Abstract

Acquiring images of biological tissues and cells without the assistance of exogenous labels with a fast repetition rate and chemical specificity is what coherent anti-Stokes Raman Scattering (CARS) imaging offers. Nonresonant background (NRB) is one of the main drawbacks of the CARS microscopy technique because it limits the detection of weak Raman lines and the detection of low-concentration molecules. We show that a six-wave mixing process with two beams, which is a cascade effect of CARS, show better signal/NRB ratio and can be utilized for biological tissues imaging. The cascade CARS (CCARS) depends on chi-3 to the fourth power, instead of chi-3 squared as in the usual CARS signal; therefore, the contrast ratio with NRB is higher for CCARS than for CARS. We present analytic calculations showing that CCARS have better contrast over CARS in any situation. Comparison of the signals of both techniques generated on water-ethanol solutions confirm these results. Finally, we acquired CCARS images of fresh biological tissues, attesting that it is a useful tool for biological studies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy

Yan Fu, T. Brandon Huff, Han-Wei Wang, Haifeng Wang, and Ji-Xin Cheng
Opt. Express 16(24) 19396-19409 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982).
    [Crossref] [PubMed]
  2. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  3. J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
    [Crossref] [PubMed]
  4. H. J. Johnston, R. Mouras, D. M. Brown, A. Elfick, and V. Stone, “Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy,” Nanotechnology 26(50), 505102 (2015).
    [Crossref] [PubMed]
  5. J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
    [Crossref] [PubMed]
  6. T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 51(11), 3091–3102 (2010).
    [Crossref] [PubMed]
  7. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express 16(20), 15863–15869 (2008).
    [Crossref] [PubMed]
  8. A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
    [Crossref]
  9. J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
    [Crossref]
  10. J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
    [Crossref] [PubMed]
  11. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
    [Crossref]
  12. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  13. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
    [Crossref] [PubMed]
  14. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref] [PubMed]
  15. B. Li, K. Charan, K. Wang, T. Rojo, D. Sinefeld, and C. Xu, “Nonresonant background suppression for coherent anti-Stokes Raman scattering microscopy using a multi-wavelength time-lens source,” Opt. Express 24(23), 26687–26695 (2016).
    [Crossref] [PubMed]
  16. H. Wang, S. Osseiran, V. Igras, A. J. Nichols, E. M. Roider, J. Pruessner, H. Tsao, D. E. Fisher, and C. L. Evans, “In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin,” Sci. Rep. 6(1), 37986 (2016).
    [Crossref] [PubMed]
  17. C. Fang, F. Lu, W. Zheng, and Z. Huang, “Triple-frequency symmetric subtraction scheme for nonresonant background suppression in coherent anti-Stokes Raman scattering (CARS) microscopy,” Opt. Express 18(15), 15714–15724 (2010).
    [Crossref] [PubMed]
  18. T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
    [Crossref] [PubMed]
  19. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
    [Crossref] [PubMed]
  20. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
    [Crossref] [PubMed]
  21. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
    [Crossref] [PubMed]
  22. A. Compaan, E. Wiener-Avnear, and S. Chandra, “Second-order coherent Raman scattering,” Phys. Rev. A 17(3), 1083–1092 (1978).
    [Crossref]
  23. J. E. Ivanecky and J. C. Wright, “An investigation of the origins and efficiencies of higher-order nonlinear spectroscopic processes,” Chem. Phys. Lett. 206(5-6), 437–444 (1993).
    [Crossref]
  24. D. Blank, L. J. Kaufman, and G. R. Fleming, “Fifth-order two-dimensional Raman spectra of CS[sub 2] are dominated by third-order cascades,” J. Chem. Phys. 111(7), 3105–3114 (1999).
    [Crossref]
  25. H. Kano and H. Hamaguchi, “Cascading third-order Raman process studied by six-wave mixing broadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Chem. Phys. 118(10), 4556–4562 (2003).
    [Crossref]
  26. C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
    [Crossref] [PubMed]
  27. H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
    [Crossref]
  28. J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [Crossref]
  29. E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34(9), 642–650 (2003).
    [Crossref]
  30. T. A. Dolenko, S. A. Burikov, S. A. Dolenko, A. O. Efitorov, I. V. Plastinin, V. I. Yuzhakov, and S. V. Patsaeva, “Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions,” J. Phys. Chem. A 119(44), 10806–10815 (2015).
    [Crossref] [PubMed]

2016 (2)

B. Li, K. Charan, K. Wang, T. Rojo, D. Sinefeld, and C. Xu, “Nonresonant background suppression for coherent anti-Stokes Raman scattering microscopy using a multi-wavelength time-lens source,” Opt. Express 24(23), 26687–26695 (2016).
[Crossref] [PubMed]

