Abstract

An optical technique based on diffuse reflectance measurement combined with indocyanine green (ICG) bolus tracking is extensively tested as a method for the clinical assessment of brain perfusion at the bedside. We report on multiwavelength time-resolved diffuse reflectance spectroscopy measurements carried out on the head of a healthy adult during the intravenous administration of a bolus of ICG. Intracerebral and extracerebral changes in absorption were estimated from an analysis of changes in statistical moments (total number of photons, mean time of flight and variance) of the distributions of times of flight (DTOF) of photons recorded simultaneously at 16 wavelengths from the range of 650–850 nm using sensitivity factors estimated by diffusion approximation based on a layered model of the studied medium. We validated the proposed method in a series of phantom experiments and in-vivo measurements. The results obtained show that changes in the concentration of the ICG can be assessed as a function of time of the experiment and depth in the tissue. Thus, the separation of changes in ICG concentration appearing in intra- and extracerebral tissues can be estimated from optical data acquired at a single source-detector pair of fibers/fiber bundles positioned on the surface of the head.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons

Adam Liebert, Heidrun Wabnitz, Jens Steinbrink, Hellmuth Obrig, Michael Möller, Rainer Macdonald, Arno Villringer, and Herbert Rinneberg
Appl. Opt. 43(15) 3037-3047 (2004)

Theoretical investigation of measuring cerebral blood flow in the adult human head using bolus Indocyanine Green injection and near-infrared spectroscopy

Terence S. Leung, Ilias Tachtsidis, Martin Tisdall, Martin Smith, David T. Delpy, and Clare E. Elwell
Appl. Opt. 46(10) 1604-1614 (2007)

Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG

Christina Habermehl, Christoph H. Schmitz, and Jens Steinbrink
Opt. Express 19(19) 18636-18644 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
    [Crossref] [PubMed]
  2. M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol. 29(4), 463–487 (2004).
    [Crossref] [PubMed]
  3. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
    [Crossref] [PubMed]
  4. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
    [Crossref] [PubMed]
  5. J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(Suppl 1), i3–i13 (2009).
    [Crossref] [PubMed]
  6. H. Obrig, “NIRS in clinical neurology - a ‘promising’ tool?” Neuroimage 85(Pt 1), 535–546 (2014).
    [Crossref] [PubMed]
  7. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(1), 6–27 (2014).
    [Crossref] [PubMed]
  8. M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5), 546–551 (2007).
    [Crossref] [PubMed]
  9. M. Wolf, M. Franceschini, L. Paunescu, V. Toronov, A. Michalos, U. Wolf, E. Gratton, and S. Fantini, “Absolute Frequency-Domain Pulse Oximetry of the Brain: Methodology and Measurements,” in Oxygen Transport to Tissue XXIV, J. Dunn and H. Swartz, eds. (Springer US, 2003), pp. 61–73.
  10. J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
    [Crossref] [PubMed]
  11. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
    [Crossref] [PubMed]
  12. H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
    [Crossref] [PubMed]
  13. I. Schelkanova and V. Toronov, “Optimal quantitation of the cerebral hemodynamic response in functional near-infrared spectroscopy,” Opt. Express 18(18), 19386–19395 (2010).
    [Crossref] [PubMed]
  14. J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt. 14(5), 054032 (2009).
    [Crossref] [PubMed]
  15. P. G. al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Preliminary evaluation of a prototype spatially resolved spectrometer,” Acta Neurochir. Suppl. (Wien) 71, 255–257 (1998).
    [PubMed]
  16. D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46(1), 41–62 (2001).
    [Crossref] [PubMed]
  17. M. Diop, J. T. Elliott, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
    [Crossref] [PubMed]
  18. J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, and W. M. Kuebler, “Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass,” J. Thorac. Cardiovasc. Surg. 132(5), 1172–1178 (2006).
    [Crossref] [PubMed]
  19. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
    [Crossref] [PubMed]
  20. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
    [Crossref] [PubMed]
  21. A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt. 17(5), 057005 (2012).
    [Crossref] [PubMed]
  22. J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express 15(25), 16400–16412 (2007).
    [Crossref] [PubMed]
  23. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 11013 (2005).
    [Crossref] [PubMed]
  24. H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
    [Crossref] [PubMed]
  25. A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, A. Planat-Chrétien, A. Koenig, G. Boso, A. Tosi, L. Hervé, and J. M. Dinten, “Spatial resolution in depth for time-resolved diffuse optical tomography using short source-detector separations,” Biomed. Opt. Express 6(1), 1–10 (2014).
    [Crossref] [PubMed]
  26. A. Puszka, L. Hervé, A. Planat-Chrétien, A. Koenig, J. Derouard, and J. M. Dinten, “Time-domain reflectance diffuse optical tomography with Mellin-Laplace transform for experimental detection and depth localization of a single absorbing inclusion,” Biomed. Opt. Express 4(4), 569–583 (2013).
    [Crossref] [PubMed]
  27. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
    [Crossref] [PubMed]
  28. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
    [Crossref] [PubMed]
  29. D. Milej, A. Abdalmalak, P. McLachlan, M. Diop, A. Liebert, and K. St Lawrence, “Subtraction-based approach for enhancing the depth sensitivity of time-resolved NIRS,” Biomed. Opt. Express 7(11), 4514–4526 (2016).
    [Crossref] [PubMed]
  30. D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
    [Crossref] [PubMed]
  31. C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
    [PubMed]
  32. W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
    [Crossref] [PubMed]
  33. P. Hopton, T. S. Walsh, and A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” J. Appl. Physiol. 87(5), 1981–1987 (1999).
    [Crossref] [PubMed]
  34. D. Milej, A. Abdalmalak, L. Desjardins, H. Ahmed, T. Y. Lee, M. Diop, and K. S. Lawrence, “Quantification of blood-brain barrier permeability by dynamic contrast-enhanced NIRS,” Sci. Rep. 7(1), 1702 (2017).
    [Crossref] [PubMed]
  35. V. Toronov, J. Elliott, T.-Y. Lee, and K. S. Lawrence, “Depth-resolved quantitative measurement of cerebral blood flow using broad-band near infrared spectroscopy and a two-layer head model,” in Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2011), 80881J.
  36. A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24(2), 426–435 (2005).
    [Crossref] [PubMed]
  37. O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
    [Crossref] [PubMed]
  38. M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
    [Crossref] [PubMed]
  39. W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage 85(Pt 1), 555–565 (2014).
    [Crossref] [PubMed]
  40. W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
    [Crossref] [PubMed]
  41. J. T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. B. Morrison, T.-Y. Lee, A. Liebert, and K. St Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs,” Biomed. Opt. Express 4(2), 206–218 (2013).
    [Crossref] [PubMed]
  42. F. Vaudelle and J.-P. L’Huillier, “Time-resolved optical fluorescence spectroscopy of heterogeneous turbid media with special emphasis on brain tissue structures including diseased regions: A sensitivity analysis,” Opt. Commun. 304, 161–168 (2013).
    [Crossref]
  43. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
    [Crossref] [PubMed]
  44. M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
    [Crossref] [PubMed]
  45. W. Becker, Advanced time-correlated single photon counting techniques (Springer, Berlin, Heidelberg, New York, 2005).
  46. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
    [Crossref] [PubMed]
  47. M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
    [Crossref] [PubMed]
  48. A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
    [Crossref] [PubMed]
  49. P. Sawosz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement,” Phys. Med. Biol. 57(23), 7973–7981 (2012).
    [Crossref] [PubMed]
  50. J. T. Elliott, M. Diop, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 037014 (2010).
    [Crossref] [PubMed]
  51. A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
    [Crossref] [PubMed]
  52. D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
    [Crossref] [PubMed]
  53. R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
    [Crossref] [PubMed]
  54. I. Schelkanova and V. Toronov, “Independent component analysis of broadband near-infrared spectroscopy data acquired on adult human head,” Biomed. Opt. Express 3(1), 64–74 (2012).
    [Crossref] [PubMed]
  55. D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, A. Sparén, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express 21(18), 20941–20953 (2013).
    [Crossref] [PubMed]
  56. C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
    [Crossref] [PubMed]
  57. A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29(20), 2405–2407 (2004).
    [Crossref] [PubMed]
  58. A. Torricelli, D. Contini, A. Pifferi, L. Spinelli, and R. Cubeddu, “Functional brain imaging by multi-wavelength time-resolved near infrared spectroscopy,” Opto-Electron. Rev. 16(2), 131 (2008).
    [Crossref]
  59. L. Dunne, J. Hebden, and I. Tachtsidis, “Development of a Near Infrared Multi-Wavelength, Multi-Channel, Time-Resolved Spectrometer for Measuring Brain Tissue Haemodynamics and Metabolism,” Adv. Exp. Med. Biol. 812, 181–186 (2014).
    [Crossref] [PubMed]
  60. A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
    [Crossref] [PubMed]
  61. M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33(10), 1963–1974 (1994).
    [Crossref] [PubMed]
  62. O. Steinkellner, H. Wabnitz, A. Jelzow, R. Macdonald, C. Gruber, J. Steinbrink, and H. Obrig, “Cerebral Perfusion in Acute Stroke Monitored by Time-domain Near-infrared Reflectometry,” Biocybern. Biomed. Eng. 32(1), 3–16 (2012).
    [Crossref]

