Abstract

Virtual reality (VR) head-mounted displays are an attractive technology for viewing intrasurgical optical coherence tomography (OCT) volumes because they liberate surgeons from microscope oculars. We demonstrate real-time, interactive viewing of OCT volumes in a commercial HTC Vive immersive VR system using previously reported ray casting techniques. Furthermore, we show interactive manipulation and sectioning of volumes using handheld controllers and guidance of mock surgical procedures in porcine eyes exclusively within VR. To the best of our knowledge, we report the first immersive VR-OCT viewer with stereo ray casting volumetric renders, arbitrary sectioning planes, and live acquisition support. We believe VR-OCT volume displays will advance ophthalmic surgery towards VR-integrated surgery.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

1 June 2018: A typographical correction was made to the author listing.


OSA Recommended Articles
Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography

Liangbo Shen, Oscar Carrasco-Zevallos, Brenton Keller, Christian Viehland, Gar Waterman, Paul S. Hahn, Anthony N. Kuo, Cynthia A. Toth, and Joseph A. Izatt
Biomed. Opt. Express 7(5) 1711-1726 (2016)

Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT

Christian Viehland, Brenton Keller, Oscar M. Carrasco-Zevallos, Derek Nankivil, Liangbo Shen, Shwetha Mangalesh, Du Tran Viet, Anthony N. Kuo, Cynthia A. Toth, and Joseph A. Izatt
Biomed. Opt. Express 7(5) 1815-1829 (2016)

Real-time corneal segmentation and 3D needle tracking in intrasurgical OCT

Brenton Keller, Mark Draelos, Gao Tang, Sina Farsiu, Anthony N. Kuo, Kris Hauser, and Joseph A. Izatt
Biomed. Opt. Express 9(6) 2716-2732 (2018)

References

  • View by:
  • |
  • |
  • |

  1. O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8, 1607–1637 (2017).
    [Crossref]
  2. P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29, 1457–1468 (2009).
    [Crossref] [PubMed]
  3. L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic. Surg. Lasers Imaging 42 Online, 71–74 (2011).
    [PubMed]
  4. G. Geerling, M. Muller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123, 253–257 (2005).
    [Crossref] [PubMed]
  5. E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann, Combining Optical Coherence Tomography (OCT) with an Operating Microscope (Springer, 2007), pp. 343–348.
  6. Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35, 3315–3317 (2010).
    [Crossref] [PubMed]
  7. S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31, 1332–1336 (2011).
    [Crossref] [PubMed]
  8. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52, 3153 (2011).
    [Crossref]
  9. P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
    [Crossref] [PubMed]
  10. P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251, 213–220 (2013).
    [Crossref]
  11. P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).
    [Crossref] [PubMed]
  12. Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5, 1877–1885 (2014).
    [Crossref] [PubMed]
  13. J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34, 1341–1346 (2014).
    [Crossref] [PubMed]
  14. J. P. Ehlers, P. K. Kaiser, and S. K. Srivastava, “Intraoperative optical coherence tomography using the RESCAN 700: Preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98, 1329–1332 (2014).
    [Crossref] [PubMed]
  15. J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: Microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9, e105224 (2014).
    [Crossref] [PubMed]
  16. P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device,” Translational Vision Science & Technology 4, 1 (2015).
    [Crossref]
  17. D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).
    [Crossref] [PubMed]
  18. L. Lytvynchuk, C. Glittenberg, and S. Binder, “The use of intraoperative spectral domain optic coherence tomography in vitreoretinal surgery: The evaluation of efficacy,” Acta Ophthalmologica 93, 667 (2015).
    [Crossref]
  19. L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: Assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Current Eye Research 40, 1288–1291 (2015).
    [Crossref]
  20. S. Siebelmann, P. Steven, and C. Cursiefen, “Intraoperative optical coherence tomography: Ocular surgery on a higher level or just nice pictures?” JAMA Ophthalmology 133, 1133–1134 (2015).
    [Crossref] [PubMed]
  21. S. Siebelmann, P. Steven, D. Hos, G. Hüttmann, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: Usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 16005 (2016).
    [Crossref] [PubMed]
  22. C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).
  23. N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-time microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy,” Cornea 34, 1606–1610 (2015).
    [Crossref] [PubMed]
  24. C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).
  25. O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
    [Crossref] [PubMed]
  26. J. Probst, D. Hillmann, E. M. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 1–4 (2010).
    [Crossref]
  27. Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18, 1–5 (2013).
    [Crossref]
  28. J. P. Ehlers, A. Uchida, and S. Srivastava, “THE INTEGRATIVE SURGICAL THEATER: Combining intraoperative optical coherence tomography and 3D digital visualization for vitreoretinal surgery in the DISCOVER study,” Retina, epub ahead of print (2017).
    [Crossref] [PubMed]
  29. TrueVision Systems, “NGENUITY,” http://www.truevisionsys.com/ngenuity.html .
  30. G. D. Aaker, L. Gracia, J. S. Myung, V. Borcherding, J. R. Banfelder, D. J. D’Amico, and S. Kiss, “Volumetric three-dimensional reconstruction and segmentation of spectral-domain OCT,” Ophthalmic. Surg. Lasers Imaging 42Suppl, S116–S120 (2011).
    [Crossref] [PubMed]
  31. I. Kozak, P. Banerjee, J. Luo, and C. Luciano, “Virtual reality simulator for vitreoretinal surgery using integrated OCT data,” Clin. Ophthalmol. 8, 669–672 (2014).
    [Crossref] [PubMed]
  32. H. Roodaki, K. Filippatos, A. Eslami, and N. Navab, “Introducing augmented reality to optical coherence tomography in ophthalmic microsurgery,” in “IEEE International Symposium on Mixed and Augmented Reality,” (2015), pp. 1–6.
  33. L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. S. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express 7, 1711–1726 (2016).
    [Crossref] [PubMed]
  34. S. J. Horvath, “The optical coherence tomography microsurgical augmented reality system (OCT-MARS): A novel device for microsurgeries,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA (2016).
  35. Carl Zeiss Meditec, “OPMI LUMERA 700 and RESCAN 700 from ZEISS,” https://www.zeiss.com/meditec/us/products/ophthalmology-optometry/glaucoma/therapy/surgical-microscopes/opmi-lumera-700.html .
  36. L. Shen, B. Keller, O. Carrasco-Zevallos, C. Viehland, P. K. Bhullar, G. Waterman, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Oculus Rift® as a head tracking, stereoscopic head mounted display for intra-operative OCT in ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 57, 1701 (2016).
  37. T. J. Buker, D. A. Vincenzi, and J. E. Deaton, “The effect of apparent latency on simulator sickness while using a see-through helmet-mounted display,” Human Factors 54, 235–249 (2012).
    [Crossref]
  38. J. P. Schulze, C. Schulze-Dobold, A. Erginay, and R. Tadayoni, “Visualization of three-dimensional ultra-high resolution OCT in virtual reality,” Stud. Health Technol. Inform. 184, 387–391 (2013).
    [PubMed]
  39. E. Bukaty, C. G. Glittenberg, and S. Binder, “Interactive, stereoscopic, three dimensional, virtual reality visualization of optical coherence data sets of vitreo-macular tractions before and after enzymatic vitreolysis,” Invest. Ophthalmol. Vis. Sci. 56, 5919 (2015).
  40. C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet du, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7, 1815–1829 (2016).
    [Crossref] [PubMed]
  41. M. Levoy, “Display of surfaces from volume data,” IEEE Computer Graphics and Applications 8, 29–37 (1988).
    [Crossref]
  42. D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6, 4516–4528 (2015).
    [Crossref] [PubMed]
  43. B. P. DeJong, J. E. Colgate, and M. A. Peshkin, Mental Transformations in Human-Robot Interaction (Springer, Netherlands, 2011), vol. 1010 of Intelligent Systems, Control and Automation: Science and Engineering, book section 3, pp. 35–51.
  44. M. Draelos, B. Keller, C. Toth, A. Kuo, K. Hauser, and J. Izatt, “Teleoperating robots from arbitrary viewpoints in surgical contexts,” in “IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),” (2017), pp. 2549–2555.

