Abstract

The purpose of this study is to investigate cerebral cortex activation during active movement and passive movement by using a functional near-infrared spectroscopy (fNIRS). Tasks were the flexion/extension of the right hand finger by active movement and passive movement. Oxy-hemoglobin concentration changes calculated from fNIRS and analyzed the activation and connectivity so as to understand dynamical brain relationship. The results demonstrated that the brain activation in passive movements is similar to motor execution. During active movement, the estimated causality patterns showed significant causality value from the supplementary motor area (SMA) to the primary motor cortex (M1). During the passive movement, the causality from the primary somatosensory cortex (S1) to the primary motor cortex (M1) was stronger than active movement. These results demonstrated that active and passive movements had a direct effect on the cerebral cortex but the stimulus pathway of active and passive movement is different. This study may contribute to better understanding how active and passive movements can be expressed into cortical activation by means of fNIRS.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging

Bilal Khan, Pankaj Chand, and George Alexandrakis
Biomed. Opt. Express 2(12) 3367-3386 (2011)

Quantification of functional near infrared spectroscopy to assess cortical reorganization in children with cerebral palsy

Fenghua Tian, Mauricio R. Delgado, Sameer C. Dhamne, Bilal Khan, George Alexandrakis, Mario I. Romero, Linsley Smith, Dahlia Reid, Nancy J. Clegg, and Hanli Liu
Opt. Express 18(25) 25973-25986 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Smith, “Neurological rehabilitation: Optimizing motor performance,” Physiother. Can. 67, 215 (2015).
  2. J. Eng, “Movement Science: Foundations for Physical Therapy in Rehabilitation,” Can. J. Occup. Ther. 68, 320 (2001).
  3. C. Sherrington, The Integrative Action of the Nervous System (CUP Archive, 1910).
  4. E. von Holst and H. Mittelstaedt, “Das reafferenzprinzip,” Naturwissenschaften 37(20), 464–476 (1950).
    [Crossref]
  5. T. Mima, N. Sadato, S. Yazawa, T. Hanakawa, H. Fukuyama, Y. Yonekura, and H. Shibasaki, “Brain structures related to active and passive finger movements in man,” Brain 122(10), 1989–1997 (1999).
    [Crossref] [PubMed]
  6. A. Zaman, K. Singh, W. Bimson, and N. Roberts, “An fMRI study of brain activation during active and passive finger movement,” Neuroimage 11(5), S858 (2000).
    [Crossref]
  7. A. Guzzetta, M. Staudt, E. Petacchi, J. Ehlers, M. Erb, M. Wilke, I. Krägeloh-Mann, and G. Cioni, “Brain representation of active and passive hand movements in children,” Pediatr. Res. 61(4), 485–490 (2007).
    [Crossref] [PubMed]
  8. M. G. Lacourse, E. L. Orr, S. C. Cramer, and M. J. Cohen, “Brain activation during execution and motor imagery of novel and skilled sequential hand movements,” Neuroimage 27(3), 505–519 (2005).
    [Crossref] [PubMed]
  9. X. L. Hu, K. Y. Tong, R. Li, M. Chen, J. J. Xue, S. K. Ho, and P. N. Chen, “Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5819–5822 (2010).
    [PubMed]
  10. C. Weiller, M. Jüptner, S. Fellows, M. Rijntjes, G. Leonhardt, S. Kiebel, S. Müller, H. C. Diener, and A. F. Thilmann, “Brain representation of active and passive movements,” Neuroimage 4(2), 105–110 (1996).
    [Crossref] [PubMed]
  11. J. An, S. H. Jin, S. H. Lee, G. Jang, B. Abibullaev, H. Lee, and J.-I. Moon, “Cortical activation pattern for grasping during observation, imagery, execution, FES, and observation-FES integrated BCI: An fNIRS pilot study,” in Engineering in Medicine and Biology Society (EMBC),201335th Annual International Conference of the IEEE, (IEEE, 2013), 6345–6348.
  12. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
    [Crossref] [PubMed]
  13. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
    [Crossref] [PubMed]
  14. J. An, S. H. Lee, S. H. Jin, B. Abibullaev, G. Jang, J. Ahn, H. Lee, and J.-I. Moon, “The beginning of neurohaptics: Controlling cognitive interaction via brain haptic interface,” in Brain-Computer Interface (BCI),2013International Winter Workshop on (IEEE, 2013), pp. 103–106.
    [Crossref]
  15. S. H. Lee, S. H. Jin, J. An, G. Jang, H. Lee, and J.-I. Moon, “Feasibility Study of a Functional Near Infrared Spectroscopy as a Brain Optical Imaging Modality for Rehabilitation Medicine,” in Progress in Optomechatronic Technologies (Springer, 2014), pp. 153–160.
  16. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
    [Crossref] [PubMed]
  17. A. R. Anwar, M. Muthalib, S. Perrey, A. Galka, O. Granert, S. Wolff, G. Deuschl, J. Raethjen, U. Heute, and M. Muthuraman, “Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks,” in Engineering in Medicine and Biology Society (EMBC),201335th Annual International Conference of the IEEE (IEEE, 2013), pp. 2628–2631.
    [Crossref]
  18. Z. Yuan, “Combining independent component analysis and Granger causality to investigate brain network dynamics with fNIRS measurements,” Biomed. Opt. Express 4(11), 2629–2643 (2013).
    [Crossref] [PubMed]
  19. K. J. Friston, “Functional and effective connectivity in neuroimaging: a synthesis,” Hum. Brain Mapp. 2(1-2), 56–78 (1994).
    [Crossref]
  20. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
    [Crossref] [PubMed]
  21. H. Tsunashima, K. Yanagisawa, and M. Iwadate, Measurement of Brain Function Using Near-Infrared Spectroscopy (NIRS) (INTECH Open Access Publisher, 2012).
  22. J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
    [Crossref] [PubMed]
  23. S. Tak, J. Jang, K. Lee, and J. C. Ye, “Quantification of CMRO2 without hypercapnia using simultaneous near-infrared spectroscopy and fMRI measurements,” Phys. Med. Biol. 55(11), 3249–3269 (2010).
    [Crossref] [PubMed]
  24. S. Tak, S. J. Yoon, J. Jang, K. Yoo, Y. Jeong, and J. C. Ye, “Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements,” Neuroimage 55(1), 176–184 (2011).
    [Crossref] [PubMed]
  25. K. E. Jang, S. Tak, J. Jang, J. Jung, and J. C. Ye, “Wavelet-MDL based detrending method for near infrared spectroscopy (NIRS),” in Multimodal Biomedical Imaging III (International Society for Optics and Photonics, 2008), 68500Y.
  26. P.-P. Sun, F.-L. Tan, Z. Zhang, Y.-H. Jiang, Y. Zhao, and C.-Z. Zhu, “Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation,” Front. Hum. Neurosci. 12, 86 (2018).
    [Crossref] [PubMed]
  27. A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, “Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI,” Neuroimage 27(4), 842–851 (2005).
    [Crossref] [PubMed]
  28. C. W. Granger, “Investigating causal relations by econometric models and cross-spectral methods,” Econometrica 37(3), 424–438 (1969).
    [Crossref]
  29. G. Schwarz, “Estimating the dimension of a model,” Ann. Stat. 6(2), 461–464 (1978).
    [Crossref]
  30. J. Geweke, R. Meese, and W. Dent, “Comparing alternative tests of causality in temporal systems: Analytic results and experimental evidence,” J. Econom. 21(2), 161–194 (1983).
    [Crossref]
  31. S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45(4), 289–299 (2008).
    [Crossref] [PubMed]
  32. D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage 54(4), 2922–2936 (2011).
    [Crossref] [PubMed]
  33. F. Alary, B. Doyon, I. Loubinoux, C. Carel, K. Boulanouar, J. P. Ranjeva, P. Celsis, and F. Chollet, “Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI,” Neuroimage 8(4), 377–390 (1998).
    [Crossref] [PubMed]
  34. J. Spiegel, J. Tintera, J. Gawehn, P. Stoeter, and R.-D. Treede, “Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation,” Clin. Neurophysiol. 110(1), 47–52 (1999).
    [Crossref] [PubMed]
  35. F. Shen Ren, J. Junhua Li, N. V. Taya, deSouza, Thakor, and A. Bezerianos, “Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks,” IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 547–556 (2017).
    [Crossref] [PubMed]
  36. V. Parlatini, J. Radua, F. Dell’Acqua, A. Leslie, A. Simmons, D. G. Murphy, M. Catani, and M. Thiebaut de Schotten, “Functional segregation and integration within fronto-parietal networks,” Neuroimage 146, 367–375 (2017).
    [Crossref] [PubMed]
  37. D. S. Dinner, H. Lüders, R. P. Lesser, and H. H. Morris, “Cortical generators of somatosensory evoked potentials to median nerve stimulation,” Neurology 37(7), 1141–1145 (1987).
    [Crossref] [PubMed]
  38. N. Forss, R. Hari, R. Salmelin, A. Ahonen, M. Hämäläinen, M. Kajola, J. Knuutila, and J. Simola, “Activation of the human posterior parietal cortex by median nerve stimulation,” Exp. Brain Res. 99(2), 309–315 (1994).
    [Crossref] [PubMed]
  39. S. L. Novi, R. B. Rodrigues, and R. C. Mesquita, “Resting state connectivity patterns with near-infrared spectroscopy data of the whole head,” Biomed. Opt. Express 7(7), 2524–2537 (2016).
    [Crossref] [PubMed]
  40. L. Duan, Y.-J. Zhang, and C.-Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study,” Neuroimage 60(4), 2008–2018 (2012).
    [Crossref] [PubMed]
  41. J. Li and L. Qiu, “Temporal correlation of spontaneous hemodynamic activity in language areas measured with functional near-infrared spectroscopy,” Biomed. Opt. Express 5(2), 587–595 (2014).
    [Crossref] [PubMed]
  42. E.-M. Pool, A. K. Rehme, G. R. Fink, S. B. Eickhoff, and C. Grefkes, “Network dynamics engaged in the modulation of motor behavior in healthy subjects,” Neuroimage 82, 68–76 (2013).
    [Crossref] [PubMed]
  43. F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
    [Crossref] [PubMed]
  44. S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
    [Crossref] [PubMed]
  45. R. B. Buxton, “Dynamic models of BOLD contrast,” Neuroimage 62(2), 953–961 (2012).
    [Crossref] [PubMed]
  46. C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
    [Crossref] [PubMed]
  47. H. Chen, Q. Yang, W. Liao, Q. Gong, and S. Shen, “Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping,” Neuroimage 47(4), 1844–1853 (2009).
    [Crossref] [PubMed]
  48. C. Dettmers, G. R. Fink, R. N. Lemon, K. M. Stephan, R. E. Passingham, D. Silbersweig, A. Holmes, M. C. Ridding, D. J. Brooks, and R. S. Frackowiak, “Relation between cerebral activity and force in the motor areas of the human brain,” J. Neurophysiol. 74(2), 802–815 (1995).
    [Crossref] [PubMed]
  49. N. Sadato, V. Ibañez, M.-P. Deiber, G. Campbell, M. Leonardo, and M. Hallett, “Frequency-dependent changes of regional cerebral blood flow during finger movements,” J. Cereb. Blood Flow Metab. 16(1), 23–33 (1996).
    [Crossref] [PubMed]