2018 (1)

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

2017 (1)

D. Milej, A. Abdalmalak, L. Desjardins, H. Ahmed, T. Y. Lee, M. Diop, and K. S. Lawrence, “Quantification of blood-brain barrier permeability by dynamic contrast-enhanced NIRS,” Sci. Rep. 7(1), 1702 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (1)

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

2014 (6)

L. Dunne, J. Hebden, and I. Tachtsidis, “Development of a Near Infrared Multi-Wavelength, Multi-Channel, Time-Resolved Spectrometer for Measuring Brain Tissue Haemodynamics and Metabolism,” Adv. Exp. Med. Biol. 812, 181–186 (2014).
[Crossref] [PubMed]

A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, A. Planat-Chrétien, A. Koenig, G. Boso, A. Tosi, L. Hervé, and J. M. Dinten, “Spatial resolution in depth for time-resolved diffuse optical tomography using short source-detector separations,” Biomed. Opt. Express 6(1), 1–10 (2014).
[Crossref] [PubMed]

H. Obrig, “NIRS in clinical neurology - a ‘promising’ tool?” Neuroimage 85(Pt 1), 535–546 (2014).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(1), 6–27 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage 85(Pt 1), 555–565 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (7)

O. Steinkellner, H. Wabnitz, A. Jelzow, R. Macdonald, C. Gruber, J. Steinbrink, and H. Obrig, “Cerebral Perfusion in Acute Stroke Monitored by Time-domain Near-infrared Reflectometry,” Biocybern. Biomed. Eng. 32(1), 3–16 (2012).
[Crossref]

I. Schelkanova and V. Toronov, “Independent component analysis of broadband near-infrared spectroscopy data acquired on adult human head,” Biomed. Opt. Express 3(1), 64–74 (2012).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
[Crossref] [PubMed]

P. Sawosz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement,” Phys. Med. Biol. 57(23), 7973–7981 (2012).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt. 17(5), 057005 (2012).
[Crossref] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

2011 (2)

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
[Crossref] [PubMed]

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref] [PubMed]

2010 (5)

I. Schelkanova and V. Toronov, “Optimal quantitation of the cerebral hemodynamic response in functional near-infrared spectroscopy,” Opt. Express 18(18), 19386–19395 (2010).
[Crossref] [PubMed]

H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
[Crossref] [PubMed]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref] [PubMed]

J. T. Elliott, M. Diop, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 037014 (2010).
[Crossref] [PubMed]

2009 (3)