2017 (1)

2016 (5)

S. Siebelmann, P. Steven, D. Hos, G. Hüttmann, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: Usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 16005 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. S. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express 7, 1711–1726 (2016).
[Crossref] [PubMed]

L. Shen, B. Keller, O. Carrasco-Zevallos, C. Viehland, P. K. Bhullar, G. Waterman, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Oculus Rift® as a head tracking, stereoscopic head mounted display for intra-operative OCT in ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 57, 1701 (2016).

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet du, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7, 1815–1829 (2016).
[Crossref] [PubMed]

2015 (10)

E. Bukaty, C. G. Glittenberg, and S. Binder, “Interactive, stereoscopic, three dimensional, virtual reality visualization of optical coherence data sets of vitreo-macular tractions before and after enzymatic vitreolysis,” Invest. Ophthalmol. Vis. Sci. 56, 5919 (2015).

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-time microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy,” Cornea 34, 1606–1610 (2015).
[Crossref] [PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device,” Translational Vision Science & Technology 4, 1 (2015).
[Crossref]

D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).
[Crossref] [PubMed]

L. Lytvynchuk, C. Glittenberg, and S. Binder, “The use of intraoperative spectral domain optic coherence tomography in vitreoretinal surgery: The evaluation of efficacy,” Acta Ophthalmologica 93, 667 (2015).
[Crossref]

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: Assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Current Eye Research 40, 1288–1291 (2015).
[Crossref]

S. Siebelmann, P. Steven, and C. Cursiefen, “Intraoperative optical coherence tomography: Ocular surgery on a higher level or just nice pictures?” JAMA Ophthalmology 133, 1133–1134 (2015).
[Crossref] [PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6, 4516–4528 (2015).
[Crossref] [PubMed]

2014 (5)

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5, 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34, 1341–1346 (2014).
[Crossref] [PubMed]

J. P. Ehlers, P. K. Kaiser, and S. K. Srivastava, “Intraoperative optical coherence tomography using the RESCAN 700: Preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98, 1329–1332 (2014).
[Crossref] [PubMed]

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: Microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9, e105224 (2014).
[Crossref] [PubMed]

I. Kozak, P. Banerjee, J. Luo, and C. Luciano, “Virtual reality simulator for vitreoretinal surgery using integrated OCT data,” Clin. Ophthalmol. 8, 669–672 (2014).
[Crossref] [PubMed]

2013 (5)

J. P. Schulze, C. Schulze-Dobold, A. Erginay, and R. Tadayoni, “Visualization of three-dimensional ultra-high resolution OCT in virtual reality,” Stud. Health Technol. Inform. 184, 387–391 (2013).
[PubMed]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18, 1–5 (2013).
[Crossref]

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251, 213–220 (2013).
[Crossref]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).
[Crossref] [PubMed]

2012 (1)

T. J. Buker, D. A. Vincenzi, and J. E. Deaton, “The effect of apparent latency on simulator sickness while using a see-through helmet-mounted display,” Human Factors 54, 235–249 (2012).
[Crossref]

2011 (4)

G. D. Aaker, L. Gracia, J. S. Myung, V. Borcherding, J. R. Banfelder, D. J. D’Amico, and S. Kiss, “Volumetric three-dimensional reconstruction and segmentation of spectral-domain OCT,” Ophthalmic. Surg. Lasers Imaging 42Suppl, S116–S120 (2011).
[Crossref] [PubMed]

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31, 1332–1336 (2011).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52, 3153 (2011).
[Crossref]

L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic. Surg. Lasers Imaging 42 Online, 71–74 (2011).
[PubMed]

2010 (2)

J. Probst, D. Hillmann, E. M. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 1–4 (2010).
[Crossref]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35, 3315–3317 (2010).
[Crossref] [PubMed]

2009 (1)

P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29, 1457–1468 (2009).
[Crossref] [PubMed]

2005 (1)

G. Geerling, M. Muller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123, 253–257 (2005).
[Crossref] [PubMed]

1988 (1)

M. Levoy, “Display of surfaces from volume data,” IEEE Computer Graphics and Applications 8, 29–37 (1988).
[Crossref]

Aaker, G. D.

G. D. Aaker, L. Gracia, J. S. Myung, V. Borcherding, J. R. Banfelder, D. J. D’Amico, and S. Kiss, “Volumetric three-dimensional reconstruction and segmentation of spectral-domain OCT,” Ophthalmic. Surg. Lasers Imaging 42Suppl, S116–S120 (2011).
[Crossref] [PubMed]

Bachmann, B.

