Abstract

Non-contact and minimally invasive endoscopic optical imaging is an invaluable diagnostic tool for tissue examination and cancer screening. The point sampling techniques with high sensitivity to the tissue microenvironment are time consuming and often not affordable in clinics. There is a major clinical need for a large field-of-view (FOV) rapid screening method to highlight subtle tissue microstructural alterations. To address this unmet need, we have developed High Spatial Frequency Domain Imaging (HSFDI)–a non-contact imaging modality that spatially maps the tissue microscopic scattering structures over a large field of view (>1cm2). Based on an analytical reflectance model of sub-diffusive light from forward-peaked highly scattering media, HSFDI quantifies the spatially-resolved parameters of the light scattering phase function (i.e., the backscattering probability and the light spreading length) from the reflectance of structured light modulated at high spatial frequencies. Enhanced signal to noise ratio (SNR) is achieved at even ultra-high modulation frequencies with single snapshot multiple frequency demodulation (SSMD). The variations in tissue microstructures, including the strength of the background (pudding) refractive index fluctuation and the prominent scattering structure (plum) morphology, can then be inferred. After validation with optical phantoms, measurements of fresh ex vivo tissue samples revealed significant contrast and differentiation of the phase function parameters between different types and disease states (normal, inflammatory, and cancerous) of tissue whereas tissue absorption and reduced scattering coefficients only show modest changes. HSFDI may provide wide-field images of microscopic structural biomarkers unobtainable with either diffuse light imaging or point-based optical sampling. Potential clinical applications include the rapid screening of excised tissue and the noninvasive examination of suspicious lesions during operation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging

David M. McClatchy, Elizabeth J. Rizzo, Wendy A. Wells, Philip P. Cheney, Jeeseong C. Hwang, Keith D. Paulsen, Brian W. Pogue, and Stephen C. Kanick
Optica 3(6) 613-621 (2016)

Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging

Stephen Chad Kanick, David M. McClatchy, Venkataramanan Krishnaswamy, Jonathan T. Elliott, Keith D. Paulsen, and Brian W. Pogue
Biomed. Opt. Express 5(10) 3376-3390 (2014)

Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures

Bin Yang, John Lesicko, Manu Sharma, Michael Hill, Michael S. Sacks, and James W. Tunnell
Biomed. Opt. Express 6(4) 1520-1533 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, “Optical method,” Annu. Rev. Biophys. Biophys. Chem. 20(1), 1–30 (1991).
    [Crossref] [PubMed]
  2. A. Yodh, B. Tromberg, E. Sevick Muraca, and D. Pine,“Diffusing photons in turbid media,” J. Opt. Soc. Am. A 14, 136–342 (1997).
  3. B. C. Wilson, “Detection and treatment of dysplasia in Barrett’s esophagus: a pivotal challenge in translating biophotonics from bench to bedside,” J. Biomed. Opt. 12(5), 051401 (2007).
    [Crossref] [PubMed]
  4. M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
    [Crossref] [PubMed]
  5. I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
    [Crossref] [PubMed]
  6. V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140(1), 35–41 (2011).
    [Crossref] [PubMed]
  7. L. Cherkezyan, I. Capoglu, H. Subramanian, J. D. Rogers, D. Damania, A. Taflove, and V. Backman, “Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations,” Phys. Rev. Lett. 111(3), 033903 (2013).
    [Crossref] [PubMed]
  8. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17(17), 14780–14790 (2009).
    [Crossref] [PubMed]
  9. J. Vervandier and S. Gioux, “Single snapshot imaging of optical properties,” Biomed. Opt. Express 4(12), 2938–2944 (2013).
    [Crossref] [PubMed]
  10. T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
    [PubMed]
  11. S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5(10), 3376–3390 (2014).
    [Crossref] [PubMed]
  12. A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
    [Crossref] [PubMed]
  13. A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
    [Crossref] [PubMed]
  14. X. Chen, W. Lin, C. Wang, S. Chen, J. Sheng, B. Zeng, and M. Xu, “In vivo real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light,” Biomed. Opt. Express 8(12), 5468–5482 (2017).
    [Crossref] [PubMed]
  15. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett. 21(7), 546–548 (1996).
    [Crossref] [PubMed]
  16. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” JOSA A 16(12), 2935–2945 (1999).
    [Crossref]
  17. K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19(7), 075005 (2014).
    [Crossref] [PubMed]
  18. M. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [Crossref] [PubMed]
  19. V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19(7), 070504 (2014).
    [Crossref] [PubMed]
  20. D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3(6), 613–621 (2016).
    [Crossref] [PubMed]
  21. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998).
    [Crossref] [PubMed]
  22. M. Xu, T. T. Wu, and J. Y. Qu, “Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures,” J. Biomed. Opt. 13(2), 024015 (2008).
    [Crossref] [PubMed]
  23. M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30(22), 3051–3053 (2005).
    [Crossref] [PubMed]
  24. M. Xu, “Diagnosis of the phase function of random media from light reflectance,” Sci. Rep. 6(1), 22535 (2016).
    [Crossref] [PubMed]
  25. M. Xu, Z. Cao, W. Lin, X. Chen, L. Zheng, and B. Zeng, “Single snapshot multiple frequency modulated imaging of subsurface optical properties of turbid media with structured light,” AIP Adv. 6(12), 125208 (2016).
    [Crossref]
  26. M. Xu, “Plum pudding random medium model of biological tissue toward remote microscopy from spectroscopic light scattering,” Biomed. Opt. Express 8(6), 2879–2895 (2017).
    [Crossref] [PubMed]
  27. W. Lin, Z. Cao, B. Zeng, and M. Xu, “Quantitative modulated imaging of turbid media in the high spatial frequency domain,” Proc. SPIE 9701, 97010Y (2016).
    [Crossref]
  28. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
    [Crossref]