J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt. 14(5), 054032 (2009).
[Crossref] [PubMed]

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(Suppl 1), i3–i13 (2009).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

2008 (2)

A. Torricelli, D. Contini, A. Pifferi, L. Spinelli, and R. Cubeddu, “Functional brain imaging by multi-wavelength time-resolved near infrared spectroscopy,” Opto-Electron. Rev. 16(2), 131 (2008).
[Crossref]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

2007 (3)

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref] [PubMed]

J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express 15(25), 16400–16412 (2007).
[Crossref] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5), 546–551 (2007).
[Crossref] [PubMed]

2006 (3)

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref] [PubMed]

J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, and W. M. Kuebler, “Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass,” J. Thorac. Cardiovasc. Surg. 132(5), 1172–1178 (2006).
[Crossref] [PubMed]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
[Crossref] [PubMed]

2005 (2)

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24(2), 426–435 (2005).
[Crossref] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 11013 (2005).
[Crossref] [PubMed]

2004 (4)

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol. 29(4), 463–487 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29(20), 2405–2407 (2004).
[Crossref] [PubMed]

2003 (2)

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

2002 (1)

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

2001 (2)

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46(1), 41–62 (2001).
[Crossref] [PubMed]

1999 (2)

P. Hopton, T. S. Walsh, and A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” J. Appl. Physiol. 87(5), 1981–1987 (1999).
[Crossref] [PubMed]

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

1998 (2)

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

P. G. al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Preliminary evaluation of a prototype spatially resolved spectrometer,” Acta Neurochir. Suppl. (Wien) 71, 255–257 (1998).
[PubMed]

1994 (1)

1988 (1)

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[Crossref] [PubMed]

1976 (1)

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[Crossref] [PubMed]

Aalders, M. C.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Abdalmalak, A.

Ahmed, H.

D. Milej, A. Abdalmalak, L. Desjardins, H. Ahmed, T. Y. Lee, M. Diop, and K. S. Lawrence, “Quantification of blood-brain barrier permeability by dynamic contrast-enhanced NIRS,” Sci. Rep. 7(1), 1702 (2017).
[Crossref] [PubMed]

al-Rawi, P. G.

P. G. al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Preliminary evaluation of a prototype spatially resolved spectrometer,” Acta Neurochir. Suppl. (Wien) 71, 255–257 (1998).
[PubMed]

Andersson-Engels, S.

Arango, M.

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(Suppl 1), i3–i13 (2009).
[Crossref] [PubMed]

Arvin, K.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5), 546–551 (2007).
[Crossref] [PubMed]

Ballesteros, J. R.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46(1), 41–62 (2001).
[Crossref] [PubMed]

Bassi, A.

Boas, D. A.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5), 546–551 (2007).
[Crossref] [PubMed]

J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express 15(25), 16400–16412 (2007).
[Crossref] [PubMed]

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 11013 (2005).
[Crossref] [PubMed]

Borowska-Solonynko, A.

P. Sawosz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement,” Phys. Med. Biol. 57(23), 7973–7981 (2012).
[Crossref] [PubMed]

Bortfeld, H.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5), 546–551 (2007).
[Crossref] [PubMed]

Boso, G.

Botwicz, M.

W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage 85(Pt 1), 555–565 (2014).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
[Crossref] [PubMed]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
[Crossref] [PubMed]

Bramer, S.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Caffini, M.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

Chance, B.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46(1), 41–62 (2001).
[Crossref] [PubMed]

Chauchard, F.

H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
[Crossref] [PubMed]

Ciszek, B.

P. Sawosz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement,” Phys. Med. Biol. 57(23), 7973–7981 (2012).
[Crossref] [PubMed]

Contini, D.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, A. Planat-Chrétien, A. Koenig, G. Boso, A. Tosi, L. Hervé, and J. M. Dinten, “Spatial resolution in depth for time-resolved diffuse optical tomography using short source-detector separations,” Biomed. Opt. Express 6(1), 1–10 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, L. Spinelli, and R. Cubeddu, “Functional brain imaging by multi-wavelength time-resolved near infrared spectroscopy,” Opto-Electron. Rev. 16(2), 131 (2008).
[Crossref]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
[Crossref] [PubMed]

Cope, M.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[Crossref] [PubMed]

Cova, S.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Cross, F. W.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Cubeddu, R.

A. Torricelli, D. Contini, A. Pifferi, L. Spinelli, and R. Cubeddu, “Functional brain imaging by multi-wavelength time-resolved near infrared spectroscopy,” Opto-Electron. Rev. 16(2), 131 (2008).
[Crossref]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
[Crossref] [PubMed]

A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29(20), 2405–2407 (2004).
[Crossref] [PubMed]

D’Andrea, C.

Dale, A. M.

Dalla Mora, A.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Dehghani, H.

H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
[Crossref] [PubMed]

Delpy, D. T.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[Crossref] [PubMed]

Derouard, J.

Desjardins, L.

D. Milej, A. Abdalmalak, L. Desjardins, H. Ahmed, T. Y. Lee, M. Diop, and K. S. Lawrence, “Quantification of blood-brain barrier permeability by dynamic contrast-enhanced NIRS,” Sci. Rep. 7(1), 1702 (2017).
[Crossref] [PubMed]

Di Sieno, L.

Diamond, S. G.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5), 546–551 (2007).
[Crossref] [PubMed]

Dinten, J. M.

Diop, M.

D. Milej, A. Abdalmalak, L. Desjardins, H. Ahmed, T. Y. Lee, M. Diop, and K. S. Lawrence, “Quantification of blood-brain barrier permeability by dynamic contrast-enhanced NIRS,” Sci. Rep. 7(1), 1702 (2017).
[Crossref] [PubMed]

D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
[Crossref] [PubMed]

D. Milej, A. Abdalmalak, P. McLachlan, M. Diop, A. Liebert, and K. St Lawrence, “Subtraction-based approach for enhancing the depth sensitivity of time-resolved NIRS,” Biomed. Opt. Express 7(11), 4514–4526 (2016).
[Crossref] [PubMed]

J. T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. B. Morrison, T.-Y. Lee, A. Liebert, and K. St Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs,” Biomed. Opt. Express 4(2), 206–218 (2013).
[Crossref] [PubMed]

J. T. Elliott, M. Diop, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 037014 (2010).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

Doornbos, R. M.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Dunne, L.