S. Siebelmann, P. Steven, D. Hos, G. Hüttmann, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: Usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 16005 (2016).
[Crossref] [PubMed]

Banerjee, P.

I. Kozak, P. Banerjee, J. Luo, and C. Luciano, “Virtual reality simulator for vitreoretinal surgery using integrated OCT data,” Clin. Ophthalmol. 8, 669–672 (2014).
[Crossref] [PubMed]

Banfelder, J. R.

G. D. Aaker, L. Gracia, J. S. Myung, V. Borcherding, J. R. Banfelder, D. J. D’Amico, and S. Kiss, “Volumetric three-dimensional reconstruction and segmentation of spectral-domain OCT,” Ophthalmic. Surg. Lasers Imaging 42Suppl, S116–S120 (2011).
[Crossref] [PubMed]

Bhullar, P. K.

L. Shen, B. Keller, O. Carrasco-Zevallos, C. Viehland, P. K. Bhullar, G. Waterman, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Oculus Rift® as a head tracking, stereoscopic head mounted display for intra-operative OCT in ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 57, 1701 (2016).

Binder, S.

E. Bukaty, C. G. Glittenberg, and S. Binder, “Interactive, stereoscopic, three dimensional, virtual reality visualization of optical coherence data sets of vitreo-macular tractions before and after enzymatic vitreolysis,” Invest. Ophthalmol. Vis. Sci. 56, 5919 (2015).

L. Lytvynchuk, C. Glittenberg, and S. Binder, “The use of intraoperative spectral domain optic coherence tomography in vitreoretinal surgery: The evaluation of efficacy,” Acta Ophthalmologica 93, 667 (2015).
[Crossref]

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31, 1332–1336 (2011).
[Crossref] [PubMed]

Birngruber, R.

G. Geerling, M. Muller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123, 253–257 (2005).
[Crossref] [PubMed]

Borcherding, V.

G. D. Aaker, L. Gracia, J. S. Myung, V. Borcherding, J. R. Banfelder, D. J. D’Amico, and S. Kiss, “Volumetric three-dimensional reconstruction and segmentation of spectral-domain OCT,” Ophthalmic. Surg. Lasers Imaging 42Suppl, S116–S120 (2011).
[Crossref] [PubMed]

Bukaty, E.

E. Bukaty, C. G. Glittenberg, and S. Binder, “Interactive, stereoscopic, three dimensional, virtual reality visualization of optical coherence data sets of vitreo-macular tractions before and after enzymatic vitreolysis,” Invest. Ophthalmol. Vis. Sci. 56, 5919 (2015).

Buker, T. J.

T. J. Buker, D. A. Vincenzi, and J. E. Deaton, “The effect of apparent latency on simulator sickness while using a see-through helmet-mounted display,” Human Factors 54, 235–249 (2012).
[Crossref]

Carrasco-Zevallos, O.

L. Shen, B. Keller, O. Carrasco-Zevallos, C. Viehland, P. K. Bhullar, G. Waterman, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Oculus Rift® as a head tracking, stereoscopic head mounted display for intra-operative OCT in ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 57, 1701 (2016).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. S. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express 7, 1711–1726 (2016).
[Crossref] [PubMed]

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device,” Translational Vision Science & Technology 4, 1 (2015).
[Crossref]

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

Carrasco-Zevallos, O. M.

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8, 1607–1637 (2017).
[Crossref]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet du, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7, 1815–1829 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-time microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy,” Cornea 34, 1606–1610 (2015).
[Crossref] [PubMed]

Colgate, J. E.

B. P. DeJong, J. E. Colgate, and M. A. Peshkin, Mental Transformations in Human-Robot Interaction (Springer, Netherlands, 2011), vol. 1010 of Intelligent Systems, Control and Automation: Science and Engineering, book section 3, pp. 35–51.

Cunefare, D.

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device,” Translational Vision Science & Technology 4, 1 (2015).
[Crossref]

D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).
[Crossref] [PubMed]

Cursiefen, C.

S. Siebelmann, P. Steven, D. Hos, G. Hüttmann, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: Usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 16005 (2016).
[Crossref] [PubMed]

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: Assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Current Eye Research 40, 1288–1291 (2015).
[Crossref]

S. Siebelmann, P. Steven, and C. Cursiefen, “Intraoperative optical coherence tomography: Ocular surgery on a higher level or just nice pictures?” JAMA Ophthalmology 133, 1133–1134 (2015).
[Crossref] [PubMed]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).
[Crossref] [PubMed]

D’Amico, D. J.

G. D. Aaker, L. Gracia, J. S. Myung, V. Borcherding, J. R. Banfelder, D. J. D’Amico, and S. Kiss, “Volumetric three-dimensional reconstruction and segmentation of spectral-domain OCT,” Ophthalmic. Surg. Lasers Imaging 42Suppl, S116–S120 (2011).
[Crossref] [PubMed]

Day, S.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

Dayani, P. N.

P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29, 1457–1468 (2009).
[Crossref] [PubMed]

Deaton, J. E.

T. J. Buker, D. A. Vincenzi, and J. E. Deaton, “The effect of apparent latency on simulator sickness while using a see-through helmet-mounted display,” Human Factors 54, 235–249 (2012).
[Crossref]

DeJong, B. P.

B. P. DeJong, J. E. Colgate, and M. A. Peshkin, Mental Transformations in Human-Robot Interaction (Springer, Netherlands, 2011), vol. 1010 of Intelligent Systems, Control and Automation: Science and Engineering, book section 3, pp. 35–51.

DeSouza, P.

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

Desouza, P. J.

D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).
[Crossref] [PubMed]

Dietlein, T.

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: Assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Current Eye Research 40, 1288–1291 (2015).
[Crossref]

Draelos, M.

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8, 1607–1637 (2017).
[Crossref]

M. Draelos, B. Keller, C. Toth, A. Kuo, K. Hauser, and J. Izatt, “Teleoperating robots from arbitrary viewpoints in surgical contexts,” in “IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),” (2017), pp. 2549–2555.

Ehlers, J. P.

