Abstract

We demonstrate a three-dimensional (3D) optical diffraction tomographic technique with multi-frequency combination (MFC-ODT) for the 3D quantitative phase imaging of unlabeled specimens. Three sets of through-focus intensity images are captured under an annular aperture and two circular apertures with different coherence parameters. The 3D phase optical transfer functions (POTF) corresponding to different illumination apertures are combined to obtain a synthesized frequency response, achieving high-quality, low-noise 3D reconstructions with imaging resolution up to the incoherent diffraction limit. Besides, the expression of 3D POTF for arbitrary illumination pupils is derived and analyzed, and the 3D imaging performance of annular illumination is explored. It is shown that the phase-contrast washout effect in high-NA circular apertures can be effectively addressed by introducing a complementary annular aperture, which strongly boosts the phase contrast and improves the imaging resolution. By incorporating high-NA illumination as well as high-NA detection, MFC-ODT can achieve a theoretical transverse resolution up to 200 nm and an axial resolution of 645 nm. To test the feasibility of the proposed MFC-ODT technique, the 3D refractive index reconstruction results are based on a simulated 3D resolution target and experimental investigations of micro polystyrene bead and unstained biological samples are presented. Due to its capability for high-resolution 3D phase imaging as well as the compatibility with a widely available commercial microscope, the MFC-ODT is expected to find versatile applications in biological and biomedical research.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Label-free quantitative 3D tomographic imaging for partially coherent light microscopy

Juan M. Soto, José A. Rodrigo, and Tatiana Alieva
Opt. Express 25(14) 15699-15712 (2017)

Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy

Micah H. Jenkins and Thomas K. Gaylord
Appl. Opt. 54(31) 9213-9227 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
    [Crossref]
  2. G. Nomarski and A. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall 2, 121–128 (1955).
    [Crossref]
  3. M. K. Kim, Digital Holographic Microscopy (Springer, 2011).
    [Crossref]
  4. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405–1407 (2006).
    [Crossref] [PubMed]
  5. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
    [Crossref] [PubMed]
  6. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
    [Crossref] [PubMed]
  7. L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18, 12552–12561 (2010).
    [Crossref] [PubMed]
  8. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21, 24060–24075 (2013).
    [Crossref] [PubMed]
  9. J. A. Rodrigo and T. Alieva, “Rapid quantitative phase imaging for partially coherent light microscopy,” Opt. Express 22, 13472–13483 (2014).
    [Crossref] [PubMed]
  10. M. H. Jenkins, J. M. Long, and T. K. Gaylord, “Multifilter phase imaging with partially coherent light,” Appl. Opt. 53, D29–D39 (2014).
    [Crossref] [PubMed]
  11. C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
    [Crossref] [PubMed]
  12. J. Li, Q. Chen, J. Zhang, Y. Zhang, L. Lu, and C. Zuo, “Efficient quantitative phase microscopy using programmable annular LED illumination,” Biomed. Opt. Express 8, 4687–4705 (2017).
    [Crossref] [PubMed]
  13. L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23, 11394–11403 (2015).
    [Crossref] [PubMed]
  14. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).
    [Crossref]
  15. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [Crossref]
  16. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
    [Crossref] [PubMed]
  17. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717 (2007).
    [Crossref] [PubMed]
  18. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
    [Crossref] [PubMed]
  19. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113 (2013).
    [Crossref]
  20. K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 20201 (2016).
    [Crossref]
  21. J. Yoon, K. Kim, H. Park, C. Choi, S. Jang, and Y. Park, “Label-free characterization of white blood cells by measuring 3D refractive index maps,” Biomed. Opt. Express 6, 3865–3875 (2015).
    [Crossref] [PubMed]
  22. W. Krauze, A. Kuś, D. Śladowski, E. Skrzypek, and M. Kujawińska, “Reconstruction method for extended depth-of-field optical diffraction tomography,” Methods 136, 40–49 (2017).
    [Crossref] [PubMed]
  23. A. Kuś, W. Krauze, and M. Kujawińska, “Limited-angle holographic tomography with optically controlled projection generation,” Proc. SPIE 9330, 933007 (2015).
    [Crossref]
  24. S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40, 5407–5410 (2015).
    [Crossref] [PubMed]
  25. K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
    [Crossref] [PubMed]
  26. C. Zuo, J. Sun, J. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Opt. Express 23, 14314–14328 (2015).
    [Crossref] [PubMed]
  27. R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
    [Crossref]
  28. J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
    [Crossref]
  29. W. Gorski and W. Osten, “Tomographic imaging of photonic crystal fibers,” Opt. Lett. 32, 1977–1979 (2007).
    [Crossref] [PubMed]
  30. Y. Jeon and C.-K. Hong, “Rotation error correction by numerical focus adjustment in tomographic phase microscopy,” Opt. Eng. 48, 105801 (2009).
    [Crossref]
  31. A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
    [Crossref]
  32. M. H. Jenkins and T. K. Gaylord, “Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy,” Appl. Opt. 54, 9213–9227 (2015).
    [Crossref] [PubMed]
  33. F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
    [Crossref]
  34. M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
    [Crossref]
  35. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985).
    [Crossref]
  36. M. Chen, L. Tian, and L. Waller, “3D differential phase contrast microscopy,” Biomed. Opt. Express 7, 3940–3950 (2016).
    [Crossref] [PubMed]
  37. Y. Bao and T. K. Gaylord, “Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function,” J. Opt. Soc. Am. A 33, 2125–2136 (2016).
    [Crossref]
  38. J. M. Soto, J. A. Rodrigo, and T. Alieva, “Label-free quantitative 3D tomographic imaging for partially coherent light microscopy,” Opt. Express 25, 15699–15712 (2017).
    [Crossref] [PubMed]
  39. J. M. Soto, J. A. Rodrigo, and T. Alieva, “Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy,” Appl. Opt. 57, A205–A214 (2018).
    [Crossref]
  40. J. A. Rodrigo, J. M. Soto, and T. Alieva, “Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells,” Biomed. Opt. Express 8, 5507–5517 (2017).
    [Crossref]
  41. T. Noda, S. Kawata, and S. Minami, “Three-dimensional phase contrast imaging by an annular illumination microscope,” Appl. Opt. 29, 3810–3815 (1990).
    [Crossref] [PubMed]
  42. C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications,” Opt. Express 21, 5346–5362 (2013).
    [Crossref] [PubMed]
  43. M. H. Jenkins and T. K. Gaylord, “Quantitative phase microscopy via optimized inversion of the phase optical transfer function,” Appl. Opt. 54, 8566–8579 (2015).
    [Crossref] [PubMed]
  44. J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23, 16933–16948 (2015).
    [Crossref] [PubMed]
  45. Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS ONE 7, e49502 (2012).
    [Crossref] [PubMed]

2018 (2)

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

J. M. Soto, J. A. Rodrigo, and T. Alieva, “Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy,” Appl. Opt. 57, A205–A214 (2018).
[Crossref]

2017 (8)

J. A. Rodrigo, J. M. Soto, and T. Alieva, “Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells,” Biomed. Opt. Express 8, 5507–5517 (2017).
[Crossref]

J. M. Soto, J. A. Rodrigo, and T. Alieva, “Label-free quantitative 3D tomographic imaging for partially coherent light microscopy,” Opt. Express 25, 15699–15712 (2017).
[Crossref] [PubMed]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

W. Krauze, A. Kuś, D. Śladowski, E. Skrzypek, and M. Kujawińska, “Reconstruction method for extended depth-of-field optical diffraction tomography,” Methods 136, 40–49 (2017).
[Crossref] [PubMed]

K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
[Crossref] [PubMed]

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref] [PubMed]

J. Li, Q. Chen, J. Zhang, Y. Zhang, L. Lu, and C. Zuo, “Efficient quantitative phase microscopy using programmable annular LED illumination,” Biomed. Opt. Express 8, 4687–4705 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (8)

M. H. Jenkins and T. K. Gaylord, “Quantitative phase microscopy via optimized inversion of the phase optical transfer function,” Appl. Opt. 54, 8566–8579 (2015).
[Crossref] [PubMed]

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23, 16933–16948 (2015).
[Crossref] [PubMed]

