Abstract

We demonstrate the utility of a novel scanning method for optical coherence tomography angiography (OCTA). Although raster scanning is commonly used for OCTA imaging, a bidirectional approach would lessen the distortion caused by galvanometer-based scanners as sources continue to increase sweep rates. As shown, a unidirectional raster scan approach has a lower effective scanning time than bidirectional approaches; however, a strictly bidirectional approach causes contrast variation along the B-scan direction due to the non-uniform time interval between B-scans. Therefore, a stepped bidirectional approach is introduced and successfully applied to retinal imaging in normal controls and in a pathological subject with diabetic retinopathy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High dynamic range optical coherence tomography angiography (HDR-OCTA)

Xiang Wei, Tristan T. Hormel, Shaohua Pi, Yukun Guo, Yifan Jian, and Yali Jia
Biomed. Opt. Express 10(7) 3560-3571 (2019)

Handheld optical coherence tomography angiography

Jianlong Yang, Liang Liu, J. Peter Campbell, David Huang, and Gangjun Liu
Biomed. Opt. Express 8(4) 2287-2300 (2017)

Megahertz-rate optical coherence tomography angiography improves the contrast of the choriocapillaris and choroid in human retinal imaging

Justin V. Migacz, Iwona Gorczynska, Mehdi Azimipour, Ravi Jonnal, Robert J. Zawadzki, and John S. Werner
Biomed. Opt. Express 10(1) 50-65 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
    [Crossref] [PubMed]
  2. A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
    [Crossref] [PubMed]
  3. I. Gorczynska, J. V. Migacz, R. J. Zawadzki, A. G. Capps, and J. S. Werner, “Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid,” Biomed. Opt. Express 7(3), 911–942 (2016).
    [Crossref] [PubMed]
  4. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  5. A. G. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27(4), 464–499 (2008).
    [Crossref] [PubMed]
  6. V.-F. Duma, K. S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50(29), 5735–5749 (2011).
    [Crossref] [PubMed]
  7. V. F. Duma, P. Tankam, J. Huang, J. Won, and J. P. Rolland, “Optimization of galvanometer scanning for optical coherence tomography,” Appl. Opt. 54(17), 5495–5507 (2015).
    [Crossref] [PubMed]
  8. Q. Yuan, D. Zhu, and Z. Gao, “Alignment analyses of a galvanometer-based scanner in free-space Fourier domain optical coherence tomography,” Appl. Opt. 54(32), 9554–9562 (2015).
    [Crossref] [PubMed]
  9. D. Wang, P. Liang, S. Samuelson, H. Jia, J. Ma, and H. Xie, “Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors,” Biomed. Opt. Express 4(10), 2066–2077 (2013).
    [Crossref] [PubMed]
  10. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
    [Crossref] [PubMed]
  11. D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
    [Crossref] [PubMed]
  12. M. Strathman, Y. Liu, E. G. Keeler, M. Song, U. Baran, J. Xi, M.-T. Sun, R. Wang, X. Li, and L. Y. Lin, “MEMS scanning micromirror for optical coherence tomography,” Biomed. Opt. Express 6(1), 211–224 (2015).
    [Crossref] [PubMed]
  13. S. Kim, M. Crose, W. J. Eldridge, B. Cox, W. J. Brown, and A. Wax, “Design and implementation of a low-cost, portable OCT system,” Biomed. Opt. Express 9(3), 1232–1243 (2018).
    [Crossref] [PubMed]
  14. ANSI, American National Standard for Safe Use of Lasers (ANSI, 2014).
  15. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
    [Crossref] [PubMed]
  16. S. Lee, M. Young, M. V. Sarunic, and M. F. Beg, “End-to-end Pipeline for Spectral Domain Optical Coherence Tomography and Morphometric Analysis of Human Optic Nerve Head,” J. Med. Biol. Eng. 31(2), 111–119 (2011).
    [Crossref]
  17. K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics,” Opt. Express 20(20), 22796–22812 (2012).
    [Crossref] [PubMed]
  18. S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
    [Crossref] [PubMed]
  19. K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images - A graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
    [Crossref] [PubMed]
  20. S. Lee, M. F. Beg, and M. V. Sarunic, “Segmentation of the macular choroid in OCT images acquired at 830nm and 1060nm,” in Optical Coherence Tomography and Coherence Techniques VI, vol. 8802, p. 88020J (2013).
  21. Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
    [Crossref] [PubMed]
  22. Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
    [Crossref] [PubMed]
  23. P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
    [Crossref] [PubMed]
  24. M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. V. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
    [Crossref] [PubMed]
  25. Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
    [Crossref] [PubMed]
  26. A. Miere, O. Semoun, S. Y. Cohen, A. El Ameen, M. Srour, C. Jung, H. Oubraham, G. Querques, and E. H. Souied, “Optical Coherence Tomography Angiography Features of Subretinal Fibrosis in Age-Related Macular Degeneration,” Retina 35(11), 2275–2284 (2015).
    [Crossref] [PubMed]
  27. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
    [Crossref] [PubMed]
  28. J. Tokayer, Y. Jia, A.-H. Dhalla, and D. Huang, “Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Biomed. Opt. Express 4(10), 1909–1924 (2013).
    [Crossref] [PubMed]
  29. Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20(3), 2740–2760 (2012).
    [Crossref] [PubMed]
  30. M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express 21(16), 19412–19436 (2013).
    [Crossref] [PubMed]
  31. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
    [Crossref] [PubMed]
  32. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
    [Crossref] [PubMed]
  33. S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
    [Crossref] [PubMed]
  34. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
    [Crossref] [PubMed]
  35. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. V. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref] [PubMed]

