pattern Recognition (1)

J. Yu, J. Tan, and Y. Wang, “Ultrasound speckle reduction by a SUSAN-controlled anisotropic diffusion method,” Pattern Recognition 43(9), 3083–3092 (2010).
[Crossref]

PLOS ONE (1)

X. Zhang, G. Hou, J. Ma, W. Yang, B. Lin, Y. Xu, W. Chen, and Y. Feng, “Denoising MR images using non-local means filter with combined patch and pixel similarity,” PLOS ONE 9(6), e100240 (2014).
[Crossref] [PubMed]

Scanning (1)

F. Timischl, “The contrast-to-noise ratio for image quality evaluation in scanning electron microscopy,” Scanning 37, 54–62 (2015).
[Crossref]

Sci. Transl. Med. (1)

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (5)

K. Lu, N. He, and L. Li, “Nonlocal means-based denoising for medical images,” Hindawi Publishing Corporation2012, 438617 (2012).

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: A new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec. (2017).

“NvisionVLETM Registry System Registry,” (2014–2018), https://clinicaltrials.gov/ct2/show/NCT02215291 .

C. Cuartas-Vélez, R. Restrepo, B. E. Bouma, and N. Uribe-Patarroyo, “Volumetric non-local-means based speckle reduction for optical coherence tomography,” figshare(2018) [retrieved 4 Apr 2018], https://doi.org/10.6084/m9.figshare.6089861.

J. W. Goodman, Speckle phenomena in optics (W. H. Freeman, 2010).

Supplementary Material (4)

NameDescription
» Code 1       MATLAB implementation of the Toographic Non-local despeckling (TNode) technique.
» Visualization 1       Despeckled eye scan cross-section comparison.
» Visualization 2       Single and multiple speckle realization comparison after despeckling with TNode.
» Visualization 3       Despeckled GI-OCT cross-section comparison after TNode.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 One-dimensional structures in OCT have speckle-sized appearance in single cross-sections. Filtering techniques are therefore incapable of distinguish between bright contrast speckle and retinal structures. The proposed 3D similarity window considers the volumetric nature of structures with 3D similarity windows and a 2D or 3D search windows.
Fig. 2
Fig. 2 Representation of the gamma probability density function in Eq. (2) obtained when averaging L realizations of speckle (a). Patch comparison performed in NLM algorithms (b): multiple patches are compared and the probability of having a common underlying object is measured with the GLR to produce the averaged intensity. Patches and their distances are for illustrative purposes; actual patches are 3D and generally comprise only a few pixels per dimension.
Fig. 3
Fig. 3 Native single-look cross-sectional view of human retina in vivo (a) and corresponding images despeckled with (b) OOPA, (c) PNLM, (d) BM3D, (e) TNode 2D and (f) TNode 3D. The insets at right are organized in the same order. See Visualization 1 for a comparison of the full tomogram.
Fig. 4
Fig. 4 Orthogonal views of tomograms before (a) and after despeckling using OOPA (b) and TNode 3D (c). TNode preserves the two speckle-sized vessels shown in the red box as two independent structures, while OOPA merges them into a single structure. Resolution in the yz projection (small blood vessel in blue box) is mostly preserved in TNode. Scale bars correspond to 300μm in each direction.
Fig. 5
Fig. 5 En-face view comparison of a single layer in the outer plexiform layer with single and multilook tomograms: singlelook (a) and multilook (b) tomograms with speckle, and corresponding singlelook (c) and multilook (d) after using TNode 3D. Boxes highlight structures corrupted by speckle that appear clearer after TNode. See Visualization 2 for a comparison of the tomogram.
Fig. 6
Fig. 6 GI-OCT cross-section comparison of data with speckle (a) and after using OOPA (b), PNLM (c) and TNode 3D (d). TNode exhibits a superior despeckling performance at all SNRs. See Visualization 3 for a comparison of the 300 B-scans.
Fig. 7
Fig. 7 Tomogram of the phantom: (a) cellulose structure immersed in water, (b) single cross-section of the cellulose structure immersed in 0.3% intralipid, and results after despeckling with (c) OOPA, (d) BM3D, (e) PNLM, (f) TNode 2D and (g) TNode 3D. Scale bars are 300 μm for all axes.
Fig. 8
Fig. 8 Region B in Fig. 7 despeckled with different concentrations of intralipid (IL) (a), and intensity line profiles (in linear scale) at 0.3% intralipid concentration (b).

Tables (1)

Tables Icon

Table 1 Comparison of the performance of despeckling techniques in terms of contrast, CNR and ENL for the three concentrations.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

p [ I ( x ) | θ ( x ) ] = 1 θ ( x ) exp { I ( x ) θ ( x ) } ,
p [ I ( x ) | θ ( x ) ] = L L Γ ( L ) θ ( x ) L I ( x ) L 1 exp { L I ( x ) θ ( x ) } ,
0 : θ ( x ) = θ ( x ) θ ( x , x ) ( null hypothesis ) ,
1 : θ ( x ) θ ( x ) ( alternative hypothesis ) .
Δ ( x , x ) = q x q x log { 𝒞 r [ I ( q ) , I ( q ) ] } ,
[ I ( x ) , I ( x ) ] = p [ I ( x ) ; θ ( x , x ) ] p [ I ( x ) ; θ ( x , x ) ] p [ I ( x ) ; θ ( x ) ] p [ I ( x ) ; θ ( x ) ] ,
G [ I ( x ) , I ( x ) ] = p [ I ( x ) ; θ ( x , x ) = t ^ 1 , 2 ] p [ I ( x ) ; θ ( x , x ) = t ^ 1 , 2 ] p [ I ( x ) ; θ ( x , x ) = t ^ 1 ] p [ I ( x ) ; θ ( x ) = t ^ 2 ] .
G [ I ( x ) , I ( x ) ] = ( I ( x ) I ( x ) { 1 2 [ I ( x ) + I ( x ) ] } 2 ) L .
Δ ( x , x ) = τ p log ( G [ I ( x + τ ) , I ( x + τ ) ] ) ,
w ( x , x ) = exp [ Δ ( x , x ) h ] ,
I ^ ( x ) = x v w ( x , x ) I ( x ) x v w ( x , x ) .
w ( x A , x B ) = exp { 1 h [ log ( G [ I ( x A 1 ) , I ( x B 1 ) ] ) + log ( G [ I ( x A 2 ) , I ( x B 2 ) ] ) ] } = ( G [ I ( x A 1 ) , I ( x B 1 ) ] ) 1 / h ( G [ I ( x A 2 ) , I ( x B 2 ) ] ) 1 / h .
h = h 0 + h 1 1 + 1 SNR ,

Metrics