2018 (1)

P.-P. Sun, F.-L. Tan, Z. Zhang, Y.-H. Jiang, Y. Zhao, and C.-Z. Zhu, “Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation,” Front. Hum. Neurosci. 12, 86 (2018).
[Crossref] [PubMed]

2017 (2)

F. Shen Ren, J. Junhua Li, N. V. Taya, deSouza, Thakor, and A. Bezerianos, “Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks,” IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 547–556 (2017).
[Crossref] [PubMed]

V. Parlatini, J. Radua, F. Dell’Acqua, A. Leslie, A. Simmons, D. G. Murphy, M. Catani, and M. Thiebaut de Schotten, “Functional segregation and integration within fronto-parietal networks,” Neuroimage 146, 367–375 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (1)

M. Smith, “Neurological rehabilitation: Optimizing motor performance,” Physiother. Can. 67, 215 (2015).

2014 (2)

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

J. Li and L. Qiu, “Temporal correlation of spontaneous hemodynamic activity in language areas measured with functional near-infrared spectroscopy,” Biomed. Opt. Express 5(2), 587–595 (2014).
[Crossref] [PubMed]

2013 (2)

Z. Yuan, “Combining independent component analysis and Granger causality to investigate brain network dynamics with fNIRS measurements,” Biomed. Opt. Express 4(11), 2629–2643 (2013).
[Crossref] [PubMed]

E.-M. Pool, A. K. Rehme, G. R. Fink, S. B. Eickhoff, and C. Grefkes, “Network dynamics engaged in the modulation of motor behavior in healthy subjects,” Neuroimage 82, 68–76 (2013).
[Crossref] [PubMed]

2012 (3)

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

R. B. Buxton, “Dynamic models of BOLD contrast,” Neuroimage 62(2), 953–961 (2012).
[Crossref] [PubMed]

L. Duan, Y.-J. Zhang, and C.-Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study,” Neuroimage 60(4), 2008–2018 (2012).
[Crossref] [PubMed]

2011 (3)

S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
[Crossref] [PubMed]

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage 54(4), 2922–2936 (2011).
[Crossref] [PubMed]

S. Tak, S. J. Yoon, J. Jang, K. Yoo, Y. Jeong, and J. C. Ye, “Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements,” Neuroimage 55(1), 176–184 (2011).
[Crossref] [PubMed]

2010 (5)

S. Tak, J. Jang, K. Lee, and J. C. Ye, “Quantification of CMRO2 without hypercapnia using simultaneous near-infrared spectroscopy and fMRI measurements,” Phys. Med. Biol. 55(11), 3249–3269 (2010).
[Crossref] [PubMed]

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

X. L. Hu, K. Y. Tong, R. Li, M. Chen, J. J. Xue, S. K. Ho, and P. N. Chen, “Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5819–5822 (2010).
[PubMed]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
[Crossref] [PubMed]

2009 (2)

H. Chen, Q. Yang, W. Liao, Q. Gong, and S. Shen, “Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping,” Neuroimage 47(4), 1844–1853 (2009).
[Crossref] [PubMed]

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

2008 (1)

S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45(4), 289–299 (2008).
[Crossref] [PubMed]

2007 (1)

A. Guzzetta, M. Staudt, E. Petacchi, J. Ehlers, M. Erb, M. Wilke, I. Krägeloh-Mann, and G. Cioni, “Brain representation of active and passive hand movements in children,” Pediatr. Res. 61(4), 485–490 (2007).
[Crossref] [PubMed]

2005 (2)

M. G. Lacourse, E. L. Orr, S. C. Cramer, and M. J. Cohen, “Brain activation during execution and motor imagery of novel and skilled sequential hand movements,” Neuroimage 27(3), 505–519 (2005).
[Crossref] [PubMed]

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, “Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI,” Neuroimage 27(4), 842–851 (2005).
[Crossref] [PubMed]

2001 (1)

J. Eng, “Movement Science: Foundations for Physical Therapy in Rehabilitation,” Can. J. Occup. Ther. 68, 320 (2001).

2000 (1)

A. Zaman, K. Singh, W. Bimson, and N. Roberts, “An fMRI study of brain activation during active and passive finger movement,” Neuroimage 11(5), S858 (2000).
[Crossref]

1999 (2)

T. Mima, N. Sadato, S. Yazawa, T. Hanakawa, H. Fukuyama, Y. Yonekura, and H. Shibasaki, “Brain structures related to active and passive finger movements in man,” Brain 122(10), 1989–1997 (1999).
[Crossref] [PubMed]

J. Spiegel, J. Tintera, J. Gawehn, P. Stoeter, and R.-D. Treede, “Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation,” Clin. Neurophysiol. 110(1), 47–52 (1999).
[Crossref] [PubMed]

1998 (1)

F. Alary, B. Doyon, I. Loubinoux, C. Carel, K. Boulanouar, J. P. Ranjeva, P. Celsis, and F. Chollet, “Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI,” Neuroimage 8(4), 377–390 (1998).
[Crossref] [PubMed]

1996 (2)

C. Weiller, M. Jüptner, S. Fellows, M. Rijntjes, G. Leonhardt, S. Kiebel, S. Müller, H. C. Diener, and A. F. Thilmann, “Brain representation of active and passive movements,” Neuroimage 4(2), 105–110 (1996).
[Crossref] [PubMed]

N. Sadato, V. Ibañez, M.-P. Deiber, G. Campbell, M. Leonardo, and M. Hallett, “Frequency-dependent changes of regional cerebral blood flow during finger movements,” J. Cereb. Blood Flow Metab. 16(1), 23–33 (1996).
[Crossref] [PubMed]

1995 (1)

C. Dettmers, G. R. Fink, R. N. Lemon, K. M. Stephan, R. E. Passingham, D. Silbersweig, A. Holmes, M. C. Ridding, D. J. Brooks, and R. S. Frackowiak, “Relation between cerebral activity and force in the motor areas of the human brain,” J. Neurophysiol. 74(2), 802–815 (1995).
[Crossref] [PubMed]