S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
[Crossref] [PubMed]

2016 (3)

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

I. Gorczynska, J. V. Migacz, R. J. Zawadzki, A. G. Capps, and J. S. Werner, “Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid,” Biomed. Opt. Express 7(3), 911–942 (2016).
[Crossref] [PubMed]

2015 (8)

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

V. F. Duma, P. Tankam, J. Huang, J. Won, and J. P. Rolland, “Optimization of galvanometer scanning for optical coherence tomography,” Appl. Opt. 54(17), 5495–5507 (2015).
[Crossref] [PubMed]

Q. Yuan, D. Zhu, and Z. Gao, “Alignment analyses of a galvanometer-based scanner in free-space Fourier domain optical coherence tomography,” Appl. Opt. 54(32), 9554–9562 (2015).
[Crossref] [PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

M. Strathman, Y. Liu, E. G. Keeler, M. Song, U. Baran, J. Xi, M.-T. Sun, R. Wang, X. Li, and L. Y. Lin, “MEMS scanning micromirror for optical coherence tomography,” Biomed. Opt. Express 6(1), 211–224 (2015).
[Crossref] [PubMed]

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

A. Miere, O. Semoun, S. Y. Cohen, A. El Ameen, M. Srour, C. Jung, H. Oubraham, G. Querques, and E. H. Souied, “Optical Coherence Tomography Angiography Features of Subretinal Fibrosis in Age-Related Macular Degeneration,” Retina 35(11), 2275–2284 (2015).
[Crossref] [PubMed]

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (6)

D. Wang, P. Liang, S. Samuelson, H. Jia, J. Ma, and H. Xie, “Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors,” Biomed. Opt. Express 4(10), 2066–2077 (2013).
[Crossref] [PubMed]

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

J. Tokayer, Y. Jia, A.-H. Dhalla, and D. Huang, “Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Biomed. Opt. Express 4(10), 1909–1924 (2013).
[Crossref] [PubMed]

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express 21(16), 19412–19436 (2013).
[Crossref] [PubMed]

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

2010 (1)

2008 (1)

A. G. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27(4), 464–499 (2008).
[Crossref] [PubMed]

2006 (1)

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images - A graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
[Crossref] [PubMed]

2005 (2)

Akiba, M.

Albiani, D.

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

Albiani, D. A.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

An, L.

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref] [PubMed]

Balaratnasingam, C.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. V. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref] [PubMed]

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

Baran, U.

Baumann, B.

Beg, M. F.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. V. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref] [PubMed]

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

S. Lee, M. Young, M. V. Sarunic, and M. F. Beg, “End-to-end Pipeline for Spectral Domain Optical Coherence Tomography and Morphometric Analysis of Human Optic Nerve Head,” J. Med. Biol. Eng. 31(2), 111–119 (2011).
[Crossref]

Beg, M. F. F.