J. Yoon, K. Kim, H. Park, C. Choi, S. Jang, and Y. Park, “Label-free characterization of white blood cells by measuring 3D refractive index maps,” Biomed. Opt. Express 6, 3865–3875 (2015).
[Crossref] [PubMed]

A. Kuś, W. Krauze, and M. Kujawińska, “Limited-angle holographic tomography with optically controlled projection generation,” Proc. SPIE 9330, 933007 (2015).
[Crossref]

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40, 5407–5410 (2015).
[Crossref] [PubMed]

C. Zuo, J. Sun, J. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Opt. Express 23, 14314–14328 (2015).
[Crossref] [PubMed]

M. H. Jenkins and T. K. Gaylord, “Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy,” Appl. Opt. 54, 9213–9227 (2015).
[Crossref] [PubMed]

L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23, 11394–11403 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

2012 (2)

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS ONE 7, e49502 (2012).
[Crossref] [PubMed]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (2)

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

Y. Jeon and C.-K. Hong, “Rotation error correction by numerical focus adjustment in tomographic phase microscopy,” Opt. Eng. 48, 105801 (2009).
[Crossref]

2007 (2)

W. Gorski and W. Osten, “Tomographic imaging of photonic crystal fibers,” Opt. Lett. 32, 1977–1979 (2007).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717 (2007).
[Crossref] [PubMed]

2006 (1)

2002 (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
[Crossref] [PubMed]

1990 (1)

1985 (1)

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

1955 (1)

G. Nomarski and A. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall 2, 121–128 (1955).
[Crossref]

1942 (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

Alferi, D.

Alieva, T.

Asundi, A.

Badizadegan, K.

Bao, Y.

Barbastathis, G.

Bhaduri, B.

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113 (2013).
[Crossref]

Chen, M.

Chen, Q.

Choi, C.

Choi, W.

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS ONE 7, e49502 (2012).
[Crossref] [PubMed]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717 (2007).
[Crossref] [PubMed]

Chung, J.

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113 (2013).
[Crossref]

D’ippolito, G.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Dasari, R. R.

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS ONE 7, e49502 (2012).
[Crossref] [PubMed]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717 (2007).
[Crossref] [PubMed]

De Nicola, S.

De Petrocellis, L.

Depeursinge, C.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113 (2013).
[Crossref]

Ding, H.

Dudek, M.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Fang-Yen, C.

Feld, M. S.

Ferraro, P.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405–1407 (2006).
[Crossref] [PubMed]

Finizio, A.

Fontana, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Gambale, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Gaylord, T. K.

Gillette, M. U.

Gorski, W.

Hong, C.-K.

Y. Jeon and C.-K. Hong, “Rotation error correction by numerical focus adjustment in tomographic phase microscopy,” Opt. Eng. 48, 105801 (2009).
[Crossref]

Horstmeyer, R.

Hu, Y.

Iolascon, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Jang, S.

Jenkins, M. H.

Jeon, Y.

Y. Jeon and C.-K. Hong, “Rotation error correction by numerical focus adjustment in tomographic phase microscopy,” Opt. Eng. 48, 105801 (2009).
[Crossref]

Jin, K. H.

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113 (2013).
[Crossref]

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).
[Crossref]

Kawata, S.

Kemper, B.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Kim, G.

Kim, K.

Kim, M. K.

M. K. Kim, Digital Holographic Microscopy (Springer, 2011).
[Crossref]

Krauze, W.

W. Krauze, A. Kuś, D. Śladowski, E. Skrzypek, and M. Kujawińska, “Reconstruction method for extended depth-of-field optical diffraction tomography,” Methods 136, 40–49 (2017).
[Crossref] [PubMed]

A. Kuś, W. Krauze, and M. Kujawińska, “Limited-angle holographic tomography with optically controlled projection generation,” Proc. SPIE 9330, 933007 (2015).
[Crossref]

Kujawinska, M.

W. Krauze, A. Kuś, D. Śladowski, E. Skrzypek, and M. Kujawińska, “Reconstruction method for extended depth-of-field optical diffraction tomography,” Methods 136, 40–49 (2017).
[Crossref] [PubMed]

A. Kuś, W. Krauze, and M. Kujawińska, “Limited-angle holographic tomography with optically controlled projection generation,” Proc. SPIE 9330, 933007 (2015).
[Crossref]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Kus, A.