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5, 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: Microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9, e105224 (2014).
[Crossref] [PubMed]

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34, 1341–1346 (2014).
[Crossref] [PubMed]

J. P. Ehlers, P. K. Kaiser, and S. K. Srivastava, “Intraoperative optical coherence tomography using the RESCAN 700: Preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98, 1329–1332 (2014).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52, 3153 (2011).
[Crossref]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35, 3315–3317 (2010).
[Crossref] [PubMed]

J. P. Ehlers, A. Uchida, and S. Srivastava, “THE INTEGRATIVE SURGICAL THEATER: Combining intraoperative optical coherence tomography and 3D digital visualization for vitreoretinal surgery in the DISCOVER study,” Retina, epub ahead of print (2017).
[Crossref] [PubMed]

Erginay, A.

J. P. Schulze, C. Schulze-Dobold, A. Erginay, and R. Tadayoni, “Visualization of three-dimensional ultra-high resolution OCT in virtual reality,” Stud. Health Technol. Inform. 184, 387–391 (2013).
[PubMed]

Eslami, A.

H. Roodaki, K. Filippatos, A. Eslami, and N. Navab, “Introducing augmented reality to optical coherence tomography in ophthalmic microsurgery,” in “IEEE International Symposium on Mixed and Augmented Reality,” (2015), pp. 1–6.

Falkner-Radler, C. I.

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31, 1332–1336 (2011).
[Crossref] [PubMed]

Farsiu, S.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device,” Translational Vision Science & Technology 4, 1 (2015).
[Crossref]

D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).
[Crossref] [PubMed]

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52, 3153 (2011).
[Crossref]

P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29, 1457–1468 (2009).
[Crossref] [PubMed]

Feiler, D.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: Microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9, e105224 (2014).
[Crossref] [PubMed]

Fekrat, S.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

Filippatos, K.

H. Roodaki, K. Filippatos, A. Eslami, and N. Navab, “Introducing augmented reality to optical coherence tomography in ophthalmic microsurgery,” in “IEEE International Symposium on Mixed and Augmented Reality,” (2015), pp. 1–6.

Geerling, G.

G. Geerling, M. Muller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123, 253–257 (2005).
[Crossref] [PubMed]

Gehlsen, U.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).
[Crossref] [PubMed]

Glittenberg, C.

L. Lytvynchuk, C. Glittenberg, and S. Binder, “The use of intraoperative spectral domain optic coherence tomography in vitreoretinal surgery: The evaluation of efficacy,” Acta Ophthalmologica 93, 667 (2015).
[Crossref]

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31, 1332–1336 (2011).
[Crossref] [PubMed]

Glittenberg, C. G.

E. Bukaty, C. G. Glittenberg, and S. Binder, “Interactive, stereoscopic, three dimensional, virtual reality visualization of optical coherence data sets of vitreo-macular tractions before and after enzymatic vitreolysis,” Invest. Ophthalmol. Vis. Sci. 56, 5919 (2015).

Gracia, L.

G. D. Aaker, L. Gracia, J. S. Myung, V. Borcherding, J. R. Banfelder, D. J. D’Amico, and S. Kiss, “Volumetric three-dimensional reconstruction and segmentation of spectral-domain OCT,” Ophthalmic. Surg. Lasers Imaging 42Suppl, S116–S120 (2011).
[Crossref] [PubMed]

Hahn, P.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device,” Translational Vision Science & Technology 4, 1 (2015).
[Crossref]

D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251, 213–220 (2013).
[Crossref]

Hahn, P. S.

Hauger, C.

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31, 1332–1336 (2011).
[Crossref] [PubMed]

Hauser, K.

M. Draelos, B. Keller, C. Toth, A. Kuo, K. Hauser, and J. Izatt, “Teleoperating robots from arbitrary viewpoints in surgical contexts,” in “IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),” (2017), pp. 2549–2555.

Heindl, L. M.

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: Assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Current Eye Research 40, 1288–1291 (2015).
[Crossref]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).
[Crossref] [PubMed]

Hillmann, D.

J. Probst, D. Hillmann, E. M. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 1–4 (2010).
[Crossref]

Hoerauf, H.

G. Geerling, M. Muller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123, 253–257 (2005).
[Crossref] [PubMed]

Horvath, S. J.

S. J. Horvath, “The optical coherence tomography microsurgical augmented reality system (OCT-MARS): A novel device for microsurgeries,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA (2016).

Hos, D.

S. Siebelmann, P. Steven, D. Hos, G. Hüttmann, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: Usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 16005 (2016).
[Crossref] [PubMed]

Hüttmann, G.

S. Siebelmann, P. Steven, D. Hos, G. Hüttmann, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: Usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 16005 (2016).
[Crossref] [PubMed]

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: Assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Current Eye Research 40, 1288–1291 (2015).
[Crossref]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).
[Crossref] [PubMed]

J. Probst, D. Hillmann, E. M. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 1–4 (2010).
[Crossref]

E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann, Combining Optical Coherence Tomography (OCT) with an Operating Microscope (Springer, 2007), pp. 343–348.

Izatt, J.

M. Draelos, B. Keller, C. Toth, A. Kuo, K. Hauser, and J. Izatt, “Teleoperating robots from arbitrary viewpoints in surgical contexts,” in “IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),” (2017), pp. 2549–2555.

Izatt, J. A.

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8, 1607–1637 (2017).
[Crossref]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet du, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7, 1815–1829 (2016).
[Crossref] [PubMed]

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. S. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express 7, 1711–1726 (2016).
[Crossref] [PubMed]

L. Shen, B. Keller, O. Carrasco-Zevallos, C. Viehland, P. K. Bhullar, G. Waterman, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Oculus Rift® as a head tracking, stereoscopic head mounted display for intra-operative OCT in ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 57, 1701 (2016).

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-time microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy,” Cornea 34, 1606–1610 (2015).
[Crossref] [PubMed]

D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).
[Crossref] [PubMed]

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device,” Translational Vision Science & Technology 4, 1 (2015).
[Crossref]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6, 4516–4528 (2015).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251, 213–220 (2013).
[Crossref]

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52, 3153 (2011).
[Crossref]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35, 3315–3317 (2010).
[Crossref] [PubMed]

Jian, Y.

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18, 1–5 (2013).
[Crossref]

Just, T.

E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann, Combining Optical Coherence Tomography (OCT) with an Operating Microscope (Springer, 2007), pp. 343–348.

Kaiser, P. K.

J. P. Ehlers, P. K. Kaiser, and S. K. Srivastava, “Intraoperative optical coherence tomography using the RESCAN 700: Preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98, 1329–1332 (2014).
[Crossref] [PubMed]

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34, 1341–1346 (2014).
[Crossref] [PubMed]

Keller, B.