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Bouma, B.

Brown, W. J.

Cable, A. E.

Cadotte, D. W.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Capps, A. G.

Chan, K.-P.

Chen, C. L.

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

Chen, C.-L.

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Chen, D. Z.

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images - A graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
[Crossref] [PubMed]

Choi, W.

Chong, C.

Cohen, S. Y.

A. Miere, O. Semoun, S. Y. Cohen, A. El Ameen, M. Srour, C. Jung, H. Oubraham, G. Querques, and E. H. Souied, “Optical Coherence Tomography Angiography Features of Subretinal Fibrosis in Age-Related Macular Degeneration,” Retina 35(11), 2275–2284 (2015).
[Crossref] [PubMed]

Cox, B.

Crose, M.

de Boer, J.

Dhalla, A.-H.

Drexler, W.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Duan, L.

Duker, J. S.

Duma, V. F.

Duma, V.-F.

Durbin, M. K.

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

El Ameen, A.

A. Miere, O. Semoun, S. Y. Cohen, A. El Ameen, M. Srour, C. Jung, H. Oubraham, G. Querques, and E. H. Souied, “Optical Coherence Tomography Angiography Features of Subretinal Fibrosis in Age-Related Macular Degeneration,” Retina 35(11), 2275–2284 (2015).
[Crossref] [PubMed]

Eldridge, W. J.

Fallah, N.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Forooghian, F.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Francis, P.

Freund, K. B.

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

Fujimoto, J. G.

Gao, Z.

Gorczynska, I.

Gregori, G.

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

Grulkowski, I.

Heisler, M.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. V. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

Hong, Y.-J.

Hornegger, J.

Huang, D.

Huang, J.

Itoh, M.

Izatt, J. A.

Jaillon, F.

Jayaraman, V.

Jia, H.

Jia, Y.

Jian, Y.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. V. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref] [PubMed]

Ju, M.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. V. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref] [PubMed]

Ju, M. J.

Jung, C.

A. Miere, O. Semoun, S. Y. Cohen, A. El Ameen, M. Srour, C. Jung, H. Oubraham, G. Querques, and E. H. Souied, “Optical Coherence Tomography Angiography Features of Subretinal Fibrosis in Age-Related Macular Degeneration,” Retina 35(11), 2275–2284 (2015).
[Crossref] [PubMed]

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Keeler, E. G.

Keller, B.

Kim, S.

Kirker, A.

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

Kirker, A. W.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Ko, A.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Kraus, M. F.

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Kuo, A. N.

Kurokawa, K.

LaRocca, F.

Lee, B. H.

Lee, K. S.

Lee, S.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. V. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

S. Lee, M. Young, M. V. Sarunic, and M. F. Beg, “End-to-end Pipeline for Spectral Domain Optical Coherence Tomography and Morphometric Analysis of Human Optic Nerve Head,” J. Med. Biol. Eng. 31(2), 111–119 (2011).
[Crossref]

Legarreta, A. D.

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

Legarreta, J. E.

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

Leitgeb, R. A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Li, K.

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images - A graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
[Crossref] [PubMed]

Li, X.

Liang, P.

Lim, Y.

Lin, L. Y.

Liu, J. J.

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Liu, Y.

Loncaric, S.

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Lu, C. D.

Luk, T. W. H.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Ma, J.

Mackenzie, P.

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

Madjarova, V. D.

Mahmud, M. S.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Makita, S.

Mammo, Z.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. V. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

Mariampillai, A.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Meemon, P.

Men, S.

S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
[Crossref] [PubMed]

Merkur, A.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. V. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

Merkur, A. B.

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Miere, A.

A. Miere, O. Semoun, S. Y. Cohen, A. El Ameen, M. Srour, C. Jung, H. Oubraham, G. Querques, and E. H. Souied, “Optical Coherence Tomography Angiography Features of Subretinal Fibrosis in Age-Related Macular Degeneration,” Retina 35(11), 2275–2284 (2015).
[Crossref] [PubMed]

Migacz, J. V.

Min, E. J.

Miura, M.

Morgan, W.

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

Morosawa, A.

Nankivil, D.

Navajas, E.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. V. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Oubraham, H.