1994 (2)

N. Forss, R. Hari, R. Salmelin, A. Ahonen, M. Hämäläinen, M. Kajola, J. Knuutila, and J. Simola, “Activation of the human posterior parietal cortex by median nerve stimulation,” Exp. Brain Res. 99(2), 309–315 (1994).
[Crossref] [PubMed]

K. J. Friston, “Functional and effective connectivity in neuroimaging: a synthesis,” Hum. Brain Mapp. 2(1-2), 56–78 (1994).
[Crossref]

1987 (1)

D. S. Dinner, H. Lüders, R. P. Lesser, and H. H. Morris, “Cortical generators of somatosensory evoked potentials to median nerve stimulation,” Neurology 37(7), 1141–1145 (1987).
[Crossref] [PubMed]

1983 (1)

J. Geweke, R. Meese, and W. Dent, “Comparing alternative tests of causality in temporal systems: Analytic results and experimental evidence,” J. Econom. 21(2), 161–194 (1983).
[Crossref]

1978 (1)

G. Schwarz, “Estimating the dimension of a model,” Ann. Stat. 6(2), 461–464 (1978).
[Crossref]

1977 (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[Crossref] [PubMed]

1969 (1)

C. W. Granger, “Investigating causal relations by econometric models and cross-spectral methods,” Econometrica 37(3), 424–438 (1969).
[Crossref]

1950 (1)

E. von Holst and H. Mittelstaedt, “Das reafferenzprinzip,” Naturwissenschaften 37(20), 464–476 (1950).
[Crossref]

Ahonen, A.

N. Forss, R. Hari, R. Salmelin, A. Ahonen, M. Hämäläinen, M. Kajola, J. Knuutila, and J. Simola, “Activation of the human posterior parietal cortex by median nerve stimulation,” Exp. Brain Res. 99(2), 309–315 (1994).
[Crossref] [PubMed]

Alary, F.

F. Alary, B. Doyon, I. Loubinoux, C. Carel, K. Boulanouar, J. P. Ranjeva, P. Celsis, and F. Chollet, “Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI,” Neuroimage 8(4), 377–390 (1998).
[Crossref] [PubMed]

Athanasiou, T.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage 54(4), 2922–2936 (2011).
[Crossref] [PubMed]

Bezerianos, A.

F. Shen Ren, J. Junhua Li, N. V. Taya, deSouza, Thakor, and A. Bezerianos, “Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks,” IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 547–556 (2017).
[Crossref] [PubMed]

Bimson, W.

A. Zaman, K. Singh, W. Bimson, and N. Roberts, “An fMRI study of brain activation during active and passive finger movement,” Neuroimage 11(5), S858 (2000).
[Crossref]

Biswal, B. B.

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Boas, D. A.

Boulanouar, K.

F. Alary, B. Doyon, I. Loubinoux, C. Carel, K. Boulanouar, J. P. Ranjeva, P. Celsis, and F. Chollet, “Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI,” Neuroimage 8(4), 377–390 (1998).
[Crossref] [PubMed]

Brooks, D. J.

C. Dettmers, G. R. Fink, R. N. Lemon, K. M. Stephan, R. E. Passingham, D. Silbersweig, A. Holmes, M. C. Ridding, D. J. Brooks, and R. S. Frackowiak, “Relation between cerebral activity and force in the motor areas of the human brain,” J. Neurophysiol. 74(2), 802–815 (1995).
[Crossref] [PubMed]

Buxton, R. B.

R. B. Buxton, “Dynamic models of BOLD contrast,” Neuroimage 62(2), 953–961 (2012).
[Crossref] [PubMed]

Campbell, G.

N. Sadato, V. Ibañez, M.-P. Deiber, G. Campbell, M. Leonardo, and M. Hallett, “Frequency-dependent changes of regional cerebral blood flow during finger movements,” J. Cereb. Blood Flow Metab. 16(1), 23–33 (1996).
[Crossref] [PubMed]

Carel, C.

F. Alary, B. Doyon, I. Loubinoux, C. Carel, K. Boulanouar, J. P. Ranjeva, P. Celsis, and F. Chollet, “Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI,” Neuroimage 8(4), 377–390 (1998).
[Crossref] [PubMed]

Catani, M.

V. Parlatini, J. Radua, F. Dell’Acqua, A. Leslie, A. Simmons, D. G. Murphy, M. Catani, and M. Thiebaut de Schotten, “Functional segregation and integration within fronto-parietal networks,” Neuroimage 146, 367–375 (2017).
[Crossref] [PubMed]

Celsis, P.

F. Alary, B. Doyon, I. Loubinoux, C. Carel, K. Boulanouar, J. P. Ranjeva, P. Celsis, and F. Chollet, “Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI,” Neuroimage 8(4), 377–390 (1998).
[Crossref] [PubMed]

Chen, H.

H. Chen, Q. Yang, W. Liao, Q. Gong, and S. Shen, “Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping,” Neuroimage 47(4), 1844–1853 (2009).
[Crossref] [PubMed]

Chen, M.

X. L. Hu, K. Y. Tong, R. Li, M. Chen, J. J. Xue, S. K. Ho, and P. N. Chen, “Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5819–5822 (2010).
[PubMed]

Chen, P. N.

X. L. Hu, K. Y. Tong, R. Li, M. Chen, J. J. Xue, S. K. Ho, and P. N. Chen, “Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5819–5822 (2010).
[PubMed]

Chollet, F.

F. Alary, B. Doyon, I. Loubinoux, C. Carel, K. Boulanouar, J. P. Ranjeva, P. Celsis, and F. Chollet, “Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI,” Neuroimage 8(4), 377–390 (1998).
[Crossref] [PubMed]

Cioni, G.

A. Guzzetta, M. Staudt, E. Petacchi, J. Ehlers, M. Erb, M. Wilke, I. Krägeloh-Mann, and G. Cioni, “Brain representation of active and passive hand movements in children,” Pediatr. Res. 61(4), 485–490 (2007).
[Crossref] [PubMed]

Cohen, M. J.

M. G. Lacourse, E. L. Orr, S. C. Cramer, and M. J. Cohen, “Brain activation during execution and motor imagery of novel and skilled sequential hand movements,” Neuroimage 27(3), 505–519 (2005).
[Crossref] [PubMed]

Cramer, S. C.

M. G. Lacourse, E. L. Orr, S. C. Cramer, and M. J. Cohen, “Brain activation during execution and motor imagery of novel and skilled sequential hand movements,” Neuroimage 27(3), 505–519 (2005).
[Crossref] [PubMed]

Dan, H.

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, “Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI,” Neuroimage 27(4), 842–851 (2005).
[Crossref] [PubMed]

Dan, I.

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, “Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI,” Neuroimage 27(4), 842–851 (2005).
[Crossref] [PubMed]

Darzi, A. W.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage 54(4), 2922–2936 (2011).
[Crossref] [PubMed]

Deiber, M.-P.

N. Sadato, V. Ibañez, M.-P. Deiber, G. Campbell, M. Leonardo, and M. Hallett, “Frequency-dependent changes of regional cerebral blood flow during finger movements,” J. Cereb. Blood Flow Metab. 16(1), 23–33 (1996).
[Crossref] [PubMed]

Dell’Acqua, F.

V. Parlatini, J. Radua, F. Dell’Acqua, A. Leslie, A. Simmons, D. G. Murphy, M. Catani, and M. Thiebaut de Schotten, “Functional segregation and integration within fronto-parietal networks,” Neuroimage 146, 367–375 (2017).
[Crossref] [PubMed]

Delpy, D. T.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage 54(4), 2922–2936 (2011).
[Crossref] [PubMed]

Dent, W.

J. Geweke, R. Meese, and W. Dent, “Comparing alternative tests of causality in temporal systems: Analytic results and experimental evidence,” J. Econom. 21(2), 161–194 (1983).
[Crossref]

deSouza,

F. Shen Ren, J. Junhua Li, N. V. Taya, deSouza, Thakor, and A. Bezerianos, “Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks,” IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 547–556 (2017).
[Crossref] [PubMed]

Dettmers, C.

C. Dettmers, G. R. Fink, R. N. Lemon, K. M. Stephan, R. E. Passingham, D. Silbersweig, A. Holmes, M. C. Ridding, D. J. Brooks, and R. S. Frackowiak, “Relation between cerebral activity and force in the motor areas of the human brain,” J. Neurophysiol. 74(2), 802–815 (1995).
[Crossref] [PubMed]

Diener, H. C.