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8, 1607–1637 (2017).
[Crossref]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet du, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7, 1815–1829 (2016).
[Crossref] [PubMed]

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. S. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express 7, 1711–1726 (2016).
[Crossref] [PubMed]

L. Shen, B. Keller, O. Carrasco-Zevallos, C. Viehland, P. K. Bhullar, G. Waterman, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Oculus Rift® as a head tracking, stereoscopic head mounted display for intra-operative OCT in ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 57, 1701 (2016).

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-time microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy,” Cornea 34, 1606–1610 (2015).
[Crossref] [PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6, 4516–4528 (2015).
[Crossref] [PubMed]

M. Draelos, B. Keller, C. Toth, A. Kuo, K. Hauser, and J. Izatt, “Teleoperating robots from arbitrary viewpoints in surgical contexts,” in “IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),” (2017), pp. 2549–2555.

Kiss, S.

G. D. Aaker, L. Gracia, J. S. Myung, V. Borcherding, J. R. Banfelder, D. J. D’Amico, and S. Kiss, “Volumetric three-dimensional reconstruction and segmentation of spectral-domain OCT,” Ophthalmic. Surg. Lasers Imaging 42Suppl, S116–S120 (2011).
[Crossref] [PubMed]

Klinger, D.

E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann, Combining Optical Coherence Tomography (OCT) with an Operating Microscope (Springer, 2007), pp. 343–348.

Koch, P.

J. Probst, D. Hillmann, E. M. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 1–4 (2010).
[Crossref]

Kozak, I.

I. Kozak, P. Banerjee, J. Luo, and C. Luciano, “Virtual reality simulator for vitreoretinal surgery using integrated OCT data,” Clin. Ophthalmol. 8, 669–672 (2014).
[Crossref] [PubMed]

Krug, M.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).
[Crossref] [PubMed]

Kuo, A.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

M. Draelos, B. Keller, C. Toth, A. Kuo, K. Hauser, and J. Izatt, “Teleoperating robots from arbitrary viewpoints in surgical contexts,” in “IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),” (2017), pp. 2549–2555.

Kuo, A. N.

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8, 1607–1637 (2017).
[Crossref]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet du, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7, 1815–1829 (2016).
[Crossref] [PubMed]

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. S. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express 7, 1711–1726 (2016).
[Crossref] [PubMed]

L. Shen, B. Keller, O. Carrasco-Zevallos, C. Viehland, P. K. Bhullar, G. Waterman, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Oculus Rift® as a head tracking, stereoscopic head mounted display for intra-operative OCT in ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 57, 1701 (2016).

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-time microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy,” Cornea 34, 1606–1610 (2015).
[Crossref] [PubMed]

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6, 4516–4528 (2015).
[Crossref] [PubMed]

Lankenau, E.

S. Siebelmann, P. Steven, D. Hos, G. Hüttmann, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: Usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 16005 (2016).
[Crossref] [PubMed]

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: Assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Current Eye Research 40, 1288–1291 (2015).
[Crossref]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).
[Crossref] [PubMed]

E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann, Combining Optical Coherence Tomography (OCT) with an Operating Microscope (Springer, 2007), pp. 343–348.

Lankenau, E. M.

J. Probst, D. Hillmann, E. M. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 1–4 (2010).
[Crossref]

Laqua, H.

G. Geerling, M. Muller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123, 253–257 (2005).
[Crossref] [PubMed]

LaRocca, F.

Le Blanc, C.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).
[Crossref] [PubMed]

Lee, A.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

Lee, L. B.

L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic. Surg. Lasers Imaging 42 Online, 71–74 (2011).
[PubMed]

Levoy, M.

M. Levoy, “Display of surfaces from volume data,” IEEE Computer Graphics and Applications 8, 29–37 (1988).
[Crossref]

Lin, P.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

Luciano, C.

I. Kozak, P. Banerjee, J. Luo, and C. Luciano, “Virtual reality simulator for vitreoretinal surgery using integrated OCT data,” Clin. Ophthalmol. 8, 669–672 (2014).
[Crossref] [PubMed]

Luo, J.

I. Kozak, P. Banerjee, J. Luo, and C. Luciano, “Virtual reality simulator for vitreoretinal surgery using integrated OCT data,” Clin. Ophthalmol. 8, 669–672 (2014).
[Crossref] [PubMed]

Lytvynchuk, L.

L. Lytvynchuk, C. Glittenberg, and S. Binder, “The use of intraoperative spectral domain optic coherence tomography in vitreoretinal surgery: The evaluation of efficacy,” Acta Ophthalmologica 93, 667 (2015).
[Crossref]

Maldonado, R.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52, 3153 (2011).
[Crossref]

P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29, 1457–1468 (2009).
[Crossref] [PubMed]

Malik, A.

E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann, Combining Optical Coherence Tomography (OCT) with an Operating Microscope (Springer, 2007), pp. 343–348.

Mangalesh, S.

Martin, D. F.

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34, 1341–1346 (2014).
[Crossref] [PubMed]

Matz, H.

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31, 1332–1336 (2011).
[Crossref] [PubMed]

Migacz, J.

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device,” Translational Vision Science & Technology 4, 1 (2015).
[Crossref]

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251, 213–220 (2013).
[Crossref]

Mruthyunjaya, P.

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

Muller, M.

G. Geerling, M. Muller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123, 253–257 (2005).
[Crossref] [PubMed]

Müller, H. H.

E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann, Combining Optical Coherence Tomography (OCT) with an Operating Microscope (Springer, 2007), pp. 343–348.

Myung, J. S.

G. D. Aaker, L. Gracia, J. S. Myung, V. Borcherding, J. R. Banfelder, D. J. D’Amico, and S. Kiss, “Volumetric three-dimensional reconstruction and segmentation of spectral-domain OCT,” Ophthalmic. Surg. Lasers Imaging 42Suppl, S116–S120 (2011).
[Crossref] [PubMed]

Nam, D. H.

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).
[Crossref] [PubMed]

Nankivil, D.

Navab, N.

H. Roodaki, K. Filippatos, A. Eslami, and N. Navab, “Introducing augmented reality to optical coherence tomography in ophthalmic microsurgery,” in “IEEE International Symposium on Mixed and Augmented Reality,” (2015), pp. 1–6.