A. Miere, O. Semoun, S. Y. Cohen, A. El Ameen, M. Srour, C. Jung, H. Oubraham, G. Querques, and E. H. Souied, “Optical Coherence Tomography Angiography Features of Subretinal Fibrosis in Age-Related Macular Degeneration,” Retina 35(11), 2275–2284 (2015).
[Crossref] [PubMed]

Pakzad-Vaezi, K.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

Podoleanu, A. G.

A. G. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27(4), 464–499 (2008).
[Crossref] [PubMed]

Potsaid, B.

Prentasic, P.

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Prentašic, P.

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Querques, G.

A. Miere, O. Semoun, S. Y. Cohen, A. El Ameen, M. Srour, C. Jung, H. Oubraham, G. Querques, and E. H. Souied, “Optical Coherence Tomography Angiography Features of Subretinal Fibrosis in Age-Related Macular Degeneration,” Retina 35(11), 2275–2284 (2015).
[Crossref] [PubMed]

Roisman, L.

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

Rolland, J. P.

Rosen, R. B.

A. G. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27(4), 464–499 (2008).
[Crossref] [PubMed]

Rosenfeld, P. J.

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

Sakai, T.

Samuelson, S.

Sarunic, M. V.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. V. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

S. Lee, M. Young, M. V. Sarunic, and M. F. Beg, “End-to-end Pipeline for Spectral Domain Optical Coherence Tomography and Morphometric Analysis of Human Optic Nerve Head,” J. Med. Biol. Eng. 31(2), 111–119 (2011).
[Crossref]

Sarunic, M. V. V.

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

Šarunic, M.

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

Sasaki, K.

Schendel, S.

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

Semoun, O.

A. Miere, O. Semoun, S. Y. Cohen, A. El Ameen, M. Srour, C. Jung, H. Oubraham, G. Querques, and E. H. Souied, “Optical Coherence Tomography Angiography Features of Subretinal Fibrosis in Age-Related Macular Degeneration,” Retina 35(11), 2275–2284 (2015).
[Crossref] [PubMed]

Sharma, U.

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

Shen, T. T.

S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
[Crossref] [PubMed]

Song, M.

Song, S.

S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
[Crossref] [PubMed]

Sonka, M.

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images - A graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
[Crossref] [PubMed]

Souied, E. H.

A. Miere, O. Semoun, S. Y. Cohen, A. El Ameen, M. Srour, C. Jung, H. Oubraham, G. Querques, and E. H. Souied, “Optical Coherence Tomography Angiography Features of Subretinal Fibrosis in Age-Related Macular Degeneration,” Retina 35(11), 2275–2284 (2015).
[Crossref] [PubMed]

Srour, M.

A. Miere, O. Semoun, S. Y. Cohen, A. El Ameen, M. Srour, C. Jung, H. Oubraham, G. Querques, and E. H. Souied, “Optical Coherence Tomography Angiography Features of Subretinal Fibrosis in Age-Related Macular Degeneration,” Retina 35(11), 2275–2284 (2015).
[Crossref] [PubMed]

Stetson, P. F.

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

Strathman, M.

Subhash, H.

Sun, C.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Sun, M.-T.

Tan, O.

Tang, S.

Tankam, P.

Tearney, G.

Tokayer, J.

Unterhuber, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Vakoc, B.

Vuong, B.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Wang, D.

Wang, R.

Wang, R. K.

S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
[Crossref] [PubMed]

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref] [PubMed]

Wang, Y.

Waterman, G.

Wax, A.

Werner, J. S.

Wilson, D. J.

Won, J.

Wu, X.

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images - A graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
[Crossref] [PubMed]

Xi, J.

Xie, H.

Xu, J.

S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
[Crossref] [PubMed]

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

Yang, V. X. D.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Yasuno, Y.

Yatagai, T.

Young, M.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

S. Lee, M. Young, M. V. Sarunic, and M. F. Beg, “End-to-end Pipeline for Spectral Domain Optical Coherence Tomography and Morphometric Analysis of Human Optic Nerve Head,” J. Med. Biol. Eng. 31(2), 111–119 (2011).
[Crossref]

Yu, D.-Y. Y.

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

Yu, P.

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

Yuan, Q.

Yun, S.

Zawadzki, R. J.