H. Wang, S. Osseiran, V. Igras, A. J. Nichols, E. M. Roider, J. Pruessner, H. Tsao, D. E. Fisher, and C. L. Evans, “In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin,” Sci. Rep. 6(1), 37986 (2016).
[Crossref] [PubMed]

2015 (3)

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref] [PubMed]

H. J. Johnston, R. Mouras, D. M. Brown, A. Elfick, and V. Stone, “Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy,” Nanotechnology 26(50), 505102 (2015).
[Crossref] [PubMed]

T. A. Dolenko, S. A. Burikov, S. A. Dolenko, A. O. Efitorov, I. V. Plastinin, V. I. Yuzhakov, and S. V. Patsaeva, “Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions,” J. Phys. Chem. A 119(44), 10806–10815 (2015).
[Crossref] [PubMed]

2014 (2)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

2013 (1)

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

2011 (2)

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

2010 (3)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. Fang, F. Lu, W. Zheng, and Z. Huang, “Triple-frequency symmetric subtraction scheme for nonresonant background suppression in coherent anti-Stokes Raman scattering (CARS) microscopy,” Opt. Express 18(15), 15714–15724 (2010).
[Crossref] [PubMed]

T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 51(11), 3091–3102 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express 16(20), 15863–15869 (2008).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2004 (1)

J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

2003 (2)

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34(9), 642–650 (2003).
[Crossref]

H. Kano and H. Hamaguchi, “Cascading third-order Raman process studied by six-wave mixing broadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Chem. Phys. 118(10), 4556–4562 (2003).
[Crossref]

2002 (1)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

2001 (3)

A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[Crossref]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[Crossref] [PubMed]

1999 (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

D. Blank, L. J. Kaufman, and G. R. Fleming, “Fifth-order two-dimensional Raman spectra of CS[sub 2] are dominated by third-order cascades,” J. Chem. Phys. 111(7), 3105–3114 (1999).
[Crossref]

1993 (1)

J. E. Ivanecky and J. C. Wright, “An investigation of the origins and efficiencies of higher-order nonlinear spectroscopic processes,” Chem. Phys. Lett. 206(5-6), 437–444 (1993).
[Crossref]

1982 (1)

1978 (1)

A. Compaan, E. Wiener-Avnear, and S. Chandra, “Second-order coherent Raman scattering,” Phys. Rev. A 17(3), 1083–1092 (1978).
[Crossref]

1976 (1)

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[Crossref]

Baumgartl, M.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Blake, J. A.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref] [PubMed]

Blank, D.

D. Blank, L. J. Kaufman, and G. R. Fleming, “Fifth-order two-dimensional Raman spectra of CS[sub 2] are dominated by third-order cascades,” J. Chem. Phys. 111(7), 3105–3114 (1999).
[Crossref]

Bloembergen, N.

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[Crossref]

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[Crossref] [PubMed]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

Brehm, B. R.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Brown, D. M.

H. J. Johnston, R. Mouras, D. M. Brown, A. Elfick, and V. Stone, “Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy,” Nanotechnology 26(50), 505102 (2015).
[Crossref] [PubMed]

Burikov, S. A.

T. A. Dolenko, S. A. Burikov, S. A. Dolenko, A. O. Efitorov, I. V. Plastinin, V. I. Yuzhakov, and S. V. Patsaeva, “Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions,” J. Phys. Chem. A 119(44), 10806–10815 (2015).
[Crossref] [PubMed]

Camp, C. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Chandra, S.

A. Compaan, E. Wiener-Avnear, and S. Chandra, “Second-order coherent Raman scattering,” Phys. Rev. A 17(3), 1083–1092 (1978).
[Crossref]

Charan, K.

Chemnitz, M.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Cheng, J.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

Cheng, J. X.

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref] [PubMed]

T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 51(11), 3091–3102 (2010).
[Crossref] [PubMed]

J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[Crossref]

Cicerone, M. T.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[Crossref] [PubMed]

Compaan, A.

A. Compaan, E. Wiener-Avnear, and S. Chandra, “Second-order coherent Raman scattering,” Phys. Rev. A 17(3), 1083–1092 (1978).
[Crossref]

Danielson, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref] [PubMed]

Dietzek, B.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Dolenko, S. A.

T. A. Dolenko, S. A. Burikov, S. A. Dolenko, A. O. Efitorov, I. V. Plastinin, V. I. Yuzhakov, and S. V. Patsaeva, “Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions,” J. Phys. Chem. A 119(44), 10806–10815 (2015).
[Crossref] [PubMed]

Dolenko, T. A.