L. Dunne, J. Hebden, and I. Tachtsidis, “Development of a Near Infrared Multi-Wavelength, Multi-Channel, Time-Resolved Spectrometer for Measuring Brain Tissue Haemodynamics and Metabolism,” Adv. Exp. Med. Biol. 812, 181–186 (2014).
[Crossref] [PubMed]

Elliott, J. T.

J. T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. B. Morrison, T.-Y. Lee, A. Liebert, and K. St Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs,” Biomed. Opt. Express 4(2), 206–218 (2013).
[Crossref] [PubMed]

J. T. Elliott, M. Diop, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 037014 (2010).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

Elster, C.

A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt. 17(5), 057005 (2012).
[Crossref] [PubMed]

Fantini, S.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46(1), 41–62 (2001).
[Crossref] [PubMed]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol. 29(4), 463–487 (2004).
[Crossref] [PubMed]

Fiebach, J. B.

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref] [PubMed]

Fischer, T.

J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, and W. M. Kuebler, “Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass,” J. Thorac. Cardiovasc. Surg. 132(5), 1172–1178 (2006).
[Crossref] [PubMed]

Franceschini, M. A.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5), 546–551 (2007).
[Crossref] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 11013 (2005).
[Crossref] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46(1), 41–62 (2001).
[Crossref] [PubMed]

Fronczewska, K.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
[Crossref] [PubMed]

Gabrusiewicz, A.

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

Gerega, A.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage 85(Pt 1), 555–565 (2014).
[Crossref] [PubMed]

J. T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. B. Morrison, T.-Y. Lee, A. Liebert, and K. St Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs,” Biomed. Opt. Express 4(2), 206–218 (2013).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
[Crossref] [PubMed]

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref] [PubMed]

Giusto, A.

Goetz, A. E.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Grant, P. E.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5), 546–551 (2007).
[Crossref] [PubMed]

Grosenick, D.

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

Gruber, C.

O. Steinkellner, H. Wabnitz, A. Jelzow, R. Macdonald, C. Gruber, J. Steinbrink, and H. Obrig, “Cerebral Perfusion in Acute Stroke Monitored by Time-domain Near-infrared Reflectometry,” Biocybern. Biomed. Eng. 32(1), 3–16 (2012).
[Crossref]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref] [PubMed]

Habler, O.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Harscher, S.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Hebden, J.

L. Dunne, J. Hebden, and I. Tachtsidis, “Development of a Near Infrared Multi-Wavelength, Multi-Channel, Time-Resolved Spectrometer for Measuring Brain Tissue Haemodynamics and Metabolism,” Adv. Exp. Med. Biol. 812, 181–186 (2014).
[Crossref] [PubMed]

Hervé, L.

Hetzer, R.

J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, and W. M. Kuebler, “Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass,” J. Thorac. Cardiovasc. Surg. 132(5), 1172–1178 (2006).
[Crossref] [PubMed]

Hopton, P.

P. Hopton, T. S. Walsh, and A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” J. Appl. Physiol. 87(5), 1981–1987 (1999).
[Crossref] [PubMed]

Hueber, D. M.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46(1), 41–62 (2001).
[Crossref] [PubMed]

Janusek, D.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

Jelzow, A.

O. Steinkellner, H. Wabnitz, A. Jelzow, R. Macdonald, C. Gruber, J. Steinbrink, and H. Obrig, “Cerebral Perfusion in Acute Stroke Monitored by Time-domain Near-infrared Reflectometry,” Biocybern. Biomed. Eng. 32(1), 3–16 (2012).
[Crossref]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref] [PubMed]

Johansson, J.

Johansson, S.

Joseph, D. K.

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref] [PubMed]

Kacprzak, M.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage 85(Pt 1), 555–565 (2014).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

P. Sawosz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement,” Phys. Med. Biol. 57(23), 7973–7981 (2012).
[Crossref] [PubMed]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref] [PubMed]

Khoptyar, D.

Kirkpatrick, P. J.

P. G. al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Preliminary evaluation of a prototype spatially resolved spectrometer,” Acta Neurochir. Suppl. (Wien) 71, 255–257 (1998).
[PubMed]

Kleen, M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Kleiser, S.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(1), 6–27 (2014).
[Crossref] [PubMed]

Koenig, A.

Kohl-Bareis, M.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

Krajewski, P.

P. Sawosz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement,” Phys. Med. Biol. 57(23), 7973–7981 (2012).
[Crossref] [PubMed]

Krishnamoorthy, K. K.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5), 546–551 (2007).
[Crossref] [PubMed]

Królicki, L.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
[Crossref] [PubMed]

Kuebler, W. M.

J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, and W. M. Kuebler, “Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass,” J. Thorac. Cardiovasc. Surg. 132(5), 1172–1178 (2006).
[Crossref] [PubMed]

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Kuhnle, G. E.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Kuppe, H.

J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, and W. M. Kuebler, “Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass,” J. Thorac. Cardiovasc. Surg. 132(5), 1172–1178 (2006).
[Crossref] [PubMed]

Kwant, G.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[Crossref] [PubMed]

L’Huillier, J.-P.

F. Vaudelle and J.-P. L’Huillier, “Time-resolved optical fluorescence spectroscopy of heterogeneous turbid media with special emphasis on brain tissue structures including diseased regions: A sensitivity analysis,” Opt. Commun. 304, 161–168 (2013).
[Crossref]

Landsman, M. L.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[Crossref] [PubMed]

Lang, R.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Lawrence, K. S.