Zhang, A.

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Zhang, Q.

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

Zhu, D.

Am. J. Ophthalmol. (1)

Z. Mammo, M. Heisler, C. Balaratnasingam, S. Lee, D.-Y. Y. Yu, P. Mackenzie, S. Schendel, A. Merkur, A. Kirker, D. Albiani, E. Navajas, M. F. F. Beg, W. Morgan, and M. V. V. Sarunic, “Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (8)

D. Wang, P. Liang, S. Samuelson, H. Jia, J. Ma, and H. Xie, “Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors,” Biomed. Opt. Express 4(10), 2066–2077 (2013).
[Crossref] [PubMed]

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
[Crossref] [PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

M. Strathman, Y. Liu, E. G. Keeler, M. Song, U. Baran, J. Xi, M.-T. Sun, R. Wang, X. Li, and L. Y. Lin, “MEMS scanning micromirror for optical coherence tomography,” Biomed. Opt. Express 6(1), 211–224 (2015).
[Crossref] [PubMed]

S. Kim, M. Crose, W. J. Eldridge, B. Cox, W. J. Brown, and A. Wax, “Design and implementation of a low-cost, portable OCT system,” Biomed. Opt. Express 9(3), 1232–1243 (2018).
[Crossref] [PubMed]

I. Gorczynska, J. V. Migacz, R. J. Zawadzki, A. G. Capps, and J. S. Werner, “Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid,” Biomed. Opt. Express 7(3), 911–942 (2016).
[Crossref] [PubMed]

J. Tokayer, Y. Jia, A.-H. Dhalla, and D. Huang, “Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Biomed. Opt. Express 4(10), 1909–1924 (2013).
[Crossref] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images - A graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

Z. Mammo, C. Balaratnasingam, P. Yu, J. Xu, M. Heisler, P. Mackenzie, A. Merkur, A. Kirker, D. Albiani, K. B. Freund, M. V. Sarunic, and D.-Y. Y. Yu, “Quantitative Noninvasive Angiography of the Fovea Centralis Using Speckle Variance Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 56(9), 5074–5086 (2015).
[Crossref] [PubMed]

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref] [PubMed]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentašic, M. Heisler, Z. Mammo, S. Lee, A. B. Merkur, E. Navajas, M. F. F. Beg, M. Šarunic, S. Loncaric, P. Prentasic, M. Heisler, S. Lee, Z. Mammo, A. B. Merkur, E. Navajas, M. F. F. Beg, M. V. Sarunic, and S. Loncaric, “Segmentation of the Foveal Microvasculature Using Deep Learning Networks,” J. Biomed. Opt. 21(7), 075008 (2016).
[Crossref] [PubMed]

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. V. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref] [PubMed]

J. Biophotonics (1)

S. Song, J. Xu, S. Men, T. T. Shen, and R. K. Wang, “Robust numerical phase stabilization for long-range swept-source optical coherence tomography,” J. Biophotonics 10(11), 1398–1410 (2017).
[Crossref] [PubMed]

J. Med. Biol. Eng. (1)

S. Lee, M. Young, M. V. Sarunic, and M. F. Beg, “End-to-end Pipeline for Spectral Domain Optical Coherence Tomography and Morphometric Analysis of Human Optic Nerve Head,” J. Med. Biol. Eng. 31(2), 111–119 (2011).
[Crossref]

Opt. Express (6)

K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics,” Opt. Express 20(20), 22796–22812 (2012).
[Crossref] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[Crossref] [PubMed]

Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20(3), 2740–2760 (2012).
[Crossref] [PubMed]

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express 21(16), 19412–19436 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Prog. Retin. Eye Res. (1)

A. G. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27(4), 464–499 (2008).
[Crossref] [PubMed]

Retina (2)

Q. Zhang, R. K. Wang, C. L. Chen, A. D. Legarreta, M. K. Durbin, L. An, U. Sharma, P. F. Stetson, J. E. Legarreta, L. Roisman, G. Gregori, and P. J. Rosenfeld, “Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2,” Retina 35(11), 2285–2299 (2015).
[Crossref] [PubMed]

A. Miere, O. Semoun, S. Y. Cohen, A. El Ameen, M. Srour, C. Jung, H. Oubraham, G. Querques, and E. H. Souied, “Optical Coherence Tomography Angiography Features of Subretinal Fibrosis in Age-Related Macular Degeneration,” Retina 35(11), 2275–2284 (2015).
[Crossref] [PubMed]

Other (2)

S. Lee, M. F. Beg, and M. V. Sarunic, “Segmentation of the macular choroid in OCT images acquired at 830nm and 1060nm,” in Optical Coherence Tomography and Coherence Techniques VI, vol. 8802, p. 88020J (2013).