C. Weiller, M. Jüptner, S. Fellows, M. Rijntjes, G. Leonhardt, S. Kiebel, S. Müller, H. C. Diener, and A. F. Thilmann, “Brain representation of active and passive movements,” Neuroimage 4(2), 105–110 (1996).
[Crossref] [PubMed]

Dinner, D. S.

D. S. Dinner, H. Lüders, R. P. Lesser, and H. H. Morris, “Cortical generators of somatosensory evoked potentials to median nerve stimulation,” Neurology 37(7), 1141–1145 (1987).
[Crossref] [PubMed]

Doyon, B.

F. Alary, B. Doyon, I. Loubinoux, C. Carel, K. Boulanouar, J. P. Ranjeva, P. Celsis, and F. Chollet, “Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI,” Neuroimage 8(4), 377–390 (1998).
[Crossref] [PubMed]

Duan, L.

L. Duan, Y.-J. Zhang, and C.-Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study,” Neuroimage 60(4), 2008–2018 (2012).
[Crossref] [PubMed]

Ehlers, J.

A. Guzzetta, M. Staudt, E. Petacchi, J. Ehlers, M. Erb, M. Wilke, I. Krägeloh-Mann, and G. Cioni, “Brain representation of active and passive hand movements in children,” Pediatr. Res. 61(4), 485–490 (2007).
[Crossref] [PubMed]

Eickhoff, S. B.

E.-M. Pool, A. K. Rehme, G. R. Fink, S. B. Eickhoff, and C. Grefkes, “Network dynamics engaged in the modulation of motor behavior in healthy subjects,” Neuroimage 82, 68–76 (2013).
[Crossref] [PubMed]

Elwell, C. E.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage 54(4), 2922–2936 (2011).
[Crossref] [PubMed]

Eng, J.

J. Eng, “Movement Science: Foundations for Physical Therapy in Rehabilitation,” Can. J. Occup. Ther. 68, 320 (2001).

Erb, M.

A. Guzzetta, M. Staudt, E. Petacchi, J. Ehlers, M. Erb, M. Wilke, I. Krägeloh-Mann, and G. Cioni, “Brain representation of active and passive hand movements in children,” Pediatr. Res. 61(4), 485–490 (2007).
[Crossref] [PubMed]

Fellows, S.

C. Weiller, M. Jüptner, S. Fellows, M. Rijntjes, G. Leonhardt, S. Kiebel, S. Müller, H. C. Diener, and A. F. Thilmann, “Brain representation of active and passive movements,” Neuroimage 4(2), 105–110 (1996).
[Crossref] [PubMed]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Fink, G. R.

E.-M. Pool, A. K. Rehme, G. R. Fink, S. B. Eickhoff, and C. Grefkes, “Network dynamics engaged in the modulation of motor behavior in healthy subjects,” Neuroimage 82, 68–76 (2013).
[Crossref] [PubMed]

C. Dettmers, G. R. Fink, R. N. Lemon, K. M. Stephan, R. E. Passingham, D. Silbersweig, A. Holmes, M. C. Ridding, D. J. Brooks, and R. S. Frackowiak, “Relation between cerebral activity and force in the motor areas of the human brain,” J. Neurophysiol. 74(2), 802–815 (1995).
[Crossref] [PubMed]

Forss, N.

N. Forss, R. Hari, R. Salmelin, A. Ahonen, M. Hämäläinen, M. Kajola, J. Knuutila, and J. Simola, “Activation of the human posterior parietal cortex by median nerve stimulation,” Exp. Brain Res. 99(2), 309–315 (1994).
[Crossref] [PubMed]

Frackowiak, R. S.

C. Dettmers, G. R. Fink, R. N. Lemon, K. M. Stephan, R. E. Passingham, D. Silbersweig, A. Holmes, M. C. Ridding, D. J. Brooks, and R. S. Frackowiak, “Relation between cerebral activity and force in the motor areas of the human brain,” J. Neurophysiol. 74(2), 802–815 (1995).
[Crossref] [PubMed]

Franceschini, M. A.

Friston, K. J.

K. J. Friston, “Functional and effective connectivity in neuroimaging: a synthesis,” Hum. Brain Mapp. 2(1-2), 56–78 (1994).
[Crossref]

Fukuyama, H.

T. Mima, N. Sadato, S. Yazawa, T. Hanakawa, H. Fukuyama, Y. Yonekura, and H. Shibasaki, “Brain structures related to active and passive finger movements in man,” Brain 122(10), 1989–1997 (1999).
[Crossref] [PubMed]

Gawehn, J.

J. Spiegel, J. Tintera, J. Gawehn, P. Stoeter, and R.-D. Treede, “Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation,” Clin. Neurophysiol. 110(1), 47–52 (1999).
[Crossref] [PubMed]

Geweke, J.

J. Geweke, R. Meese, and W. Dent, “Comparing alternative tests of causality in temporal systems: Analytic results and experimental evidence,” J. Econom. 21(2), 161–194 (1983).
[Crossref]

Go, T.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Gong, Q.

H. Chen, Q. Yang, W. Liao, Q. Gong, and S. Shen, “Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping,” Neuroimage 47(4), 1844–1853 (2009).
[Crossref] [PubMed]

Granger, C. W.

C. W. Granger, “Investigating causal relations by econometric models and cross-spectral methods,” Econometrica 37(3), 424–438 (1969).
[Crossref]

Grefkes, C.

E.-M. Pool, A. K. Rehme, G. R. Fink, S. B. Eickhoff, and C. Grefkes, “Network dynamics engaged in the modulation of motor behavior in healthy subjects,” Neuroimage 82, 68–76 (2013).
[Crossref] [PubMed]

Guzzetta, A.

A. Guzzetta, M. Staudt, E. Petacchi, J. Ehlers, M. Erb, M. Wilke, I. Krägeloh-Mann, and G. Cioni, “Brain representation of active and passive hand movements in children,” Pediatr. Res. 61(4), 485–490 (2007).
[Crossref] [PubMed]

Hallett, M.

N. Sadato, V. Ibañez, M.-P. Deiber, G. Campbell, M. Leonardo, and M. Hallett, “Frequency-dependent changes of regional cerebral blood flow during finger movements,” J. Cereb. Blood Flow Metab. 16(1), 23–33 (1996).
[Crossref] [PubMed]

Hämäläinen, M.

N. Forss, R. Hari, R. Salmelin, A. Ahonen, M. Hämäläinen, M. Kajola, J. Knuutila, and J. Simola, “Activation of the human posterior parietal cortex by median nerve stimulation,” Exp. Brain Res. 99(2), 309–315 (1994).
[Crossref] [PubMed]

Hanakawa, T.

T. Mima, N. Sadato, S. Yazawa, T. Hanakawa, H. Fukuyama, Y. Yonekura, and H. Shibasaki, “Brain structures related to active and passive finger movements in man,” Brain 122(10), 1989–1997 (1999).
[Crossref] [PubMed]

Hari, R.

N. Forss, R. Hari, R. Salmelin, A. Ahonen, M. Hämäläinen, M. Kajola, J. Knuutila, and J. Simola, “Activation of the human posterior parietal cortex by median nerve stimulation,” Exp. Brain Res. 99(2), 309–315 (1994).
[Crossref] [PubMed]

Ho, S. K.

X. L. Hu, K. Y. Tong, R. Li, M. Chen, J. J. Xue, S. K. Ho, and P. N. Chen, “Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5819–5822 (2010).
[PubMed]

Holmes, A.

C. Dettmers, G. R. Fink, R. N. Lemon, K. M. Stephan, R. E. Passingham, D. Silbersweig, A. Holmes, M. C. Ridding, D. J. Brooks, and R. S. Frackowiak, “Relation between cerebral activity and force in the motor areas of the human brain,” J. Neurophysiol. 74(2), 802–815 (1995).
[Crossref] [PubMed]

Homae, F.

S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
[Crossref] [PubMed]

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Hu, X. L.

X. L. Hu, K. Y. Tong, R. Li, M. Chen, J. J. Xue, S. K. Ho, and P. N. Chen, “Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5819–5822 (2010).
[PubMed]

Ibañez, V.

N. Sadato, V. Ibañez, M.-P. Deiber, G. Campbell, M. Leonardo, and M. Hallett, “Frequency-dependent changes of regional cerebral blood flow during finger movements,” J. Cereb. Blood Flow Metab. 16(1), 23–33 (1996).
[Crossref] [PubMed]

Jang, J.