T. A. Dolenko, S. A. Burikov, S. A. Dolenko, A. O. Efitorov, I. V. Plastinin, V. I. Yuzhakov, and S. V. Patsaeva, “Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions,” J. Phys. Chem. A 119(44), 10806–10815 (2015).
[Crossref] [PubMed]

Duncan, M. D.

Efitorov, A. O.

T. A. Dolenko, S. A. Burikov, S. A. Dolenko, A. O. Efitorov, I. V. Plastinin, V. I. Yuzhakov, and S. V. Patsaeva, “Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions,” J. Phys. Chem. A 119(44), 10806–10815 (2015).
[Crossref] [PubMed]

Elfick, A.

H. J. Johnston, R. Mouras, D. M. Brown, A. Elfick, and V. Stone, “Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy,” Nanotechnology 26(50), 505102 (2015).
[Crossref] [PubMed]

Evans, C. L.

H. Wang, S. Osseiran, V. Igras, A. J. Nichols, E. M. Roider, J. Pruessner, H. Tsao, D. E. Fisher, and C. L. Evans, “In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin,” Sci. Rep. 6(1), 37986 (2016).
[Crossref] [PubMed]

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

Fang, C.

Fisher, D. E.

H. Wang, S. Osseiran, V. Igras, A. J. Nichols, E. M. Roider, J. Pruessner, H. Tsao, D. E. Fisher, and C. L. Evans, “In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin,” Sci. Rep. 6(1), 37986 (2016).
[Crossref] [PubMed]

Fleming, G. R.

D. Blank, L. J. Kaufman, and G. R. Fleming, “Fifth-order two-dimensional Raman spectra of CS[sub 2] are dominated by third-order cascades,” J. Chem. Phys. 111(7), 3105–3114 (1999).
[Crossref]

Freudiger, C. W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Gottschall, T.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Hamaguchi, H.

H. Kano and H. Hamaguchi, “Cascading third-order Raman process studied by six-wave mixing broadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Chem. Phys. 118(10), 4556–4562 (2003).
[Crossref]

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Herek, J. L.

Hight Walker, A. R.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Huang, Z.

Igras, V.

H. Wang, S. Osseiran, V. Igras, A. J. Nichols, E. M. Roider, J. Pruessner, H. Tsao, D. E. Fisher, and C. L. Evans, “In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin,” Sci. Rep. 6(1), 37986 (2016).
[Crossref] [PubMed]

Ivanecky, J. E.

J. E. Ivanecky and J. C. Wright, “An investigation of the origins and efficiencies of higher-order nonlinear spectroscopic processes,” Chem. Phys. Lett. 206(5-6), 437–444 (1993).
[Crossref]

Johnston, H. J.

H. J. Johnston, R. Mouras, D. M. Brown, A. Elfick, and V. Stone, “Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy,” Nanotechnology 26(50), 505102 (2015).
[Crossref] [PubMed]

Jurna, M.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kano, H.

H. Kano and H. Hamaguchi, “Cascading third-order Raman process studied by six-wave mixing broadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Chem. Phys. 118(10), 4556–4562 (2003).
[Crossref]

Kaufman, L. J.

D. Blank, L. J. Kaufman, and G. R. Fleming, “Fifth-order two-dimensional Raman spectra of CS[sub 2] are dominated by third-order cascades,” J. Chem. Phys. 111(7), 3105–3114 (1999).
[Crossref]

Kennedy, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref] [PubMed]

Korterik, J. P.

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Le, T. T.

T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 51(11), 3091–3102 (2010).
[Crossref] [PubMed]

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[Crossref] [PubMed]

Li, B.

Limpert, J.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Liu, Y.

Lotem, H.

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[Crossref]

Lu, F.

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Lyn, R. K.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref] [PubMed]

Lynch, R. T.

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[Crossref]

Manuccia, T. J.

Matthäus, C.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Meyer, T.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Min, W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Moffatt, D. J.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

Mouras, R.

H. J. Johnston, R. Mouras, D. M. Brown, A. Elfick, and V. Stone, “Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy,” Nanotechnology 26(50), 505102 (2015).
[Crossref] [PubMed]

Nichols, A. J.

H. Wang, S. Osseiran, V. Igras, A. J. Nichols, E. M. Roider, J. Pruessner, H. Tsao, D. E. Fisher, and C. L. Evans, “In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin,” Sci. Rep. 6(1), 37986 (2016).
[Crossref] [PubMed]

Offerhaus, H. L.