D. Milej, A. Abdalmalak, L. Desjardins, H. Ahmed, T. Y. Lee, M. Diop, and K. S. Lawrence, “Quantification of blood-brain barrier permeability by dynamic contrast-enhanced NIRS,” Sci. Rep. 7(1), 1702 (2017).
[Crossref] [PubMed]

Leblond, F.

H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
[Crossref] [PubMed]

Lee, A.

P. Hopton, T. S. Walsh, and A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” J. Appl. Physiol. 87(5), 1981–1987 (1999).
[Crossref] [PubMed]

Lee, T. Y.

D. Milej, A. Abdalmalak, L. Desjardins, H. Ahmed, T. Y. Lee, M. Diop, and K. S. Lawrence, “Quantification of blood-brain barrier permeability by dynamic contrast-enhanced NIRS,” Sci. Rep. 7(1), 1702 (2017).
[Crossref] [PubMed]

J. T. Elliott, M. Diop, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 037014 (2010).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

Lee, T.-Y.

Liebert, A.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

D. Milej, A. Abdalmalak, P. McLachlan, M. Diop, A. Liebert, and K. St Lawrence, “Subtraction-based approach for enhancing the depth sensitivity of time-resolved NIRS,” Biomed. Opt. Express 7(11), 4514–4526 (2016).
[Crossref] [PubMed]

D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage 85(Pt 1), 555–565 (2014).
[Crossref] [PubMed]

J. T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. B. Morrison, T.-Y. Lee, A. Liebert, and K. St Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs,” Biomed. Opt. Express 4(2), 206–218 (2013).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt. 17(5), 057005 (2012).
[Crossref] [PubMed]

P. Sawosz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement,” Phys. Med. Biol. 57(23), 7973–7981 (2012).
[Crossref] [PubMed]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
[Crossref] [PubMed]

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref] [PubMed]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24(2), 426–435 (2005).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref] [PubMed]

Ma, H. Y.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46(1), 41–62 (2001).
[Crossref] [PubMed]

Macdonald, R.

O. Steinkellner, H. Wabnitz, A. Jelzow, R. Macdonald, C. Gruber, J. Steinbrink, and H. Obrig, “Cerebral Perfusion in Acute Stroke Monitored by Time-domain Near-infrared Reflectometry,” Biocybern. Biomed. Eng. 32(1), 3–16 (2012).
[Crossref]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref] [PubMed]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24(2), 426–435 (2005).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref] [PubMed]

Maczewska, J.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
[Crossref] [PubMed]

Madycki, G.

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

Malak, J.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

Maniewski, R.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage 85(Pt 1), 555–565 (2014).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

P. Sawosz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement,” Phys. Med. Biol. 57(23), 7973–7981 (2012).
[Crossref] [PubMed]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref] [PubMed]

Martelli, F.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Mata Pavia, J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(1), 6–27 (2014).
[Crossref] [PubMed]

Mayzner-Zawadzka, E.

W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage 85(Pt 1), 555–565 (2014).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
[Crossref] [PubMed]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
[Crossref] [PubMed]

McLachlan, P.

Meriläinen, P.

J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt. 14(5), 054032 (2009).
[Crossref] [PubMed]

Messmer, K.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(1), 6–27 (2014).
[Crossref] [PubMed]

Milej, D.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

D. Milej, A. Abdalmalak, L. Desjardins, H. Ahmed, T. Y. Lee, M. Diop, and K. S. Lawrence, “Quantification of blood-brain barrier permeability by dynamic contrast-enhanced NIRS,” Sci. Rep. 7(1), 1702 (2017).
[Crossref] [PubMed]

D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
[Crossref] [PubMed]

D. Milej, A. Abdalmalak, P. McLachlan, M. Diop, A. Liebert, and K. St Lawrence, “Subtraction-based approach for enhancing the depth sensitivity of time-resolved NIRS,” Biomed. Opt. Express 7(11), 4514–4526 (2016).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage 85(Pt 1), 555–565 (2014).
[Crossref] [PubMed]

J. T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. B. Morrison, T.-Y. Lee, A. Liebert, and K. St Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs,” Biomed. Opt. Express 4(2), 206–218 (2013).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
[Crossref] [PubMed]

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref] [PubMed]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
[Crossref] [PubMed]

Moeller, M.

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

Möller, M.

Mook, G. A.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[Crossref] [PubMed]

Mora, A. D.

Morrison, L. B.

Mottola, L.

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol. 29(4), 463–487 (2004).
[Crossref] [PubMed]

Murkin, J. M.

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(Suppl 1), i3–i13 (2009).
[Crossref] [PubMed]

Noponen, T.

J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt. 14(5), 054032 (2009).
[Crossref] [PubMed]

Ntziachristos, V.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46(1), 41–62 (2001).
[Crossref] [PubMed]

Obrig, H.

H. Obrig, “NIRS in clinical neurology - a ‘promising’ tool?” Neuroimage 85(Pt 1), 535–546 (2014).
[Crossref] [PubMed]

O. Steinkellner, H. Wabnitz, A. Jelzow, R. Macdonald, C. Gruber, J. Steinbrink, and H. Obrig, “Cerebral Perfusion in Acute Stroke Monitored by Time-domain Near-infrared Reflectometry,” Biocybern. Biomed. Eng. 32(1), 3–16 (2012).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref] [PubMed]

J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, and W. M. Kuebler, “Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass,” J. Thorac. Cardiovasc. Surg. 132(5), 1172–1178 (2006).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24(2), 426–435 (2005).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref] [PubMed]

Patterson, M. S.

Pifferi, A.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, A. Planat-Chrétien, A. Koenig, G. Boso, A. Tosi, L. Hervé, and J. M. Dinten, “Spatial resolution in depth for time-resolved diffuse optical tomography using short source-detector separations,” Biomed. Opt. Express 6(1), 1–10 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, L. Spinelli, and R. Cubeddu, “Functional brain imaging by multi-wavelength time-resolved near infrared spectroscopy,” Opto-Electron. Rev. 16(2), 131 (2008).
[Crossref]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29(20), 2405–2407 (2004).
[Crossref] [PubMed]

Planat-Chrétien, A.