Noonan, A. I.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: Microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9, e105224 (2014).
[Crossref] [PubMed]

O’Connell, R.

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251, 213–220 (2013).
[Crossref]

O’Donnell, R.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

Oelckers, S.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).
[Crossref] [PubMed]

J. Probst, D. Hillmann, E. M. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 1–4 (2010).
[Crossref]

G. Geerling, M. Muller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123, 253–257 (2005).
[Crossref] [PubMed]

E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann, Combining Optical Coherence Tomography (OCT) with an Operating Microscope (Springer, 2007), pp. 343–348.

Pasricha, N. D.

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-time microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy,” Cornea 34, 1606–1610 (2015).
[Crossref] [PubMed]

Pau, H.-W.

E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann, Combining Optical Coherence Tomography (OCT) with an Operating Microscope (Springer, 2007), pp. 343–348.

Peshkin, M. A.

B. P. DeJong, J. E. Colgate, and M. A. Peshkin, Mental Transformations in Human-Robot Interaction (Springer, Netherlands, 2011), vol. 1010 of Intelligent Systems, Control and Automation: Science and Engineering, book section 3, pp. 35–51.

Postel, E. A.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

Probst, J.

J. Probst, D. Hillmann, E. M. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 1–4 (2010).
[Crossref]

Rollins, A. M.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: Microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9, e105224 (2014).
[Crossref] [PubMed]

Roodaki, H.

H. Roodaki, K. Filippatos, A. Eslami, and N. Navab, “Introducing augmented reality to optical coherence tomography in ophthalmic microsurgery,” in “IEEE International Symposium on Mixed and Augmented Reality,” (2015), pp. 1–6.

Sarunic, M. V.

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18, 1–5 (2013).
[Crossref]

Schulze, J. P.

J. P. Schulze, C. Schulze-Dobold, A. Erginay, and R. Tadayoni, “Visualization of three-dimensional ultra-high resolution OCT in virtual reality,” Stud. Health Technol. Inform. 184, 387–391 (2013).
[PubMed]

Schulze-Dobold, C.

J. P. Schulze, C. Schulze-Dobold, A. Erginay, and R. Tadayoni, “Visualization of three-dimensional ultra-high resolution OCT in virtual reality,” Stud. Health Technol. Inform. 184, 387–391 (2013).
[PubMed]

Sevilla, M. B.

D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).
[Crossref] [PubMed]

Shen, L.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

L. Shen, B. Keller, O. Carrasco-Zevallos, C. Viehland, P. K. Bhullar, G. Waterman, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Oculus Rift® as a head tracking, stereoscopic head mounted display for intra-operative OCT in ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 57, 1701 (2016).

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet du, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7, 1815–1829 (2016).
[Crossref] [PubMed]

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. S. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express 7, 1711–1726 (2016).
[Crossref] [PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

Shieh, C.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-time microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy,” Cornea 34, 1606–1610 (2015).
[Crossref] [PubMed]

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

Siebelmann, S.

S. Siebelmann, P. Steven, D. Hos, G. Hüttmann, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: Usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 16005 (2016).
[Crossref] [PubMed]

S. Siebelmann, P. Steven, and C. Cursiefen, “Intraoperative optical coherence tomography: Ocular surgery on a higher level or just nice pictures?” JAMA Ophthalmology 133, 1133–1134 (2015).
[Crossref] [PubMed]

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: Assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Current Eye Research 40, 1288–1291 (2015).
[Crossref]

Smith, G. M.

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34, 1341–1346 (2014).
[Crossref] [PubMed]

Srivastava, S.

J. P. Ehlers, A. Uchida, and S. Srivastava, “THE INTEGRATIVE SURGICAL THEATER: Combining intraoperative optical coherence tomography and 3D digital visualization for vitreoretinal surgery in the DISCOVER study,” Retina, epub ahead of print (2017).
[Crossref] [PubMed]

Srivastava, S. K.

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34, 1341–1346 (2014).
[Crossref] [PubMed]

J. P. Ehlers, P. K. Kaiser, and S. K. Srivastava, “Intraoperative optical coherence tomography using the RESCAN 700: Preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98, 1329–1332 (2014).
[Crossref] [PubMed]

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: Microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9, e105224 (2014).
[Crossref] [PubMed]

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5, 1877–1885 (2014).
[Crossref] [PubMed]

L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic. Surg. Lasers Imaging 42 Online, 71–74 (2011).
[PubMed]

Steven, P.

S. Siebelmann, P. Steven, D. Hos, G. Hüttmann, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: Usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 16005 (2016).
[Crossref] [PubMed]

S. Siebelmann, P. Steven, and C. Cursiefen, “Intraoperative optical coherence tomography: Ocular surgery on a higher level or just nice pictures?” JAMA Ophthalmology 133, 1133–1134 (2015).
[Crossref] [PubMed]

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: Assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Current Eye Research 40, 1288–1291 (2015).
[Crossref]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).
[Crossref] [PubMed]

Tadayoni, R.

J. P. Schulze, C. Schulze-Dobold, A. Erginay, and R. Tadayoni, “Visualization of three-dimensional ultra-high resolution OCT in virtual reality,” Stud. Health Technol. Inform. 184, 387–391 (2013).
[PubMed]

Tai, V.

D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).
[Crossref] [PubMed]

Tam, T.

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34, 1341–1346 (2014).
[Crossref] [PubMed]

Tao, Y. K.

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: Microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9, e105224 (2014).
[Crossref] [PubMed]

Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5, 1877–1885 (2014).
[Crossref] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52, 3153 (2011).
[Crossref]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35, 3315–3317 (2010).
[Crossref] [PubMed]

Todorich, B.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

Toth, C.

M. Draelos, B. Keller, C. Toth, A. Kuo, K. Hauser, and J. Izatt, “Teleoperating robots from arbitrary viewpoints in surgical contexts,” in “IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),” (2017), pp. 2549–2555.

Toth, C. A.

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8, 1607–1637 (2017).
[Crossref]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet du, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7, 1815–1829 (2016).
[Crossref] [PubMed]

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. S. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express 7, 1711–1726 (2016).
[Crossref] [PubMed]

L. Shen, B. Keller, O. Carrasco-Zevallos, C. Viehland, P. K. Bhullar, G. Waterman, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Oculus Rift® as a head tracking, stereoscopic head mounted display for intra-operative OCT in ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 57, 1701 (2016).