2017 (2)

2016 (4)

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3(6), 613–621 (2016).
[Crossref] [PubMed]

M. Xu, “Diagnosis of the phase function of random media from light reflectance,” Sci. Rep. 6(1), 22535 (2016).
[Crossref] [PubMed]

M. Xu, Z. Cao, W. Lin, X. Chen, L. Zheng, and B. Zeng, “Single snapshot multiple frequency modulated imaging of subsurface optical properties of turbid media with structured light,” AIP Adv. 6(12), 125208 (2016).
[Crossref]

W. Lin, Z. Cao, B. Zeng, and M. Xu, “Quantitative modulated imaging of turbid media in the high spatial frequency domain,” Proc. SPIE 9701, 97010Y (2016).
[Crossref]

2014 (3)

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19(7), 075005 (2014).
[Crossref] [PubMed]

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19(7), 070504 (2014).
[Crossref] [PubMed]

S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5(10), 3376–3390 (2014).
[Crossref] [PubMed]

2013 (3)

J. Vervandier and S. Gioux, “Single snapshot imaging of optical properties,” Biomed. Opt. Express 4(12), 2938–2944 (2013).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

L. Cherkezyan, I. Capoglu, H. Subramanian, J. D. Rogers, D. Damania, A. Taflove, and V. Backman, “Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations,” Phys. Rev. Lett. 111(3), 033903 (2013).
[Crossref] [PubMed]

2012 (1)

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

2011 (3)

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140(1), 35–41 (2011).
[Crossref] [PubMed]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

2010 (1)

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

M. Xu, T. T. Wu, and J. Y. Qu, “Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures,” J. Biomed. Opt. 13(2), 024015 (2008).
[Crossref] [PubMed]

2007 (2)

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

B. C. Wilson, “Detection and treatment of dysplasia in Barrett’s esophagus: a pivotal challenge in translating biophotonics from bench to bedside,” J. Biomed. Opt. 12(5), 051401 (2007).
[Crossref] [PubMed]

2005 (1)

1999 (1)

F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” JOSA A 16(12), 2935–2945 (1999).
[Crossref]

1998 (1)

1997 (2)

1996 (1)

1991 (1)

B. Chance, “Optical method,” Annu. Rev. Biophys. Biophys. Chem. 20(1), 1–30 (1991).
[Crossref] [PubMed]

Alfano, R. R.

Andersson, C.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Austwick, M. R.

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

Backman, V.

L. Cherkezyan, I. Capoglu, H. Subramanian, J. D. Rogers, D. Damania, A. Taflove, and V. Backman, “Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations,” Phys. Rev. Lett. 111(3), 033903 (2013).
[Crossref] [PubMed]

V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140(1), 35–41 (2011).
[Crossref] [PubMed]

Barth, R. J.

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19(7), 070504 (2014).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

Bevilacqua, F.

F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” JOSA A 16(12), 2935–2945 (1999).
[Crossref]

Bigio, I.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Bigio, I. J.

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19(7), 075005 (2014).
[Crossref] [PubMed]

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett. 21(7), 546–548 (1996).
[Crossref] [PubMed]

Bown, S. G.

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

Boyer, J.

Calabro, K. W.

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19(7), 075005 (2014).
[Crossref] [PubMed]

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

Cao, Z.