W. Krauze, A. Kuś, D. Śladowski, E. Skrzypek, and M. Kujawińska, “Reconstruction method for extended depth-of-field optical diffraction tomography,” Methods 136, 40–49 (2017).
[Crossref] [PubMed]

A. Kuś, W. Krauze, and M. Kujawińska, “Limited-angle holographic tomography with optically controlled projection generation,” Proc. SPIE 9330, 933007 (2015).
[Crossref]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Lauer, V.

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
[Crossref] [PubMed]

Lee, K.

Lee, S.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 20201 (2016).
[Crossref]

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23, 16933–16948 (2015).
[Crossref] [PubMed]

Li, J.

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref] [PubMed]

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

J. Li, Q. Chen, J. Zhang, Y. Zhang, L. Lu, and C. Zuo, “Efficient quantitative phase microscopy using programmable annular LED illumination,” Biomed. Opt. Express 8, 4687–4705 (2017).
[Crossref] [PubMed]

Lim, J.

Long, J. M.

Lu, L.

Lue, N.

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS ONE 7, e49502 (2012).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717 (2007).
[Crossref] [PubMed]

Maffettone, P. L.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113 (2013).
[Crossref]

Marquet, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113 (2013).
[Crossref]

Memmolo, P.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Merola, F.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Miccio, L.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Millet, L.

Minami, S.

Mir, M.

Mugnano, M.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Noda, T.

Nomarski, G.

G. Nomarski and A. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall 2, 121–128 (1955).
[Crossref]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717 (2007).
[Crossref] [PubMed]

Osten, W.

Ou, X.

Park, H.

Park, Y.

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113 (2013).
[Crossref]

Pham, H.

Pierattini, G.

Popescu, G.

Qu, W.

Rodrigo, J. A.

Rogers, J.

Sardo, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Savoia, R.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Shin, S.

Skrzypek, E.

W. Krauze, A. Kuś, D. Śladowski, E. Skrzypek, and M. Kujawińska, “Reconstruction method for extended depth-of-field optical diffraction tomography,” Methods 136, 40–49 (2017).
[Crossref] [PubMed]

Sladowski, D.

W. Krauze, A. Kuś, D. Śladowski, E. Skrzypek, and M. Kujawińska, “Reconstruction method for extended depth-of-field optical diffraction tomography,” Methods 136, 40–49 (2017).
[Crossref] [PubMed]

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).
[Crossref]

Soto, J. M.

Streibl, N.

Sun, J.

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref] [PubMed]

C. Zuo, J. Sun, J. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Opt. Express 23, 14314–14328 (2015).
[Crossref] [PubMed]

Sung, Y.

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS ONE 7, e49502 (2012).
[Crossref] [PubMed]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

Tian, L.

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113 (2013).
[Crossref]

Unarunotai, S.

Villone, M. M.

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

Vollmer, A.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Waller, L.

Wang, Z.

Weill, A.

G. Nomarski and A. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall 2, 121–128 (1955).
[Crossref]

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Yang, C.

Yang, S.-A.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 20201 (2016).
[Crossref]

Yaqoob, Z.

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS ONE 7, e49502 (2012).
[Crossref] [PubMed]

Ye, J. C.

Yoon, J.

Yu, Y.

Zernike, F.

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

Zhang, J.

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref] [PubMed]

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

J. Li, Q. Chen, J. Zhang, Y. Zhang, L. Lu, and C. Zuo, “Efficient quantitative phase microscopy using programmable annular LED illumination,” Biomed. Opt. Express 8, 4687–4705 (2017).
[Crossref] [PubMed]

C. Zuo, J. Sun, J. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Opt. Express 23, 14314–14328 (2015).
[Crossref] [PubMed]

Zhang, Y.

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

J. Li, Q. Chen, J. Zhang, Y. Zhang, L. Lu, and C. Zuo, “Efficient quantitative phase microscopy using programmable annular LED illumination,” Biomed. Opt. Express 8, 4687–4705 (2017).
[Crossref] [PubMed]

Zhang, Z.

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

Zheng, G.

Zuo, C.