S. Tak, S. J. Yoon, J. Jang, K. Yoo, Y. Jeong, and J. C. Ye, “Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements,” Neuroimage 55(1), 176–184 (2011).
[Crossref] [PubMed]

S. Tak, J. Jang, K. Lee, and J. C. Ye, “Quantification of CMRO2 without hypercapnia using simultaneous near-infrared spectroscopy and fMRI measurements,” Phys. Med. Biol. 55(11), 3249–3269 (2010).
[Crossref] [PubMed]

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

Jang, K. E.

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

Jeong, Y.

S. Tak, S. J. Yoon, J. Jang, K. Yoo, Y. Jeong, and J. C. Ye, “Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements,” Neuroimage 55(1), 176–184 (2011).
[Crossref] [PubMed]

Jiang, Y.-H.

P.-P. Sun, F.-L. Tan, Z. Zhang, Y.-H. Jiang, Y. Zhao, and C.-Z. Zhu, “Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation,” Front. Hum. Neurosci. 12, 86 (2018).
[Crossref] [PubMed]

Jöbsis, F. F.

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[Crossref] [PubMed]

Jung, J.

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

Junhua Li, J.

F. Shen Ren, J. Junhua Li, N. V. Taya, deSouza, Thakor, and A. Bezerianos, “Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks,” IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 547–556 (2017).
[Crossref] [PubMed]

Jüptner, M.

C. Weiller, M. Jüptner, S. Fellows, M. Rijntjes, G. Leonhardt, S. Kiebel, S. Müller, H. C. Diener, and A. F. Thilmann, “Brain representation of active and passive movements,” Neuroimage 4(2), 105–110 (1996).
[Crossref] [PubMed]

Jurcak, V.

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, “Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI,” Neuroimage 27(4), 842–851 (2005).
[Crossref] [PubMed]

Kajola, M.

N. Forss, R. Hari, R. Salmelin, A. Ahonen, M. Hämäläinen, M. Kajola, J. Knuutila, and J. Simola, “Activation of the human posterior parietal cortex by median nerve stimulation,” Exp. Brain Res. 99(2), 309–315 (1994).
[Crossref] [PubMed]

Kiebel, S.

C. Weiller, M. Jüptner, S. Fellows, M. Rijntjes, G. Leonhardt, S. Kiebel, S. Müller, H. C. Diener, and A. F. Thilmann, “Brain representation of active and passive movements,” Neuroimage 4(2), 105–110 (1996).
[Crossref] [PubMed]

Kleiser, S.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Knuutila, J.

N. Forss, R. Hari, R. Salmelin, A. Ahonen, M. Hämäläinen, M. Kajola, J. Knuutila, and J. Simola, “Activation of the human posterior parietal cortex by median nerve stimulation,” Exp. Brain Res. 99(2), 309–315 (1994).
[Crossref] [PubMed]

Konishi, Y.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Krägeloh-Mann, I.

A. Guzzetta, M. Staudt, E. Petacchi, J. Ehlers, M. Erb, M. Wilke, I. Krägeloh-Mann, and G. Cioni, “Brain representation of active and passive hand movements in children,” Pediatr. Res. 61(4), 485–490 (2007).
[Crossref] [PubMed]

Lacourse, M. G.

M. G. Lacourse, E. L. Orr, S. C. Cramer, and M. J. Cohen, “Brain activation during execution and motor imagery of novel and skilled sequential hand movements,” Neuroimage 27(3), 505–519 (2005).
[Crossref] [PubMed]

Lee, K.

S. Tak, J. Jang, K. Lee, and J. C. Ye, “Quantification of CMRO2 without hypercapnia using simultaneous near-infrared spectroscopy and fMRI measurements,” Phys. Med. Biol. 55(11), 3249–3269 (2010).
[Crossref] [PubMed]

Leff, D. R.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage 54(4), 2922–2936 (2011).
[Crossref] [PubMed]

Lemon, R. N.

C. Dettmers, G. R. Fink, R. N. Lemon, K. M. Stephan, R. E. Passingham, D. Silbersweig, A. Holmes, M. C. Ridding, D. J. Brooks, and R. S. Frackowiak, “Relation between cerebral activity and force in the motor areas of the human brain,” J. Neurophysiol. 74(2), 802–815 (1995).
[Crossref] [PubMed]

Leonardo, M.

N. Sadato, V. Ibañez, M.-P. Deiber, G. Campbell, M. Leonardo, and M. Hallett, “Frequency-dependent changes of regional cerebral blood flow during finger movements,” J. Cereb. Blood Flow Metab. 16(1), 23–33 (1996).
[Crossref] [PubMed]

Leonhardt, G.

C. Weiller, M. Jüptner, S. Fellows, M. Rijntjes, G. Leonhardt, S. Kiebel, S. Müller, H. C. Diener, and A. F. Thilmann, “Brain representation of active and passive movements,” Neuroimage 4(2), 105–110 (1996).
[Crossref] [PubMed]

Leslie, A.

V. Parlatini, J. Radua, F. Dell’Acqua, A. Leslie, A. Simmons, D. G. Murphy, M. Catani, and M. Thiebaut de Schotten, “Functional segregation and integration within fronto-parietal networks,” Neuroimage 146, 367–375 (2017).
[Crossref] [PubMed]

Lesser, R. P.

D. S. Dinner, H. Lüders, R. P. Lesser, and H. H. Morris, “Cortical generators of somatosensory evoked potentials to median nerve stimulation,” Neurology 37(7), 1141–1145 (1987).
[Crossref] [PubMed]

Li, J.

Li, R.

X. L. Hu, K. Y. Tong, R. Li, M. Chen, J. J. Xue, S. K. Ho, and P. N. Chen, “Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5819–5822 (2010).
[PubMed]

Liao, W.

H. Chen, Q. Yang, W. Liao, Q. Gong, and S. Shen, “Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping,” Neuroimage 47(4), 1844–1853 (2009).
[Crossref] [PubMed]

Loubinoux, I.

F. Alary, B. Doyon, I. Loubinoux, C. Carel, K. Boulanouar, J. P. Ranjeva, P. Celsis, and F. Chollet, “Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI,” Neuroimage 8(4), 377–390 (1998).
[Crossref] [PubMed]

Lu, C.-M.

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Lüders, H.

D. S. Dinner, H. Lüders, R. P. Lesser, and H. H. Morris, “Cortical generators of somatosensory evoked potentials to median nerve stimulation,” Neurology 37(7), 1141–1145 (1987).
[Crossref] [PubMed]

Mata Pavia, J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Meese, R.

J. Geweke, R. Meese, and W. Dent, “Comparing alternative tests of causality in temporal systems: Analytic results and experimental evidence,” J. Econom. 21(2), 161–194 (1983).
[Crossref]

Mesquita, R. C.

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Mima, T.

T. Mima, N. Sadato, S. Yazawa, T. Hanakawa, H. Fukuyama, Y. Yonekura, and H. Shibasaki, “Brain structures related to active and passive finger movements in man,” Brain 122(10), 1989–1997 (1999).
[Crossref] [PubMed]

Mittelstaedt, H.

E. von Holst and H. Mittelstaedt, “Das reafferenzprinzip,” Naturwissenschaften 37(20), 464–476 (1950).
[Crossref]

Morris, H. H.

D. S. Dinner, H. Lüders, R. P. Lesser, and H. H. Morris, “Cortical generators of somatosensory evoked potentials to median nerve stimulation,” Neurology 37(7), 1141–1145 (1987).
[Crossref] [PubMed]

Müller, S.

C. Weiller, M. Jüptner, S. Fellows, M. Rijntjes, G. Leonhardt, S. Kiebel, S. Müller, H. C. Diener, and A. F. Thilmann, “Brain representation of active and passive movements,” Neuroimage 4(2), 105–110 (1996).
[Crossref] [PubMed]

Murphy, D. G.

V. Parlatini, J. Radua, F. Dell’Acqua, A. Leslie, A. Simmons, D. G. Murphy, M. Catani, and M. Thiebaut de Schotten, “Functional segregation and integration within fronto-parietal networks,” Neuroimage 146, 367–375 (2017).
[Crossref] [PubMed]

Nakano, T.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Novi, S. L.

Okamoto, M.

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, “Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI,” Neuroimage 27(4), 842–851 (2005).
[Crossref] [PubMed]

Orihuela-Espina, F.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage 54(4), 2922–2936 (2011).
[Crossref] [PubMed]

Orr, E. L.

M. G. Lacourse, E. L. Orr, S. C. Cramer, and M. J. Cohen, “Brain activation during execution and motor imagery of novel and skilled sequential hand movements,” Neuroimage 27(3), 505–519 (2005).
[Crossref] [PubMed]

Otobe, T.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Parlatini, V.