M. Xu, Z. Cao, W. Lin, X. Chen, L. Zheng, and B. Zeng, “Single snapshot multiple frequency modulated imaging of subsurface optical properties of turbid media with structured light,” AIP Adv. 6(12), 125208 (2016).
[Crossref]

W. Lin, Z. Cao, B. Zeng, and M. Xu, “Quantitative modulated imaging of turbid media in the high spatial frequency domain,” Proc. SPIE 9701, 97010Y (2016).
[Crossref]

Capoglu, I.

L. Cherkezyan, I. Capoglu, H. Subramanian, J. D. Rogers, D. Damania, A. Taflove, and V. Backman, “Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations,” Phys. Rev. Lett. 111(3), 033903 (2013).
[Crossref] [PubMed]

Cerussi, A. E.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

Chance, B.

B. Chance, “Optical method,” Annu. Rev. Biophys. Biophys. Chem. 20(1), 1–30 (1991).
[Crossref] [PubMed]

Chen, S.

Chen, X.

Cheney, P. P.

Cherkezyan, L.

L. Cherkezyan, I. Capoglu, H. Subramanian, J. D. Rogers, D. Damania, A. Taflove, and V. Backman, “Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations,” Phys. Rev. Lett. 111(3), 033903 (2013).
[Crossref] [PubMed]

Chicken, D. W.

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

Cipolloni, P. B.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Clark, B.

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

Cuccia, D.

Cuccia, D. J.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

Damania, D.

L. Cherkezyan, I. Capoglu, H. Subramanian, J. D. Rogers, D. Damania, A. Taflove, and V. Backman, “Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations,” Phys. Rev. Lett. 111(3), 033903 (2013).
[Crossref] [PubMed]

Depeursinge, C.

F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” JOSA A 16(12), 2935–2945 (1999).
[Crossref]

Durkin, A. J.

Elliott, J. T.

Falzon, M.

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

Fang, H.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Fearn, T.

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

Freedman, S. D.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

Ghiran, I. C.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Gioux, S.

Green, K. N.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Hanlon, E. B.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Hielscher, A. H.

Hwang, J. C.

Itzkan, I.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Johnson, K.

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

Juškaitis, R.

Kanick, S. C.

Keshtgar, M. R.

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

Kim, J. G.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Kimerer, L. M.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Kocjan, G.

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

Koike, M. A.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Konecky, S. D.

Krishnaswamy, V.

S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5(10), 3376–3390 (2014).
[Crossref] [PubMed]

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19(7), 070504 (2014).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Kumar, G.

LaFerla, F. M.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Laughney, A. M.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Lim, K. H.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Lin, A. J.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Lin, W.

X. Chen, W. Lin, C. Wang, S. Chen, J. Sheng, B. Zeng, and M. Xu, “In vivo real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light,” Biomed. Opt. Express 8(12), 5468–5482 (2017).
[Crossref] [PubMed]

W. Lin, Z. Cao, B. Zeng, and M. Xu, “Quantitative modulated imaging of turbid media in the high spatial frequency domain,” Proc. SPIE 9701, 97010Y (2016).
[Crossref]

M. Xu, Z. Cao, W. Lin, X. Chen, L. Zheng, and B. Zeng, “Single snapshot multiple frequency modulated imaging of subsurface optical properties of turbid media with structured light,” AIP Adv. 6(12), 125208 (2016).
[Crossref]

Mazhar, A.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17(17), 14780–14790 (2009).
[Crossref] [PubMed]

McClatchy, D. M.

Modell, M.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Mosse, C. A.

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

Mourant, J. R.

Neil, M. A.

O’Sullivan, T. D.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

Paulsen, K. D.

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3(6), 613–621 (2016).
[Crossref] [PubMed]

S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5(10), 3376–3390 (2014).
[Crossref] [PubMed]

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19(7), 070504 (2014).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Perelman, L. T.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Pine, D.

Pogue, B. W.

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3(6), 613–621 (2016).
[Crossref] [PubMed]

S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5(10), 3376–3390 (2014).
[Crossref] [PubMed]

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19(7), 070504 (2014).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Qiu, L.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Qu, J. Y.

M. Xu, T. T. Wu, and J. Y. Qu, “Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures,” J. Biomed. Opt. 13(2), 024015 (2008).
[Crossref] [PubMed]

Rice, T. B.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Rizzo, E. J.

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3(6), 613–621 (2016).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Rogers, J. D.

L. Cherkezyan, I. Capoglu, H. Subramanian, J. D. Rogers, D. Damania, A. Taflove, and V. Backman, “Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations,” Phys. Rev. Lett. 111(3), 033903 (2013).
[Crossref] [PubMed]

Roy, H. K.