Pogue, B. W.

H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
[Crossref] [PubMed]

M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33(10), 1963–1974 (1994).
[Crossref] [PubMed]

Puszka, A.

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol. 29(4), 463–487 (2004).
[Crossref] [PubMed]

Re, R.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

Reynolds, E. O.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[Crossref] [PubMed]

Rinneberg, H.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24(2), 426–435 (2005).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref] [PubMed]

Saleem, M.

Sawosz, P.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage 85(Pt 1), 555–565 (2014).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

P. Sawosz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement,” Phys. Med. Biol. 57(23), 7973–7981 (2012).
[Crossref] [PubMed]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
[Crossref] [PubMed]

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref] [PubMed]

Schelkanova, I.

Scholkmann, F.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(1), 6–27 (2014).
[Crossref] [PubMed]

Sckell, A.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Selb, J.

J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express 15(25), 16400–16412 (2007).
[Crossref] [PubMed]

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 11013 (2005).
[Crossref] [PubMed]

Simon, M.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Smielewski, P.

P. G. al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Preliminary evaluation of a prototype spatially resolved spectrometer,” Acta Neurochir. Suppl. (Wien) 71, 255–257 (1998).
[PubMed]

Soltysinski, T.

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref] [PubMed]

Sorensen, A. G.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 11013 (2005).
[Crossref] [PubMed]

Sparén, A.

Spinelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, L. Spinelli, and R. Cubeddu, “Functional brain imaging by multi-wavelength time-resolved near infrared spectroscopy,” Opto-Electron. Rev. 16(2), 131 (2008).
[Crossref]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
[Crossref] [PubMed]

St Lawrence, K.

Staszkiewicz, W.

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

Steinbrink, J.

O. Steinkellner, H. Wabnitz, A. Jelzow, R. Macdonald, C. Gruber, J. Steinbrink, and H. Obrig, “Cerebral Perfusion in Acute Stroke Monitored by Time-domain Near-infrared Reflectometry,” Biocybern. Biomed. Eng. 32(1), 3–16 (2012).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref] [PubMed]

J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, and W. M. Kuebler, “Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass,” J. Thorac. Cardiovasc. Surg. 132(5), 1172–1178 (2006).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24(2), 426–435 (2005).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref] [PubMed]

Steinkellner, O.

O. Steinkellner, H. Wabnitz, A. Jelzow, R. Macdonald, C. Gruber, J. Steinbrink, and H. Obrig, “Cerebral Perfusion in Acute Stroke Monitored by Time-domain Near-infrared Reflectometry,” Biocybern. Biomed. Eng. 32(1), 3–16 (2012).
[Crossref]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref] [PubMed]

Sterenborg, H. J.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Stott, J. J.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 11013 (2005).
[Crossref] [PubMed]

Subash, A. A.

Swartling, J.

Tachtsidis, I.

L. Dunne, J. Hebden, and I. Tachtsidis, “Development of a Near Infrared Multi-Wavelength, Multi-Channel, Time-Resolved Spectrometer for Measuring Brain Tissue Haemodynamics and Metabolism,” Adv. Exp. Med. Biol. 812, 181–186 (2014).
[Crossref] [PubMed]

Terborg, C.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Thaker, S.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5), 546–551 (2007).
[Crossref] [PubMed]

Themelis, G.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5), 546–551 (2007).
[Crossref] [PubMed]

Tichauer, K. M.

J. T. Elliott, M. Diop, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 037014 (2010).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

Toczylowska, B.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage 85(Pt 1), 555–565 (2014).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
[Crossref] [PubMed]

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref] [PubMed]

Toronov, V.

Torricelli, A.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, L. Spinelli, and R. Cubeddu, “Functional brain imaging by multi-wavelength time-resolved near infrared spectroscopy,” Opto-Electron. Rev. 16(2), 131 (2008).
[Crossref]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006).
[Crossref] [PubMed]

A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett. 29(20), 2405–2407 (2004).
[Crossref] [PubMed]

Tosi, A.

A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, A. Planat-Chrétien, A. Koenig, G. Boso, A. Tosi, L. Hervé, and J. M. Dinten, “Spatial resolution in depth for time-resolved diffuse optical tomography using short source-detector separations,” Biomed. Opt. Express 6(1), 1–10 (2014).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Treszczanowicz, J.

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

Uludag, K.

J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, and W. M. Kuebler, “Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass,” J. Thorac. Cardiovasc. Surg. 132(5), 1172–1178 (2006).
[Crossref] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

Vaudelle, F.

F. Vaudelle and J.-P. L’Huillier, “Time-resolved optical fluorescence spectroscopy of heterogeneous turbid media with special emphasis on brain tissue structures including diseased regions: A sensitivity analysis,” Opt. Commun. 304, 161–168 (2013).
[Crossref]

Villringer, A.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24(2), 426–435 (2005).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref] [PubMed]

Virtanen, J.

J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt. 14(5), 054032 (2009).
[Crossref] [PubMed]

Wabnitz, H.

A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt. 17(5), 057005 (2012).
[Crossref] [PubMed]

O. Steinkellner, H. Wabnitz, A. Jelzow, R. Macdonald, C. Gruber, J. Steinbrink, and H. Obrig, “Cerebral Perfusion in Acute Stroke Monitored by Time-domain Near-infrared Reflectometry,” Biocybern. Biomed. Eng. 32(1), 3–16 (2012).
[Crossref]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref] [PubMed]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24(2), 426–435 (2005).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref] [PubMed]

Wallace, D.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46(1), 41–62 (2001).
[Crossref] [PubMed]

Walsh, T. S.