V. Parlatini, J. Radua, F. Dell’Acqua, A. Leslie, A. Simmons, D. G. Murphy, M. Catani, and M. Thiebaut de Schotten, “Functional segregation and integration within fronto-parietal networks,” Neuroimage 146, 367–375 (2017).
[Crossref] [PubMed]

Passingham, R. E.

C. Dettmers, G. R. Fink, R. N. Lemon, K. M. Stephan, R. E. Passingham, D. Silbersweig, A. Holmes, M. C. Ridding, D. J. Brooks, and R. S. Frackowiak, “Relation between cerebral activity and force in the motor areas of the human brain,” J. Neurophysiol. 74(2), 802–815 (1995).
[Crossref] [PubMed]

Peng, D.-L.

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Perrey, S.

S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45(4), 289–299 (2008).
[Crossref] [PubMed]

Petacchi, E.

A. Guzzetta, M. Staudt, E. Petacchi, J. Ehlers, M. Erb, M. Wilke, I. Krägeloh-Mann, and G. Cioni, “Brain representation of active and passive hand movements in children,” Pediatr. Res. 61(4), 485–490 (2007).
[Crossref] [PubMed]

Pool, E.-M.

E.-M. Pool, A. K. Rehme, G. R. Fink, S. B. Eickhoff, and C. Grefkes, “Network dynamics engaged in the modulation of motor behavior in healthy subjects,” Neuroimage 82, 68–76 (2013).
[Crossref] [PubMed]

Qiu, L.

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Radua, J.

V. Parlatini, J. Radua, F. Dell’Acqua, A. Leslie, A. Simmons, D. G. Murphy, M. Catani, and M. Thiebaut de Schotten, “Functional segregation and integration within fronto-parietal networks,” Neuroimage 146, 367–375 (2017).
[Crossref] [PubMed]

Ranjeva, J. P.

F. Alary, B. Doyon, I. Loubinoux, C. Carel, K. Boulanouar, J. P. Ranjeva, P. Celsis, and F. Chollet, “Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI,” Neuroimage 8(4), 377–390 (1998).
[Crossref] [PubMed]

Rehme, A. K.

E.-M. Pool, A. K. Rehme, G. R. Fink, S. B. Eickhoff, and C. Grefkes, “Network dynamics engaged in the modulation of motor behavior in healthy subjects,” Neuroimage 82, 68–76 (2013).
[Crossref] [PubMed]

Ridding, M. C.

C. Dettmers, G. R. Fink, R. N. Lemon, K. M. Stephan, R. E. Passingham, D. Silbersweig, A. Holmes, M. C. Ridding, D. J. Brooks, and R. S. Frackowiak, “Relation between cerebral activity and force in the motor areas of the human brain,” J. Neurophysiol. 74(2), 802–815 (1995).
[Crossref] [PubMed]

Rijntjes, M.

C. Weiller, M. Jüptner, S. Fellows, M. Rijntjes, G. Leonhardt, S. Kiebel, S. Müller, H. C. Diener, and A. F. Thilmann, “Brain representation of active and passive movements,” Neuroimage 4(2), 105–110 (1996).
[Crossref] [PubMed]

Roberts, N.

A. Zaman, K. Singh, W. Bimson, and N. Roberts, “An fMRI study of brain activation during active and passive finger movement,” Neuroimage 11(5), S858 (2000).
[Crossref]

Rodrigues, R. B.

Sadato, N.

T. Mima, N. Sadato, S. Yazawa, T. Hanakawa, H. Fukuyama, Y. Yonekura, and H. Shibasaki, “Brain structures related to active and passive finger movements in man,” Brain 122(10), 1989–1997 (1999).
[Crossref] [PubMed]

N. Sadato, V. Ibañez, M.-P. Deiber, G. Campbell, M. Leonardo, and M. Hallett, “Frequency-dependent changes of regional cerebral blood flow during finger movements,” J. Cereb. Blood Flow Metab. 16(1), 23–33 (1996).
[Crossref] [PubMed]

Salmelin, R.

N. Forss, R. Hari, R. Salmelin, A. Ahonen, M. Hämäläinen, M. Kajola, J. Knuutila, and J. Simola, “Activation of the human posterior parietal cortex by median nerve stimulation,” Exp. Brain Res. 99(2), 309–315 (1994).
[Crossref] [PubMed]

Sasai, S.

S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
[Crossref] [PubMed]

Scholkmann, F.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Schwarz, G.

G. Schwarz, “Estimating the dimension of a model,” Ann. Stat. 6(2), 461–464 (1978).
[Crossref]

Shen, S.

H. Chen, Q. Yang, W. Liao, Q. Gong, and S. Shen, “Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping,” Neuroimage 47(4), 1844–1853 (2009).
[Crossref] [PubMed]

Shen Ren, F.

F. Shen Ren, J. Junhua Li, N. V. Taya, deSouza, Thakor, and A. Bezerianos, “Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks,” IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 547–556 (2017).
[Crossref] [PubMed]

Shibasaki, H.

T. Mima, N. Sadato, S. Yazawa, T. Hanakawa, H. Fukuyama, Y. Yonekura, and H. Shibasaki, “Brain structures related to active and passive finger movements in man,” Brain 122(10), 1989–1997 (1999).
[Crossref] [PubMed]

Silbersweig, D.

C. Dettmers, G. R. Fink, R. N. Lemon, K. M. Stephan, R. E. Passingham, D. Silbersweig, A. Holmes, M. C. Ridding, D. J. Brooks, and R. S. Frackowiak, “Relation between cerebral activity and force in the motor areas of the human brain,” J. Neurophysiol. 74(2), 802–815 (1995).
[Crossref] [PubMed]

Simmons, A.

V. Parlatini, J. Radua, F. Dell’Acqua, A. Leslie, A. Simmons, D. G. Murphy, M. Catani, and M. Thiebaut de Schotten, “Functional segregation and integration within fronto-parietal networks,” Neuroimage 146, 367–375 (2017).
[Crossref] [PubMed]

Simola, J.

N. Forss, R. Hari, R. Salmelin, A. Ahonen, M. Hämäläinen, M. Kajola, J. Knuutila, and J. Simola, “Activation of the human posterior parietal cortex by median nerve stimulation,” Exp. Brain Res. 99(2), 309–315 (1994).
[Crossref] [PubMed]

Singh, A. K.

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, “Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI,” Neuroimage 27(4), 842–851 (2005).
[Crossref] [PubMed]

Singh, K.

A. Zaman, K. Singh, W. Bimson, and N. Roberts, “An fMRI study of brain activation during active and passive finger movement,” Neuroimage 11(5), S858 (2000).
[Crossref]

Smith, M.

M. Smith, “Neurological rehabilitation: Optimizing motor performance,” Physiother. Can. 67, 215 (2015).

Spiegel, J.

J. Spiegel, J. Tintera, J. Gawehn, P. Stoeter, and R.-D. Treede, “Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation,” Clin. Neurophysiol. 110(1), 47–52 (1999).
[Crossref] [PubMed]

Staudt, M.

A. Guzzetta, M. Staudt, E. Petacchi, J. Ehlers, M. Erb, M. Wilke, I. Krägeloh-Mann, and G. Cioni, “Brain representation of active and passive hand movements in children,” Pediatr. Res. 61(4), 485–490 (2007).
[Crossref] [PubMed]

Stephan, K. M.

C. Dettmers, G. R. Fink, R. N. Lemon, K. M. Stephan, R. E. Passingham, D. Silbersweig, A. Holmes, M. C. Ridding, D. J. Brooks, and R. S. Frackowiak, “Relation between cerebral activity and force in the motor areas of the human brain,” J. Neurophysiol. 74(2), 802–815 (1995).
[Crossref] [PubMed]

Stoeter, P.

J. Spiegel, J. Tintera, J. Gawehn, P. Stoeter, and R.-D. Treede, “Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation,” Clin. Neurophysiol. 110(1), 47–52 (1999).
[Crossref] [PubMed]

Sun, P.-P.

P.-P. Sun, F.-L. Tan, Z. Zhang, Y.-H. Jiang, Y. Zhao, and C.-Z. Zhu, “Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation,” Front. Hum. Neurosci. 12, 86 (2018).
[Crossref] [PubMed]

Taga, G.

S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
[Crossref] [PubMed]

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Tak, S.

S. Tak, S. J. Yoon, J. Jang, K. Yoo, Y. Jeong, and J. C. Ye, “Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements,” Neuroimage 55(1), 176–184 (2011).
[Crossref] [PubMed]

S. Tak, J. Jang, K. Lee, and J. C. Ye, “Quantification of CMRO2 without hypercapnia using simultaneous near-infrared spectroscopy and fMRI measurements,” Phys. Med. Biol. 55(11), 3249–3269 (2010).
[Crossref] [PubMed]

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

Tan, F.-L.