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device,” Translational Vision Science & Technology 4, 1 (2015).
[Crossref]

D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).
[Crossref] [PubMed]

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-time microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy,” Cornea 34, 1606–1610 (2015).
[Crossref] [PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251, 213–220 (2013).
[Crossref]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52, 3153 (2011).
[Crossref]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35, 3315–3317 (2010).
[Crossref] [PubMed]

P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29, 1457–1468 (2009).
[Crossref] [PubMed]

Tran-Viet, D.

D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).
[Crossref] [PubMed]

Uchida, A.

J. P. Ehlers, A. Uchida, and S. Srivastava, “THE INTEGRATIVE SURGICAL THEATER: Combining intraoperative optical coherence tomography and 3D digital visualization for vitreoretinal surgery in the DISCOVER study,” Retina, epub ahead of print (2017).
[Crossref] [PubMed]

Vann, R.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

Velten, K.

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).
[Crossref] [PubMed]

Viehland, C.

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8, 1607–1637 (2017).
[Crossref]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet du, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7, 1815–1829 (2016).
[Crossref] [PubMed]

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. S. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express 7, 1711–1726 (2016).
[Crossref] [PubMed]

L. Shen, B. Keller, O. Carrasco-Zevallos, C. Viehland, P. K. Bhullar, G. Waterman, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Oculus Rift® as a head tracking, stereoscopic head mounted display for intra-operative OCT in ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 57, 1701 (2016).

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

Viet du, T.

Vincenzi, D. A.

T. J. Buker, D. A. Vincenzi, and J. E. Deaton, “The effect of apparent latency on simulator sickness while using a see-through helmet-mounted display,” Human Factors 54, 235–249 (2012).
[Crossref]

Waterman, G.

L. Shen, B. Keller, O. Carrasco-Zevallos, C. Viehland, P. K. Bhullar, G. Waterman, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Oculus Rift® as a head tracking, stereoscopic head mounted display for intra-operative OCT in ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 57, 1701 (2016).

L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. S. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express 7, 1711–1726 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6, 4516–4528 (2015).
[Crossref] [PubMed]

Winter, C.

J. Probst, D. Hillmann, E. M. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 1–4 (2010).
[Crossref]

G. Geerling, M. Muller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123, 253–257 (2005).
[Crossref] [PubMed]

E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann, Combining Optical Coherence Tomography (OCT) with an Operating Microscope (Springer, 2007), pp. 343–348.

Wong, K.

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18, 1–5 (2013).
[Crossref]

Acta Ophthalmologica (1)

L. Lytvynchuk, C. Glittenberg, and S. Binder, “The use of intraoperative spectral domain optic coherence tomography in vitreoretinal surgery: The evaluation of efficacy,” Acta Ophthalmologica 93, 667 (2015).
[Crossref]

Arch. Ophthalmol. (1)

G. Geerling, M. Muller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123, 253–257 (2005).
[Crossref] [PubMed]

Biomed. Opt. Express (5)

Br. J. Ophthalmol. (1)

J. P. Ehlers, P. K. Kaiser, and S. K. Srivastava, “Intraoperative optical coherence tomography using the RESCAN 700: Preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98, 1329–1332 (2014).
[Crossref] [PubMed]

Clin. Ophthalmol. (1)

I. Kozak, P. Banerjee, J. Luo, and C. Luciano, “Virtual reality simulator for vitreoretinal surgery using integrated OCT data,” Clin. Ophthalmol. 8, 669–672 (2014).
[Crossref] [PubMed]

Cornea (1)

N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-time microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy,” Cornea 34, 1606–1610 (2015).
[Crossref] [PubMed]

Current Eye Research (1)

L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects: Assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Current Eye Research 40, 1288–1291 (2015).
[Crossref]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251, 213–220 (2013).
[Crossref]

Human Factors (1)

T. J. Buker, D. A. Vincenzi, and J. E. Deaton, “The effect of apparent latency on simulator sickness while using a see-through helmet-mounted display,” Human Factors 54, 235–249 (2012).
[Crossref]

IEEE Computer Graphics and Applications (1)

M. Levoy, “Display of surfaces from volume data,” IEEE Computer Graphics and Applications 8, 29–37 (1988).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (5)

E. Bukaty, C. G. Glittenberg, and S. Binder, “Interactive, stereoscopic, three dimensional, virtual reality visualization of optical coherence data sets of vitreo-macular tractions before and after enzymatic vitreolysis,” Invest. Ophthalmol. Vis. Sci. 56, 5919 (2015).

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci. 52, 3153 (2011).
[Crossref]

C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthalmology resident performance of anterior segment maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt, “Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,” Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

L. Shen, B. Keller, O. Carrasco-Zevallos, C. Viehland, P. K. Bhullar, G. Waterman, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Oculus Rift® as a head tracking, stereoscopic head mounted display for intra-operative OCT in ophthalmic surgery,” Invest. Ophthalmol. Vis. Sci. 57, 1701 (2016).

J. Biomed. Opt. (3)

S. Siebelmann, P. Steven, D. Hos, G. Hüttmann, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of microscope-integrated intraoperative online optical coherence tomography: Usage in Boston keratoprosthesis type I surgery,” J. Biomed. Opt. 21, 16005 (2016).
[Crossref] [PubMed]

J. Probst, D. Hillmann, E. M. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 1–4 (2010).
[Crossref]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18, 1–5 (2013).
[Crossref]

JAMA Ophthalmology (2)

S. Siebelmann, P. Steven, and C. Cursiefen, “Intraoperative optical coherence tomography: Ocular surgery on a higher level or just nice pictures?” JAMA Ophthalmology 133, 1133–1134 (2015).
[Crossref] [PubMed]

P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann, and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).
[Crossref] [PubMed]

Ophthalmic. Surg. Lasers Imaging (2)

L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair,” Ophthalmic. Surg. Lasers Imaging 42 Online, 71–74 (2011).
[PubMed]

G. D. Aaker, L. Gracia, J. S. Myung, V. Borcherding, J. R. Banfelder, D. J. D’Amico, and S. Kiss, “Volumetric three-dimensional reconstruction and segmentation of spectral-domain OCT,” Ophthalmic. Surg. Lasers Imaging 42Suppl, S116–S120 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

PLoS One (1)

J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: Microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9, e105224 (2014).
[Crossref] [PubMed]

Retina (5)

D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).
[Crossref] [PubMed]

J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34, 1341–1346 (2014).
[Crossref] [PubMed]

S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31, 1332–1336 (2011).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).
[Crossref] [PubMed]

P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29, 1457–1468 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).
[Crossref] [PubMed]

Stud. Health Technol. Inform. (1)

J. P. Schulze, C. Schulze-Dobold, A. Erginay, and R. Tadayoni, “Visualization of three-dimensional ultra-high resolution OCT in virtual reality,” Stud. Health Technol. Inform. 184, 387–391 (2013).
[PubMed]

Translational Vision Science & Technology (1)

P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device,” Translational Vision Science & Technology 4, 1 (2015).
[Crossref]

Other (8)

E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann, Combining Optical Coherence Tomography (OCT) with an Operating Microscope (Springer, 2007), pp. 343–348.