P. Hopton, T. S. Walsh, and A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” J. Appl. Physiol. 87(5), 1981–1987 (1999).
[Crossref] [PubMed]

Weigl, W.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage 85(Pt 1), 555–565 (2014).
[Crossref] [PubMed]

J. T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. B. Morrison, T.-Y. Lee, A. Liebert, and K. St Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs,” Biomed. Opt. Express 4(2), 206–218 (2013).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
[Crossref] [PubMed]

P. Sawosz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement,” Phys. Med. Biol. 57(23), 7973–7981 (2012).
[Crossref] [PubMed]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
[Crossref] [PubMed]

Welte, M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

Wierzejski, W.

A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
[Crossref] [PubMed]

Witte, O. W.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Wojtkiewicz, S.

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

Wolf, M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(1), 6–27 (2014).
[Crossref] [PubMed]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(1), 6–27 (2014).
[Crossref] [PubMed]

Wray, S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[Crossref] [PubMed]

Wyatt, J. S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[Crossref] [PubMed]

Zaccanti, G.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Zappa, F.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Zhang, Q.

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46(1), 41–62 (2001).
[Crossref] [PubMed]

Zijlstra, W. G.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[Crossref] [PubMed]

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(1), 6–27 (2014).
[Crossref] [PubMed]

Zolek, N.

P. Sawosz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement,” Phys. Med. Biol. 57(23), 7973–7981 (2012).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
[Crossref] [PubMed]

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref] [PubMed]

Zucchelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

Acta Neurochir. Suppl. (Wien) (1)

P. G. al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Preliminary evaluation of a prototype spatially resolved spectrometer,” Acta Neurochir. Suppl. (Wien) 71, 255–257 (1998).
[PubMed]

Adv. Exp. Med. Biol. (2)

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
[Crossref] [PubMed]

L. Dunne, J. Hebden, and I. Tachtsidis, “Development of a Near Infrared Multi-Wavelength, Multi-Channel, Time-Resolved Spectrometer for Measuring Brain Tissue Haemodynamics and Metabolism,” Adv. Exp. Med. Biol. 812, 181–186 (2014).
[Crossref] [PubMed]

Appl. Opt. (4)

Biochim. Biophys. Acta (1)

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933(1), 184–192 (1988).
[Crossref] [PubMed]

Biocybern. Biomed. Eng. (1)

O. Steinkellner, H. Wabnitz, A. Jelzow, R. Macdonald, C. Gruber, J. Steinbrink, and H. Obrig, “Cerebral Perfusion in Acute Stroke Monitored by Time-domain Near-infrared Reflectometry,” Biocybern. Biomed. Eng. 32(1), 3–16 (2012).
[Crossref]

Biomed. Opt. Express (5)

Br. J. Anaesth. (1)

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(Suppl 1), i3–i13 (2009).
[Crossref] [PubMed]

Can. J. Appl. Physiol. (1)

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol. 29(4), 463–487 (2004).
[Crossref] [PubMed]

J. Appl. Physiol. (2)

P. Hopton, T. S. Walsh, and A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” J. Appl. Physiol. 87(5), 1981–1987 (1999).
[Crossref] [PubMed]

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[Crossref] [PubMed]

J. Biomed. Opt. (14)

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt. 17(8), 087001 (2012).
[Crossref] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref] [PubMed]

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref] [PubMed]

J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt. 14(5), 054032 (2009).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt. 17(5), 057005 (2012).
[Crossref] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 11013 (2005).
[Crossref] [PubMed]

A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green,” J. Biomed. Opt. 16(6), 067010 (2011).
[Crossref] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref] [PubMed]

J. T. Elliott, M. Diop, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 037014 (2010).
[Crossref] [PubMed]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt. 16(4), 046011 (2011).
[Crossref] [PubMed]

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (2)

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab. 18(4), 445–456 (1998).
[Crossref] [PubMed]

J. Neurol. Neurosurg. Psychiatry (1)

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

J. Thorac. Cardiovasc. Surg. (1)

J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, and W. M. Kuebler, “Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass,” J. Thorac. Cardiovasc. Surg. 132(5), 1172–1178 (2006).
[Crossref] [PubMed]

Neuroimage (6)

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

H. Obrig, “NIRS in clinical neurology - a ‘promising’ tool?” Neuroimage 85(Pt 1), 535–546 (2014).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(1), 6–27 (2014).
[Crossref] [PubMed]

W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage 85(Pt 1), 555–565 (2014).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24(2), 426–435 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

F. Vaudelle and J.-P. L’Huillier, “Time-resolved optical fluorescence spectroscopy of heterogeneous turbid media with special emphasis on brain tissue structures including diseased regions: A sensitivity analysis,” Opt. Commun. 304, 161–168 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opto-Electron. Rev. (1)

A. Torricelli, D. Contini, A. Pifferi, L. Spinelli, and R. Cubeddu, “Functional brain imaging by multi-wavelength time-resolved near infrared spectroscopy,” Opto-Electron. Rev. 16(2), 131 (2008).
[Crossref]

Pediatr. Res. (1)

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5), 546–551 (2007).
[Crossref] [PubMed]

Phys. Med. Biol. (5)

H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref] [PubMed]

D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46(1), 41–62 (2001).
[Crossref] [PubMed]

P. Sawosz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement,” Phys. Med. Biol. 57(23), 7973–7981 (2012).
[Crossref] [PubMed]

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

M. Diop, J. T. Elliott, K. M. Tichauer, T. Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

Sci. Rep. (2)

W. Weigl, D. Milej, A. Gerega, B. Toczyłowska, P. Sawosz, M. Kacprzak, D. Janusek, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Confirmation of brain death using optical methods based on tracking of an optical contrast agent: assessment of diagnostic feasibility,” Sci. Rep. 8(1), 7332 (2018).
[Crossref] [PubMed]

D. Milej, A. Abdalmalak, L. Desjardins, H. Ahmed, T. Y. Lee, M. Diop, and K. S. Lawrence, “Quantification of blood-brain barrier permeability by dynamic contrast-enhanced NIRS,” Sci. Rep. 7(1), 1702 (2017).
[Crossref] [PubMed]

Other (3)

V. Toronov, J. Elliott, T.-Y. Lee, and K. S. Lawrence, “Depth-resolved quantitative measurement of cerebral blood flow using broad-band near infrared spectroscopy and a two-layer head model,” in Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2011), 80881J.