V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140(1), 35–41 (2011).
[Crossref] [PubMed]

Sachs, B. P.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Salahuddin, S.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Schmitt, J. M.

Schotland, J. C.

Schwab, M. C.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Sevick Muraca, E.

Sheng, J.

Somasundaram, S. K.

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

Subramanian, H.

L. Cherkezyan, I. Capoglu, H. Subramanian, J. D. Rogers, D. Damania, A. Taflove, and V. Backman, “Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations,” Phys. Rev. Lett. 111(3), 033903 (2013).
[Crossref] [PubMed]

Taflove, A.

L. Cherkezyan, I. Capoglu, H. Subramanian, J. D. Rogers, D. Damania, A. Taflove, and V. Backman, “Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations,” Phys. Rev. Lett. 111(3), 033903 (2013).
[Crossref] [PubMed]

Tromberg, B.

Tromberg, B. J.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17(17), 14780–14790 (2009).
[Crossref] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

Vervandier, J.

Vitkin, E.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Wang, C.

Wells, W. A.

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3(6), 613–621 (2016).
[Crossref] [PubMed]

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19(7), 070504 (2014).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Wilson, B. C.

B. C. Wilson, “Detection and treatment of dysplasia in Barrett’s esophagus: a pivotal challenge in translating biophotonics from bench to bedside,” J. Biomed. Opt. 12(5), 051401 (2007).
[Crossref] [PubMed]

Wilson, T.

Wu, T. T.

M. Xu, T. T. Wu, and J. Y. Qu, “Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures,” J. Biomed. Opt. 13(2), 024015 (2008).
[Crossref] [PubMed]

Xu, M.

M. Xu, “Plum pudding random medium model of biological tissue toward remote microscopy from spectroscopic light scattering,” Biomed. Opt. Express 8(6), 2879–2895 (2017).
[Crossref] [PubMed]

X. Chen, W. Lin, C. Wang, S. Chen, J. Sheng, B. Zeng, and M. Xu, “In vivo real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light,” Biomed. Opt. Express 8(12), 5468–5482 (2017).
[Crossref] [PubMed]

M. Xu, “Diagnosis of the phase function of random media from light reflectance,” Sci. Rep. 6(1), 22535 (2016).
[Crossref] [PubMed]

M. Xu, Z. Cao, W. Lin, X. Chen, L. Zheng, and B. Zeng, “Single snapshot multiple frequency modulated imaging of subsurface optical properties of turbid media with structured light,” AIP Adv. 6(12), 125208 (2016).
[Crossref]

W. Lin, Z. Cao, B. Zeng, and M. Xu, “Quantitative modulated imaging of turbid media in the high spatial frequency domain,” Proc. SPIE 9701, 97010Y (2016).
[Crossref]

M. Xu, T. T. Wu, and J. Y. Qu, “Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures,” J. Biomed. Opt. 13(2), 024015 (2008).
[Crossref] [PubMed]

M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30(22), 3051–3053 (2005).
[Crossref] [PubMed]

Yodh, A.

Zaman, M. M.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Zeng, B.

X. Chen, W. Lin, C. Wang, S. Chen, J. Sheng, B. Zeng, and M. Xu, “In vivo real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light,” Biomed. Opt. Express 8(12), 5468–5482 (2017).
[Crossref] [PubMed]

W. Lin, Z. Cao, B. Zeng, and M. Xu, “Quantitative modulated imaging of turbid media in the high spatial frequency domain,” Proc. SPIE 9701, 97010Y (2016).
[Crossref]

M. Xu, Z. Cao, W. Lin, X. Chen, L. Zheng, and B. Zeng, “Single snapshot multiple frequency modulated imaging of subsurface optical properties of turbid media with structured light,” AIP Adv. 6(12), 125208 (2016).
[Crossref]

Zheng, L.

M. Xu, Z. Cao, W. Lin, X. Chen, L. Zheng, and B. Zeng, “Single snapshot multiple frequency modulated imaging of subsurface optical properties of turbid media with structured light,” AIP Adv. 6(12), 125208 (2016).
[Crossref]

Zhu, Y.