Appl. Opt. (5)

Biomed. Opt. Express (4)

J. Biomed. Opt. (1)

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

J. Biomed. Photon. Eng. (1)

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 20201 (2016).
[Crossref]

J. Microsc. (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Lab Chip (1)

M. M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P. L. Maffettone, and P. Ferraro, “Full-angle tomographic phase microscopy of flowing quasi-spherical cells,” Lab Chip 18, 126–131 (2018).
[Crossref]

Light Sci. Appl. (1)

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Methods (1)

W. Krauze, A. Kuś, D. Śladowski, E. Skrzypek, and M. Kujawińska, “Reconstruction method for extended depth-of-field optical diffraction tomography,” Methods 136, 40–49 (2017).
[Crossref] [PubMed]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113 (2013).
[Crossref]

Opt. Commun. (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Opt. Eng. (1)

Y. Jeon and C.-K. Hong, “Rotation error correction by numerical focus adjustment in tomographic phase microscopy,” Opt. Eng. 48, 105801 (2009).
[Crossref]

Opt. Express (10)

J. M. Soto, J. A. Rodrigo, and T. Alieva, “Label-free quantitative 3D tomographic imaging for partially coherent light microscopy,” Opt. Express 25, 15699–15712 (2017).
[Crossref] [PubMed]

C. Zuo, J. Sun, J. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Opt. Express 23, 14314–14328 (2015).
[Crossref] [PubMed]

L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23, 11394–11403 (2015).
[Crossref] [PubMed]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18, 12552–12561 (2010).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21, 24060–24075 (2013).
[Crossref] [PubMed]

J. A. Rodrigo and T. Alieva, “Rapid quantitative phase imaging for partially coherent light microscopy,” Opt. Express 22, 13472–13483 (2014).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications,” Opt. Express 21, 5346–5362 (2013).
[Crossref] [PubMed]

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23, 16933–16948 (2015).
[Crossref] [PubMed]

Opt. Laser Eng. (1)

J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, and C. Zuo, “Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array,” Opt. Laser Eng. 95, 26–34 (2017).
[Crossref]

Opt. Lett. (5)

Optica (1)

Physica (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9(7), 686–698 (1942).
[Crossref]

PLoS ONE (1)

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS ONE 7, e49502 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Kuś, W. Krauze, and M. Kujawińska, “Limited-angle holographic tomography with optically controlled projection generation,” Proc. SPIE 9330, 933007 (2015).
[Crossref]

Rev. Metall (1)

G. Nomarski and A. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall 2, 121–128 (1955).
[Crossref]

Sci. Rep. (1)

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref] [PubMed]

Other (2)