P.-P. Sun, F.-L. Tan, Z. Zhang, Y.-H. Jiang, Y. Zhao, and C.-Z. Zhu, “Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation,” Front. Hum. Neurosci. 12, 86 (2018).
[Crossref] [PubMed]

Taya, N. V.

F. Shen Ren, J. Junhua Li, N. V. Taya, deSouza, Thakor, and A. Bezerianos, “Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks,” IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 547–556 (2017).
[Crossref] [PubMed]

Thakor,

F. Shen Ren, J. Junhua Li, N. V. Taya, deSouza, Thakor, and A. Bezerianos, “Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks,” IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 547–556 (2017).
[Crossref] [PubMed]

Thiebaut de Schotten, M.

V. Parlatini, J. Radua, F. Dell’Acqua, A. Leslie, A. Simmons, D. G. Murphy, M. Catani, and M. Thiebaut de Schotten, “Functional segregation and integration within fronto-parietal networks,” Neuroimage 146, 367–375 (2017).
[Crossref] [PubMed]

Thilmann, A. F.

C. Weiller, M. Jüptner, S. Fellows, M. Rijntjes, G. Leonhardt, S. Kiebel, S. Müller, H. C. Diener, and A. F. Thilmann, “Brain representation of active and passive movements,” Neuroimage 4(2), 105–110 (1996).
[Crossref] [PubMed]

Tintera, J.

J. Spiegel, J. Tintera, J. Gawehn, P. Stoeter, and R.-D. Treede, “Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation,” Clin. Neurophysiol. 110(1), 47–52 (1999).
[Crossref] [PubMed]

Tong, K. Y.

X. L. Hu, K. Y. Tong, R. Li, M. Chen, J. J. Xue, S. K. Ho, and P. N. Chen, “Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5819–5822 (2010).
[PubMed]

Treede, R.-D.

J. Spiegel, J. Tintera, J. Gawehn, P. Stoeter, and R.-D. Treede, “Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation,” Clin. Neurophysiol. 110(1), 47–52 (1999).
[Crossref] [PubMed]

von Holst, E.

E. von Holst and H. Mittelstaedt, “Das reafferenzprinzip,” Naturwissenschaften 37(20), 464–476 (1950).
[Crossref]

Watanabe, H.

S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
[Crossref] [PubMed]

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

Weiller, C.

C. Weiller, M. Jüptner, S. Fellows, M. Rijntjes, G. Leonhardt, S. Kiebel, S. Müller, H. C. Diener, and A. F. Thilmann, “Brain representation of active and passive movements,” Neuroimage 4(2), 105–110 (1996).
[Crossref] [PubMed]

Wilke, M.

A. Guzzetta, M. Staudt, E. Petacchi, J. Ehlers, M. Erb, M. Wilke, I. Krägeloh-Mann, and G. Cioni, “Brain representation of active and passive hand movements in children,” Pediatr. Res. 61(4), 485–490 (2007).
[Crossref] [PubMed]

Wolf, M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Xue, J. J.

X. L. Hu, K. Y. Tong, R. Li, M. Chen, J. J. Xue, S. K. Ho, and P. N. Chen, “Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5819–5822 (2010).
[PubMed]

Yang, G.-Z.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage 54(4), 2922–2936 (2011).
[Crossref] [PubMed]

Yang, Q.

H. Chen, Q. Yang, W. Liao, Q. Gong, and S. Shen, “Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping,” Neuroimage 47(4), 1844–1853 (2009).
[Crossref] [PubMed]

Yazawa, S.

T. Mima, N. Sadato, S. Yazawa, T. Hanakawa, H. Fukuyama, Y. Yonekura, and H. Shibasaki, “Brain structures related to active and passive finger movements in man,” Brain 122(10), 1989–1997 (1999).
[Crossref] [PubMed]

Ye, J. C.

S. Tak, S. J. Yoon, J. Jang, K. Yoo, Y. Jeong, and J. C. Ye, “Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements,” Neuroimage 55(1), 176–184 (2011).
[Crossref] [PubMed]

S. Tak, J. Jang, K. Lee, and J. C. Ye, “Quantification of CMRO2 without hypercapnia using simultaneous near-infrared spectroscopy and fMRI measurements,” Phys. Med. Biol. 55(11), 3249–3269 (2010).
[Crossref] [PubMed]

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

Yonekura, Y.

T. Mima, N. Sadato, S. Yazawa, T. Hanakawa, H. Fukuyama, Y. Yonekura, and H. Shibasaki, “Brain structures related to active and passive finger movements in man,” Brain 122(10), 1989–1997 (1999).
[Crossref] [PubMed]

Yoo, K.

S. Tak, S. J. Yoon, J. Jang, K. Yoo, Y. Jeong, and J. C. Ye, “Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements,” Neuroimage 55(1), 176–184 (2011).
[Crossref] [PubMed]

Yoon, S. J.

S. Tak, S. J. Yoon, J. Jang, K. Yoo, Y. Jeong, and J. C. Ye, “Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements,” Neuroimage 55(1), 176–184 (2011).
[Crossref] [PubMed]

Yuan, Z.

Zaman, A.

A. Zaman, K. Singh, W. Bimson, and N. Roberts, “An fMRI study of brain activation during active and passive finger movement,” Neuroimage 11(5), S858 (2000).
[Crossref]

Zang, Y.-F.

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Zhang, Y.-J.

L. Duan, Y.-J. Zhang, and C.-Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study,” Neuroimage 60(4), 2008–2018 (2012).
[Crossref] [PubMed]

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Zhang, Z.

P.-P. Sun, F.-L. Tan, Z. Zhang, Y.-H. Jiang, Y. Zhao, and C.-Z. Zhu, “Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation,” Front. Hum. Neurosci. 12, 86 (2018).
[Crossref] [PubMed]

Zhao, Y.

P.-P. Sun, F.-L. Tan, Z. Zhang, Y.-H. Jiang, Y. Zhao, and C.-Z. Zhu, “Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation,” Front. Hum. Neurosci. 12, 86 (2018).
[Crossref] [PubMed]

Zhu, C.-Z.

P.-P. Sun, F.-L. Tan, Z. Zhang, Y.-H. Jiang, Y. Zhao, and C.-Z. Zhu, “Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation,” Front. Hum. Neurosci. 12, 86 (2018).
[Crossref] [PubMed]

L. Duan, Y.-J. Zhang, and C.-Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study,” Neuroimage 60(4), 2008–2018 (2012).
[Crossref] [PubMed]

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Ann. Stat. (1)

G. Schwarz, “Estimating the dimension of a model,” Ann. Stat. 6(2), 461–464 (1978).
[Crossref]

Biomed. Opt. Express (4)

Brain (1)

T. Mima, N. Sadato, S. Yazawa, T. Hanakawa, H. Fukuyama, Y. Yonekura, and H. Shibasaki, “Brain structures related to active and passive finger movements in man,” Brain 122(10), 1989–1997 (1999).
[Crossref] [PubMed]

Can. J. Occup. Ther. (1)

J. Eng, “Movement Science: Foundations for Physical Therapy in Rehabilitation,” Can. J. Occup. Ther. 68, 320 (2001).

Clin. Neurophysiol. (1)

J. Spiegel, J. Tintera, J. Gawehn, P. Stoeter, and R.-D. Treede, “Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation,” Clin. Neurophysiol. 110(1), 47–52 (1999).
[Crossref] [PubMed]

Conf. Proc. IEEE Eng. Med. Biol. Soc. (1)

X. L. Hu, K. Y. Tong, R. Li, M. Chen, J. J. Xue, S. K. Ho, and P. N. Chen, “Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5819–5822 (2010).
[PubMed]

Econometrica (1)

C. W. Granger, “Investigating causal relations by econometric models and cross-spectral methods,” Econometrica 37(3), 424–438 (1969).
[Crossref]

Exp. Brain Res. (1)

N. Forss, R. Hari, R. Salmelin, A. Ahonen, M. Hämäläinen, M. Kajola, J. Knuutila, and J. Simola, “Activation of the human posterior parietal cortex by median nerve stimulation,” Exp. Brain Res. 99(2), 309–315 (1994).
[Crossref] [PubMed]

Front. Hum. Neurosci. (1)

P.-P. Sun, F.-L. Tan, Z. Zhang, Y.-H. Jiang, Y. Zhao, and C.-Z. Zhu, “Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation,” Front. Hum. Neurosci. 12, 86 (2018).
[Crossref] [PubMed]

Hum. Brain Mapp. (1)