Osseiran, S.

H. Wang, S. Osseiran, V. Igras, A. J. Nichols, E. M. Roider, J. Pruessner, H. Tsao, D. E. Fisher, and C. L. Evans, “In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin,” Sci. Rep. 6(1), 37986 (2016).
[Crossref] [PubMed]

Otto, C.

Pascher, T.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Patsaeva, S. V.

T. A. Dolenko, S. A. Burikov, S. A. Dolenko, A. O. Efitorov, I. V. Plastinin, V. I. Yuzhakov, and S. V. Patsaeva, “Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions,” J. Phys. Chem. A 119(44), 10806–10815 (2015).
[Crossref] [PubMed]

Pegoraro, A. F.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

Pezacki, J. P.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref] [PubMed]

Plastinin, I. V.

T. A. Dolenko, S. A. Burikov, S. A. Dolenko, A. O. Efitorov, I. V. Plastinin, V. I. Yuzhakov, and S. V. Patsaeva, “Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions,” J. Phys. Chem. A 119(44), 10806–10815 (2015).
[Crossref] [PubMed]

Popp, J.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Potma, E. O.

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34(9), 642–650 (2003).
[Crossref]

Pruessner, J.

H. Wang, S. Osseiran, V. Igras, A. J. Nichols, E. M. Roider, J. Pruessner, H. Tsao, D. E. Fisher, and C. L. Evans, “In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin,” Sci. Rep. 6(1), 37986 (2016).
[Crossref] [PubMed]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Reintjes, J.

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Ridsdale, A.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

Roider, E. M.

H. Wang, S. Osseiran, V. Igras, A. J. Nichols, E. M. Roider, J. Pruessner, H. Tsao, D. E. Fisher, and C. L. Evans, “In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin,” Sci. Rep. 6(1), 37986 (2016).
[Crossref] [PubMed]

Rojo, T.

Romeike, B. F. M.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Schmitt, M.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Sinefeld, D.

Singaravelu, R.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref] [PubMed]

Slepkov, A. D.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Stolow, A.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

Stone, V.

H. J. Johnston, R. Mouras, D. M. Brown, A. Elfick, and V. Stone, “Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy,” Nanotechnology 26(50), 505102 (2015).
[Crossref] [PubMed]

Sunney Xie, X.

A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[Crossref]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Tsao, H.

H. Wang, S. Osseiran, V. Igras, A. J. Nichols, E. M. Roider, J. Pruessner, H. Tsao, D. E. Fisher, and C. L. Evans, “In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin,” Sci. Rep. 6(1), 37986 (2016).
[Crossref] [PubMed]

Tünnermann, A.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[Crossref]

Wang, H.

H. Wang, S. Osseiran, V. Igras, A. J. Nichols, E. M. Roider, J. Pruessner, H. Tsao, D. E. Fisher, and C. L. Evans, “In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin,” Sci. Rep. 6(1), 37986 (2016).
[Crossref] [PubMed]

Wang, K.

Wiener-Avnear, E.

A. Compaan, E. Wiener-Avnear, and S. Chandra, “Second-order coherent Raman scattering,” Phys. Rev. A 17(3), 1083–1092 (1978).
[Crossref]

Wright, J. C.

J. E. Ivanecky and J. C. Wright, “An investigation of the origins and efficiencies of higher-order nonlinear spectroscopic processes,” Chem. Phys. Lett. 206(5-6), 437–444 (1993).
[Crossref]

Xie, X. S.

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34(9), 642–650 (2003).
[Crossref]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[Crossref] [PubMed]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Xu, C.

Yue, S.

T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 51(11), 3091–3102 (2010).
[Crossref] [PubMed]

Yuzhakov, V. I.

T. A. Dolenko, S. A. Burikov, S. A. Dolenko, A. O. Efitorov, I. V. Plastinin, V. I. Yuzhakov, and S. V. Patsaeva, “Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions,” J. Phys. Chem. A 119(44), 10806–10815 (2015).
[Crossref] [PubMed]

Zheng, W.