M. K. Kim, Digital Holographic Microscopy (Springer, 2011).
[Crossref]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1       Tomographic reconstruction of two enlarged regions of human buccal epithelial cell.
» Visualization 2       3D RI tomograms rendering of (a) Pandorina morum algae.
» Visualization 3       3D RI tomograms rendering of HeLa cell.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 2D sections of 3D POTF for oblique coherent source with different normalized illumination NA. The radius of Ewald sphere is 1/λ, and the normalized objective NA ρp and illumination NA ρs are sin (θ1) /λ and sin (θ2) /λ, respectively. The lateral and axial resolution limits are ρs + ρp and 1 / λ λ 2 ρ s 2, respectively.
Fig. 2
Fig. 2 2D plots of 3D POTF section in uw plane for four different illumination apertures including circular and annular illumination apertures with different coherence parameters.
Fig. 3
Fig. 3 The analysis of PSF for circular apertures with different coherence parameters and annular aperture. The intensity section of an ideal phase micro bead convolved different PFSs and the profiles of PSFs are plotted as well.
Fig. 4
Fig. 4 3D RI reconstruction results of a simulated 3D phase resolution target under noise-free situation and the Gaussian noise with a standard deviation of 0.15. The 3D phase object is composed of two same resolution target images placed in the different axial planes, and the distance between two resolution targets is 0.65 μm in the axial direction. The dimensions of this 3D objet are 128 × 128 × 128 pixels with the spatial sample rate 0.065 μm in both x, y and z directions. The RI of resolution target n is 1.59 with the surrounding medium RI nm = 1.58. Scale bar, 1 μm.
Fig. 5
Fig. 5 Block diagram representation of the MFC-ODT method.
Fig. 6
Fig. 6 2D section comparison results between 3D POTF after MFC and ideal low-pass POTF. (a) Combined POTF using multiple illumination aperture. Three lateral spatial frequency positions are selected for comparison, and the frequency components mainly contributed by annular illumination aperture are marked with yellow line. (b) Ideal low-pass POTF determined by the nonzero region of entire volume transmitted through the incoherent system. (c) The profiles of combined POTF and ideal low-pass one.
Fig. 7
Fig. 7 Schematic diagram of experimental setup. The illumination aperture before the condenser lens can be replaced by the circular and annular shaped aperture in the condenser turret and three intensity stacks are captured under respective illumination pattern.
Fig. 8
Fig. 8 RI experimental results of micro polystyrene bead with 6 μm diameter. (a–c) Raw images of captured intensity stacks and Fourier spectrum sections under three different illumination apertures. (d–f) Recovered lateral and axial slices using the direct deconvolution equation. Especially, figure (e) is added with the appropriate contrast for the display propose. (g) Final 3D RI slices with same pixel sampling in all directions. (h) Final recovery of Fourier spectrum after iterative constraint. (i) Axial and lateral RI profiles of reconstructed micro bead. Scale bar, 5 μm.
Fig. 9
Fig. 9 Tomographic reconstruction of human buccal epithelial cell. (a) The captured raw intensity image of full sensor FOV under circular illumination aperture with ρs = 0.65. (b–c) Detailed RI slices at different axial planes of two enlarged regions, see also Visualization 1. (d–e) Comparative profile lines of quantitative RI measurement between single stack and MFC method for two selected small regions. The achievable lateral resolution of MFC-ODT technique is up to 260 nm. Scale bar denotes 10 μm and 5 μm, respectively.
Fig. 10
Fig. 10 3D RI tomograms rendering of (a) Pandorina morum algae and (b) HeLa cell in xy, zy and xz planes. Scale bar, 10 μm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = B + Φ ( r ) H P ( r ) + A ( r ) H A ( r )
I ˜ ( ζ ) = B δ ( ζ ) + Φ ˜ ( ζ ) T P ( ζ ) + A ˜ ( ζ ) T A ( ζ )
T P ( ρ , w ) = j λ 4 π P ( ρ + 1 2 ρ ) P * ( ρ + 1 2 ρ ) [ S ( ρ + 1 2 ρ ) S ( ρ 1 2 ρ ) ] δ [ w λ 2 ( ρ 1 2 ρ ) 2 λ 2 ( ρ + 1 2 ρ ) 2 ] d 2 ρ
P ( ρ ) = { 1 , if | ρ | ρ p 0 , if | ρ | > ρ p
S ( ρ ) = { 1 , if | ρ | ρ s 0 , if | ρ | > ρ s
S ( u , v ) = δ ( u ρ s , v )
T p ( u , v , w ) = j λ 4 π P * ( ρ s u , v ) δ [ w λ 2 ρ s 2 + λ 2 ( ρ s u ) 2 v 2 ] j λ 4 π P ( ρ s + u , v ) δ [ w + λ 2 + ρ s 2 λ 2 ( ρ s + u ) 2 v 2 ]
S ( ρ ) = i = 1 N δ ( ρ ρ i ) , | ρ i | ρ p
Φ ( r ) = 1 [ I ˜ 1 ( ζ ) T P 1 ( ζ ) ε 1 + I ˜ 2 ( ζ ) T P 2 ( ζ ) ε 2 + I ˜ 3 ( ζ ) T P 3 ( ζ ) ε 3 ]
ε i = T P i * ( ζ ) T P i ( ζ ) | T P 1 ( ζ ) | 2 + | T P 2 ( ζ ) | 2 + | T P 3 ( ζ ) | 2 .
Φ ( r ) = 1 [ I ˜ 1 ( ζ ) T P 1 * ( ζ ) + I ˜ 2 ( ζ ) T P 2 * ( ζ ) + I ˜ 3 ( ζ ) T P 3 * ( ζ ) | T P 1 ( ζ ) | 2 + | T P 2 ( ζ ) | 2 + | T P 3 ( ζ ) | 2 + α ]

Metrics