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

AIP Adv. (1)

M. Xu, Z. Cao, W. Lin, X. Chen, L. Zheng, and B. Zeng, “Single snapshot multiple frequency modulated imaging of subsurface optical properties of turbid media with structured light,” AIP Adv. 6(12), 125208 (2016).
[Crossref]

Ann. Biomed. Eng. (1)

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biophys. Chem. (1)

B. Chance, “Optical method,” Annu. Rev. Biophys. Biophys. Chem. 20(1), 1–30 (1991).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (4)

Breast Cancer Res. (1)

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situ using spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref] [PubMed]

Gastroenterology (1)

V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140(1), 35–41 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (6)

B. C. Wilson, “Detection and treatment of dysplasia in Barrett’s esophagus: a pivotal challenge in translating biophotonics from bench to bedside,” J. Biomed. Opt. 12(5), 051401 (2007).
[Crossref] [PubMed]

M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt. 15(4), 047001 (2010).
[Crossref] [PubMed]

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19(7), 075005 (2014).
[Crossref] [PubMed]

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19(7), 070504 (2014).
[Crossref] [PubMed]

M. Xu, T. T. Wu, and J. Y. Qu, “Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures,” J. Biomed. Opt. 13(2), 024015 (2008).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

JOSA A (1)

F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” JOSA A 16(12), 2935–2945 (1999).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Optica (1)

Phys. Rev. Lett. (1)

L. Cherkezyan, I. Capoglu, H. Subramanian, J. D. Rogers, D. Damania, A. Taflove, and V. Backman, “Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations,” Phys. Rev. Lett. 111(3), 033903 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

W. Lin, Z. Cao, B. Zeng, and M. Xu, “Quantitative modulated imaging of turbid media in the high spatial frequency domain,” Proc. SPIE 9701, 97010Y (2016).
[Crossref]

Sci. Rep. (1)

M. Xu, “Diagnosis of the phase function of random media from light reflectance,” Sci. Rep. 6(1), 22535 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of the DMD-based HSFDI system. The structured beam is magnified and projected onto the specimen. Backscattered light from the specimen is imaged onto the camera after passing through the imaging objective.
Fig. 2
Fig. 2 The MTF and standard deviation of light reflectance of one typical mixed suspension with 0.50ml diameter 0.1μm polystyrene spheres retrieved by the standard three-phase method and SSMD method.
Fig. 3
Fig. 3 Sub-diffusive light reflectance Eq. (1) provides an excellent fitting to the measured light reflectance for various mixed polystyrene sphere suspensions of diameter 1.5μm and 0.1μm.
Fig. 4
Fig. 4 Comparison between extracted and theoretical μ′s and phase function parameters for various mixed polystyrene sphere suspensions of diameter 1.5μm and 0.1μm.
Fig. 5
Fig. 5 The triple (the reduced scattering coefficient μ′s, and the phase function parameters pπ, lΘ) for various porcine and chicken tissue types is well separated except between porcine and chicken skins.
Fig. 6
Fig. 6 (a) Photograph of cervical carcinoma tissue specimen; (b) The retrieved μ′s map; (c) The retrieved pπ map; (d) The retrieved lΘ map; (e-h) H&E stained histological images for the four highlighted regions in (a-d) including normal cervical tissue (violet), slight inflammation (orange), severe inflammation (pink), and invasive squamous-cell carcinoma (black).
Fig. 7
Fig. 7 Classification of different disease states (normal, slightly inflammatory, severely inflammatory, and cancerous) of cervical tissue specimen according to the value of the morphology indicator Θ(1-g) .
Fig. 8
Fig. 8 The triple (the reduced scattering coefficient μ′s, and the phase function parameters pπ, lΘ) differentiates well the various disease states of human cervix tissue.
Fig. 9
Fig. 9 Box and whisker plots for all points used in the cluster analysis for (a) μ′s, (b) pπ, (c) lΘ and (d) Θ(1-g).
Fig. 10
Fig. 10 The two-sample t-test p-values for each pairwise combination of tissue diagnoses with each scatter parameter (a) μ′s, (b) pπ,(c) lΘ and (d) Θ(1-g). The blue color indicates a significant p-value at the p < 0.05 level. A smaller p-value suggests a more significant discrimination power between two different disease states of tissues.

Tables (2)

Tables Icon

Table 1 The absorption and reduced scattering coefficients μa, μ′s and phase function parameters pπ, lΘ for various porcine and chicken tissue types. The standard deviation is computed for the values over the imaged region.

Tables Icon

Table 2 The absorption and reduced scattering coefficients μa, μ′s, phase function parameters pπ, lΘ, and the morphology indicator Θ(1-g) = lΘ·μ′s for different disease states of the human cervix tissue. The standard deviation is computed for the values over the highlighted region.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I SAA (q)= 1 2 p π [ 1+2   6 1/3 Γ( 4 3 ) ( 1 Θ q) 2/3 ]
p SAA (θ)= 12 p b π Θ 2 exp( θ 2 Θ 2 )+ 1 2π p b
I OUT = I DC + I AC (x)cos(2π f x x+α)
P π_mixed = p π1 μ s1 + p π2 μ s2 μ s1 + μ s2