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Anal. Chem. (1)

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

Chem. Phys. Lett. (1)

J. E. Ivanecky and J. C. Wright, “An investigation of the origins and efficiencies of higher-order nonlinear spectroscopic processes,” Chem. Phys. Lett. 206(5-6), 437–444 (1993).
[Crossref]

J. Biophotonics (1)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

J. Chem. Phys. (2)

D. Blank, L. J. Kaufman, and G. R. Fleming, “Fifth-order two-dimensional Raman spectra of CS[sub 2] are dominated by third-order cascades,” J. Chem. Phys. 111(7), 3105–3114 (1999).
[Crossref]

H. Kano and H. Hamaguchi, “Cascading third-order Raman process studied by six-wave mixing broadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Chem. Phys. 118(10), 4556–4562 (2003).
[Crossref]

J. Lipid Res. (1)

T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 51(11), 3091–3102 (2010).
[Crossref] [PubMed]

J. Phys. Chem. A (1)

T. A. Dolenko, S. A. Burikov, S. A. Dolenko, A. O. Efitorov, I. V. Plastinin, V. I. Yuzhakov, and S. V. Patsaeva, “Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions,” J. Phys. Chem. A 119(44), 10806–10815 (2015).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

J. Raman Spectrosc. (1)

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34(9), 642–650 (2003).
[Crossref]

Nanotechnology (1)

H. J. Johnston, R. Mouras, D. M. Brown, A. Elfick, and V. Stone, “Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy,” Nanotechnology 26(50), 505102 (2015).
[Crossref] [PubMed]

Nat. Chem. Biol. (1)

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A (2)

A. Compaan, E. Wiener-Avnear, and S. Chandra, “Second-order coherent Raman scattering,” Phys. Rev. A 17(3), 1083–1092 (1978).
[Crossref]

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[Crossref]

Phys. Rev. Lett. (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[Crossref]

Sci. Rep. (1)

H. Wang, S. Osseiran, V. Igras, A. J. Nichols, E. M. Roider, J. Pruessner, H. Tsao, D. E. Fisher, and C. L. Evans, “In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin,” Sci. Rep. 6(1), 37986 (2016).
[Crossref] [PubMed]

Science (3)

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Diagram for: (A) Direct six-wave mixing process. (B) Parallel cascade CARS. A photon from a CARS process in the first molecule of frequency ωCARS is absorbed by a second molecule, which is already on an excited state due to ωp and ωs, to generate a photon with frequency ωSWM. (C) Sequential cascade CARS. A photon from a CARS process in the first molecule of frequency ωCARS together with a ωs’ photon excite a second molecule to nearly twice the frequency of ωp - ωs, a ωp photon then is absorbed to generate a photon with frequency ωSWM [25].
Fig. 2
Fig. 2 Comparison of calculated CCARS (dashed), CARS (continuous) and NRB (doted), for Γ = 1 cm−1, with Δ=( ω p ω s Ω R ). Plotted lines are normalized to χ NR (3) =1. (A) χ NR (3) =2 χ R (3) ( Δ=0 ). (B) χ NR (3) = 10 3 χ R (3) ( Δ=0 ), for comparison when χ R (3) << χ NR (3) .
Fig. 3
Fig. 3 Experimental setup showing in: 1 - Dichroic 805SP mirror; 2 - Dichroic 776LP mirror.
Fig. 4
Fig. 4 (A) Photography of the scattered nonlinear signals - red is the CARS and Green the CCARS. One can even see a less intense blue signal of higher nonlinear orders. (B) Backscattered spectrum of (A). (C) Dependence of the CCARS intensity in water at 3240 cm−1, with pump at 800 nm and Stokes at 1080 nm Log-Log plot shows slope of fitted line fixed on 3 for pump beam and 2 for Stokes beam. (D) Normalized signal intensity vs. (ethanol volume)/(Solution volume), on a solution of water ethanol. Pump beam at 800 nm and Stokes beam at 1036 nm, for 2847 cm−1. (E) CARS and CCARS in and out resonance normalized signal intensity by changing Stokes beam wavelength - ethanol concentration 99.3%.
Fig. 5
Fig. 5 (A) Spectra for CARS (red) and CCARS (green); (B) Bright field image for mouse ear sample. (C) CARS image; (D) CCARS image; (E) Merged image of CARS (red) and CCARS (Green). All data were acquired with 10X objective. Scale bars are 100 μm.
Fig. 6
Fig. 6 Images acquired with a 20X objective, showing peak resonance and off resonance images for mouse ear sample. Scale bars are 110 μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

χ R (3) = A Ω R ( ω p ω s )iΓ .
I CCARS ( χ NR (3) ) 4 + | χ R (3) | 4 +4 ( χ NR (3) ) 3 Re{ χ R (3) }+ +2 ( χ NR (3) ) 2 [ | χ R (3) | 2 +2 ( Re{ χ R (3) } ) 2 ]+4 χ NR (3) | χ R (3) | 2 Re{ χ R (3) }.
I CARS ( χ NR (3) ) 2 + | χ R (3) | 2 +2( χ NR (3) )Re{ χ R (3) }.

Metrics