H. Roodaki, K. Filippatos, A. Eslami, and N. Navab, “Introducing augmented reality to optical coherence tomography in ophthalmic microsurgery,” in “IEEE International Symposium on Mixed and Augmented Reality,” (2015), pp. 1–6.

S. J. Horvath, “The optical coherence tomography microsurgical augmented reality system (OCT-MARS): A novel device for microsurgeries,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA (2016).

Carl Zeiss Meditec, “OPMI LUMERA 700 and RESCAN 700 from ZEISS,” https://www.zeiss.com/meditec/us/products/ophthalmology-optometry/glaucoma/therapy/surgical-microscopes/opmi-lumera-700.html .

J. P. Ehlers, A. Uchida, and S. Srivastava, “THE INTEGRATIVE SURGICAL THEATER: Combining intraoperative optical coherence tomography and 3D digital visualization for vitreoretinal surgery in the DISCOVER study,” Retina, epub ahead of print (2017).
[Crossref] [PubMed]

TrueVision Systems, “NGENUITY,” http://www.truevisionsys.com/ngenuity.html .

B. P. DeJong, J. E. Colgate, and M. A. Peshkin, Mental Transformations in Human-Robot Interaction (Springer, Netherlands, 2011), vol. 1010 of Intelligent Systems, Control and Automation: Science and Engineering, book section 3, pp. 35–51.

M. Draelos, B. Keller, C. Toth, A. Kuo, K. Hauser, and J. Izatt, “Teleoperating robots from arbitrary viewpoints in surgical contexts,” in “IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),” (2017), pp. 2549–2555.

Supplementary Material (2)

NameDescription
» Visualization 1       Example view through the HMD as the user (top right) sections a live OCT volume (top left) to reveal needle bite depth. Insets are not visible in HMD.
» Visualization 2       Demonstration of mock corneal surgery in a porcine eye guided by VR-OCT and HMD camera feedthrough (a). The surgeon passes a needle through the cornea without a microscope (b) and uses an assistant for volume manipulation (c).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Diagram of projective geometry for a perspective 3D rendering. The 3D object point a in camera coordinates is projected to the 2D image point b with pixel coordinates (u, v). The ray d from o passes through both a and b.
Fig. 2
Fig. 2 Illustration of sampling the volume with ten rays. Each ray samples the volume at a fixed interval from entry until exit. Circles denote the sample positions.
Fig. 3
Fig. 3 Storage arrangement for voxel packing. The voxel’s eight corner values (ah) are stored as 8 bit integers in a 32 bit integer two-vector (v). Numbers indicate bit offsets into each integer.
Fig. 4
Fig. 4 Virtual reality display pipeline for right (bottom, red) and left (top, blue) eyes. The pipeline begins (left) with OCT volume acquisition (green) or OpenVR pose update and completes (right) with HMD texture submissions.
Fig. 5
Fig. 5 (a) Ray-plane intersection geometry for a non-parallel ray. (b) Decision tree from left to right for a cut plane’s effect on a given ray.
Fig. 6
Fig. 6 Stereo ray casting latency and speedup (right) by render configuration for a 1 × 1 × 1 voxel transparent volume. The vertical blue line indicates the median latency in the baseline ESLF-512 configuration.
Fig. 7
Fig. 7 Stereo ray casting latency and speedup (right) by render configuration for a 256 × 256 × 256 voxel transparent volume. The vertical blue line indicates the median latency in the baseline ESLF-512 configuration.
Fig. 8
Fig. 8 Stereo ray casting latency and render overrun rate (right) by render configuration for a 1327 × 1024 × 128 voxel typical OCT volume. The vertical blue line indicates the 90 fps deadline at 11.1 ms.
Fig. 9
Fig. 9 Example view through the HMD as the user (top right) sections a live OCT volume (top left) to reveal needle bite depth. Insets are not visible in HMD. See Visualization 1 for full video.
Fig. 10
Fig. 10 Demonstration of mock corneal surgery in a porcine eye guided by VR-OCT and HMD camera feedthrough (a). The surgeon passes a needle through the cornea without a microscope (b) and uses an assistant for volume manipulation (c). See Visualization 2 for full video.
Fig. 11
Fig. 11 Render quality by configuration for a 1327 × 1024 × 128 voxel typical OCT volume. Optimization increases progressively from top to bottom until the K data layout is used to restore interpolation. Quality is independent of kernel launch configuration (Section 3.2).

Tables (2)

Tables Icon

Table 1 Letter Convention for Render Configurations

Tables Icon

Table 2 Ray Casting Rendering Parameters

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

z [ b w 1 ] = z [ u v w 1 ] = P [ x y z 1 ] = P [ a 1 ] ,
[ d 1 ] = [ x y 1 1 ] = P 1 [ u v 0 1 ] = P 1 [ b 0 1 ] ,
[ o 1 ] = M 1 [ o 1 ] ,
[ d 0 ] = M 1 [ d 0 ] .
p i = o + [ t 0 + ( i 1 ) Δ t ] d ,
c r , i = c r , i 1 + c ( p i ) α ( p i ) ( 1 α r , i 1 )
α r , i = α r , i 1 + α ( p i ) ( 1 α r , i 1 ) ,
c r , n = i = 1 n { c ( p i ) α ( p i ) j = 1 i 1 [ 1 α ( p i ) ] }
α r , n = 1 i = 1 n [ 1 α ( p i ) ]
D = { ( p i o ) n ^ i d n ^ i : i = 1 , , k }

Metrics