W. Becker, Advanced time-correlated single photon counting techniques (Springer, Berlin, Heidelberg, New York, 2005).

M. Wolf, M. Franceschini, L. Paunescu, V. Toronov, A. Michalos, U. Wolf, E. Gratton, and S. Fantini, “Absolute Frequency-Domain Pulse Oximetry of the Brain: Methodology and Measurements,” in Oxygen Transport to Tissue XXIV, J. Dunn and H. Swartz, eds. (Springer US, 2003), pp. 61–73.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The algorithm used for estimation of changes in the ICG concentration in intra- and extracerebral layers of the head (ΔCICG,intra, ΔCICG,extra). The acquired DTOFs contain a number of counted photons vs. time t which is typically in ns range. The DTOFs were acquired during the experiment lasting several minutes (time of experiment T). The ICG was injected at time instance T0.
Fig. 2
Fig. 2 The setup for multiwavelength time-resolved diffuse reflectance measurements.
Fig. 3
Fig. 3 Geometry of the liquid phantom with a) short loop, b) long loop between segments of the tube located deeper and superficially. Boli with indocyanine green (ICG) were passing through the tube positioned in the fish tank at two depths in respect to the front wall of the phantom. Source fiber (red square) and detection fiber bundle (blue circle) were fixed on the surface of Mylar film which formed the front wall of the phantom. The segment of the tube located deeper was positioned at depth of 2 cm in respect to the front wall of the phantom.
Fig. 4
Fig. 4 Long loop experiment: changes in statistical moments of the DTOFs of diffuse reflectance measured at source-detector separation r = 3 cm after injection of 6 mg/L solution of ICG into the tube of the phantom at T0 = 24 s. The effect of the inflow of the dye to the segment of the tube located deeper can be observed at T ≈32 s. The dye inflows into the part of the tube located superficially later at T ≈50 s.
Fig. 5
Fig. 5 Changes in statistical moments of DTOFs of diffuse reflectance measured after injection of 5 mg/L solution of ICG into the tube of the phantom at T0 = 24 s. The peaks observed at T ≈35 s are related to the inflow of the dye to the segment of the tube located deeper whereas the peak appearing later (at T ≈70 s) is related to the dye inflow into the segment of the tube located superficially.
Fig. 6
Fig. 6 Phantom with long loop studies. Left panel: changes (colorbar) of the ICG concentration in all (24) layers of the model versus time before and after injection of an ICG bolus at T0 = 24 s. The ΔCICG,j values were calculated from moments of DTOFs measured at multiple wavelengths and single source-detector separation (r = 1, 2, 3 and 4 cm). The colormaps were scaled in that way that all negative values were ignored for clarity. Right panel: the dynamics of ICG concentration changes in the deeper (first peak, red) and superficial (second peak, black) segments of the tube, obtained by averaging the ΔCICG changes in the layers of each segment (superficial and deeper).
Fig. 7
Fig. 7 Phantom with short loop studies. Left panel: changes (colorbar) of the ICG concentration in all (24) layers of the model versus time before and after injection of an ICG bolus at T0 = 24 s. The ΔCICG,j values were calculated from moments of DTOFs measured at multiple wavelengths and single source-detector separation (r = 1, 2, 3 and 4 cm). The colormaps were scaled in that way that all negative values were ignored for clarity. Right panel: the dynamics of ICG concentration changes in the deeper (first peak, red) and superficial (second peak, black) segments of the tube, obtained by averaging the ΔCICG changes in the layers of each segment (superficial and deeper).
Fig. 8
Fig. 8 Upper panel: Changes in the number of diffusely reflected photons N shown as a function of time of experiment T and time t of the photon in respect to the laser pulse following injection of ICG bolus at T0 = 0 s during the in-vivo measurement. Lower panel: difference colormaps demonstrating the changes of the DTOFs with respect to the first phase of the measurement (before ICG injection). Results of measurements carried out at 5 different wavelengths are presented.
Fig. 9
Fig. 9 Changes in a total number of photons Ntot, mean time of flight <t> and variance V of diffusely reflected photons following the injection of ICG bolus at T = 0 in two healthy volunteers (left and right panels), measured for different wavelengths.
Fig. 10
Fig. 10 a) Changes (colorbar) of the ICG concentration ΔCICG,j in 24 layers of the head model (each 0.1 mm thick) versus time before and after injection of an ICG bolus at T0 = 0 second. These changes were calculated from moments of DTOFs measured at multiple wavelengths and single source-detector separation (r = 3 cm). b) Changes in the ICG concentration averaged over the top 12 layers (extracerebral tissue compartment of the thickness of 1.2 cm) and the remaining 12 bottom layers (intracerebral tissue compartment).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

μ a (λ)= <t > 3 (λ) 2cV(λ)(<t > 2 (λ)+V(λ)) , μ s (λ)= 2<t>(λ)c(<t > 2 (λ)+V(λ)) 3 r 2 V(λ)
MP P i (λ)= ΔA(λ) Δ μ a,i (λ) MTS F i (λ)= Δ<t>(λ) Δ μ a,i (λ) VS F i (λ)= ΔV(λ) Δ μ a,i (λ)
ΔA(λ)=log( N tot (λ) N tot,0 (λ) )
Δ μ a,j (λ)= ε ICG (λ)Δ C ICG,j
ΔA(λ)= j MP P j (λ)ε(λ)Δ C ICG,j Δ<t>(λ)= j MTS F j (λ)ε(λ)Δ C ICG,j ΔV(λ)= j VS F j (λ)ε(λ)Δ C ICG,j