K. J. Friston, “Functional and effective connectivity in neuroimaging: a synthesis,” Hum. Brain Mapp. 2(1-2), 56–78 (1994).
[Crossref]

IEEE Trans. Neural Syst. Rehabil. Eng. (1)

F. Shen Ren, J. Junhua Li, N. V. Taya, deSouza, Thakor, and A. Bezerianos, “Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks,” IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 547–556 (2017).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

N. Sadato, V. Ibañez, M.-P. Deiber, G. Campbell, M. Leonardo, and M. Hallett, “Frequency-dependent changes of regional cerebral blood flow during finger movements,” J. Cereb. Blood Flow Metab. 16(1), 23–33 (1996).
[Crossref] [PubMed]

J. Econom. (1)

J. Geweke, R. Meese, and W. Dent, “Comparing alternative tests of causality in temporal systems: Analytic results and experimental evidence,” J. Econom. 21(2), 161–194 (1983).
[Crossref]

J. Neurophysiol. (1)

C. Dettmers, G. R. Fink, R. N. Lemon, K. M. Stephan, R. E. Passingham, D. Silbersweig, A. Holmes, M. C. Ridding, D. J. Brooks, and R. S. Frackowiak, “Relation between cerebral activity and force in the motor areas of the human brain,” J. Neurophysiol. 74(2), 802–815 (1995).
[Crossref] [PubMed]

J. Neurosci. (1)

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci. 30(14), 4877–4882 (2010).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[Crossref] [PubMed]

Methods (1)

S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45(4), 289–299 (2008).
[Crossref] [PubMed]

Naturwissenschaften (1)

E. von Holst and H. Mittelstaedt, “Das reafferenzprinzip,” Naturwissenschaften 37(20), 464–476 (1950).
[Crossref]

Neuroimage (16)

C. Weiller, M. Jüptner, S. Fellows, M. Rijntjes, G. Leonhardt, S. Kiebel, S. Müller, H. C. Diener, and A. F. Thilmann, “Brain representation of active and passive movements,” Neuroimage 4(2), 105–110 (1996).
[Crossref] [PubMed]

A. Zaman, K. Singh, W. Bimson, and N. Roberts, “An fMRI study of brain activation during active and passive finger movement,” Neuroimage 11(5), S858 (2000).
[Crossref]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage 54(4), 2922–2936 (2011).
[Crossref] [PubMed]

F. Alary, B. Doyon, I. Loubinoux, C. Carel, K. Boulanouar, J. P. Ranjeva, P. Celsis, and F. Chollet, “Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI,” Neuroimage 8(4), 377–390 (1998).
[Crossref] [PubMed]

V. Parlatini, J. Radua, F. Dell’Acqua, A. Leslie, A. Simmons, D. G. Murphy, M. Catani, and M. Thiebaut de Schotten, “Functional segregation and integration within fronto-parietal networks,” Neuroimage 146, 367–375 (2017).
[Crossref] [PubMed]

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, “Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI,” Neuroimage 27(4), 842–851 (2005).
[Crossref] [PubMed]

S. Tak, S. J. Yoon, J. Jang, K. Yoo, Y. Jeong, and J. C. Ye, “Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements,” Neuroimage 55(1), 176–184 (2011).
[Crossref] [PubMed]

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

H. Chen, Q. Yang, W. Liao, Q. Gong, and S. Shen, “Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping,” Neuroimage 47(4), 1844–1853 (2009).
[Crossref] [PubMed]

S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56(1), 252–257 (2011).
[Crossref] [PubMed]

R. B. Buxton, “Dynamic models of BOLD contrast,” Neuroimage 62(2), 953–961 (2012).
[Crossref] [PubMed]

E.-M. Pool, A. K. Rehme, G. R. Fink, S. B. Eickhoff, and C. Grefkes, “Network dynamics engaged in the modulation of motor behavior in healthy subjects,” Neuroimage 82, 68–76 (2013).
[Crossref] [PubMed]

M. G. Lacourse, E. L. Orr, S. C. Cramer, and M. J. Cohen, “Brain activation during execution and motor imagery of novel and skilled sequential hand movements,” Neuroimage 27(3), 505–519 (2005).
[Crossref] [PubMed]

L. Duan, Y.-J. Zhang, and C.-Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study,” Neuroimage 60(4), 2008–2018 (2012).
[Crossref] [PubMed]

Neurology (1)

D. S. Dinner, H. Lüders, R. P. Lesser, and H. H. Morris, “Cortical generators of somatosensory evoked potentials to median nerve stimulation,” Neurology 37(7), 1141–1145 (1987).
[Crossref] [PubMed]

Pediatr. Res. (1)

A. Guzzetta, M. Staudt, E. Petacchi, J. Ehlers, M. Erb, M. Wilke, I. Krägeloh-Mann, and G. Cioni, “Brain representation of active and passive hand movements in children,” Pediatr. Res. 61(4), 485–490 (2007).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

S. Tak, J. Jang, K. Lee, and J. C. Ye, “Quantification of CMRO2 without hypercapnia using simultaneous near-infrared spectroscopy and fMRI measurements,” Phys. Med. Biol. 55(11), 3249–3269 (2010).
[Crossref] [PubMed]

Physiother. Can. (1)

M. Smith, “Neurological rehabilitation: Optimizing motor performance,” Physiother. Can. 67, 215 (2015).

Science (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[Crossref] [PubMed]

Other (7)

H. Tsunashima, K. Yanagisawa, and M. Iwadate, Measurement of Brain Function Using Near-Infrared Spectroscopy (NIRS) (INTECH Open Access Publisher, 2012).

J. An, S. H. Lee, S. H. Jin, B. Abibullaev, G. Jang, J. Ahn, H. Lee, and J.-I. Moon, “The beginning of neurohaptics: Controlling cognitive interaction via brain haptic interface,” in Brain-Computer Interface (BCI),2013International Winter Workshop on (IEEE, 2013), pp. 103–106.
[Crossref]

S. H. Lee, S. H. Jin, J. An, G. Jang, H. Lee, and J.-I. Moon, “Feasibility Study of a Functional Near Infrared Spectroscopy as a Brain Optical Imaging Modality for Rehabilitation Medicine,” in Progress in Optomechatronic Technologies (Springer, 2014), pp. 153–160.

C. Sherrington, The Integrative Action of the Nervous System (CUP Archive, 1910).

J. An, S. H. Jin, S. H. Lee, G. Jang, B. Abibullaev, H. Lee, and J.-I. Moon, “Cortical activation pattern for grasping during observation, imagery, execution, FES, and observation-FES integrated BCI: An fNIRS pilot study,” in Engineering in Medicine and Biology Society (EMBC),201335th Annual International Conference of the IEEE, (IEEE, 2013), 6345–6348.

A. R. Anwar, M. Muthalib, S. Perrey, A. Galka, O. Granert, S. Wolff, G. Deuschl, J. Raethjen, U. Heute, and M. Muthuraman, “Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks,” in Engineering in Medicine and Biology Society (EMBC),201335th Annual International Conference of the IEEE (IEEE, 2013), pp. 2628–2631.
[Crossref]

K. E. Jang, S. Tak, J. Jang, J. Jung, and J. C. Ye, “Wavelet-MDL based detrending method for near infrared spectroscopy (NIRS),” in Multimodal Biomedical Imaging III (International Society for Optics and Photonics, 2008), 68500Y.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup and channel configurations.
Fig. 2
Fig. 2 Block diagram of the fNIRS analysis method.
Fig. 3
Fig. 3 Representative plots of changes in oxy-hemoglobin concentration in S1, M1, and SMA locations on the left hemisphere of the brain
Fig. 4
Fig. 4 Illustration of ROI-based functional connectivity map. White color denote a strong functional connectivity, while dark colors denote weak functional connectivity between ROIs
Fig. 5
Fig. 5 The Granger causality values from two tasks. The strength of the Granger influence is presented using the F-score, and arrow thicknesses

Tables (4)

Tables Icon

Table 1 Anatomic labeling of fNIRS channel position, Brodmann areas (Talairach)

Tables Icon

Table 2 Brain activation from ROIs during tasks

Tables Icon

Table 3 The degree of functional connectivity

Tables Icon

Table 4 The degree of the significant causal interactions (F-score)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

x( t )= α 0 + i=1 p α i x( ti )+ε( t )
x( t )= α 0 + i=1 p α i x( ti )+ i=1 p β i y( ti )+ω( t ) 
F  ( RS S 0 RS S 1 )P RS S 1 ( T2P1 )
RS S 0 = t=1 T ε (t) 2 and RS S 1 = t=1 T ω (t) 2

Metrics