ANSI, American National Standard for Safe Use of Lasers (ANSI, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Comparison between (a) unidirectional and (b) bidirectional scan. In (a), dashed arrow line after each B-scan represents flyback required to restore the scanner to the starting position.
Fig. 2
Fig. 2 Schematic of 200 kHz swept source OCT and diagram of OCT signals. L, lens; M, mirror; FC, fiber collimator, FR, fiber reflector; PC, polarization controller; BPD, balanced photodetector; DCP, dispersion compensation prism.
Fig. 3
Fig. 3 Three different scanning profiles: (a) unidirectional, (b) bidirectional, and (c) step bidirectional. Solid and dashed arrows represent fast scan (B-scan), and dashed lines represent the flyback scan. Blue lines represent slow scans (C-scan). Here, two B-scans are considered for OCTA calculations.
Fig. 4
Fig. 4 Effective duty cycle comparison between (a) UniDir, (b) BiDir, and (c) StepBiDir scanning methods. The yellow solid bars indicate the turnover period, and the solid arrows and dashed lines represent the effective scan and flyback scan, respectively. Scale bar = 400 µm.
Fig. 5
Fig. 5 OCTA contrast comparison between UniDir, BiDir, and StepBiDir scanning methods illustrated in the summated retinal layers (A-C), superficial plexus (D-F), and deep plexus (G-I). Red and green boxes in the two StepBiDir and BiDir en face views, highlight the contrast variation between the two methods. The yellow line on the UniDir scan denotes where the distortion due to flyback portion starts. The fast scanning direction is denoted by the arrow to the right of the en face views. Scale bar = 500 µm.
Fig. 6
Fig. 6 OCTA contrast comparison of a young control subject between three single StepBiDir en face images, and an average of five serially acquired images. Scale bar = 500 µm.
Fig. 7
Fig. 7 OCTA contrast comparison of a patient with diabetic retinopathy between three single StepBiDir en face images, and an average of five serially acquired images. Green circles denote microaneuryms and blue arrows highlight areas of vessel dropout, which are indicators of diabetic retinopathy. Scale bar = 500 µm.
Fig. 8
Fig. 8 Time interval increased StepBiDir scanning profile and corresponding B-scan images. Scale bar = 400 µm.
Fig. 9
Fig. 9 Images produced by the stepped bidirectional scanning method alternating between two adjacent locations (A-C) and 4 adjacent locations (D-F). By alternating between 4 adjacent locations, the time separation between A-scans was increased. Scale bar = 500 µm.
Fig. 10
Fig. 10 Phase noise measurement results with (blue box) and without (red box) the linear phase fitting. The green line represents theoretical phase noise prediction.

Tables (1)

Tables Icon

Table 1 Summary of Scanning Protocols and Characteristics

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

S ^ 1 ( x,z )= A 1 ( x,z ) e i ϕ 1 (x,z ) ,
S ^ 2 ( x,z )= A 2 ( x,z ) e i ϕ 2 (x,z ) ,
Δ A flow ( x, z )=| S ^ 1 ( x,z ) S ^ 2 ( x,z ) e i ϕ bulk (x ) |,
ϕ bulk ( x )=[ z S ^ 2 ( x,z ) S ^ 1 * ( x,z ) ],
η U = W eff W total =100 W fb +2 W to W total  , and
η B = W eff W total =100 W to W total  ,
S cal_ref ( j )=  | E FR1 ( j )+ E FR2 ( j ) | 2 ,
S cal_tar ( j )=  | E FR1 ( jβ )+ E FR2 ( jβ ) | 2 = S cal_ref ( j )*δ( jβ ),
[ S ca l ref ( j ) ] [ S ca l tar ( j ) ] * =[ S ca l ref ( j ) ][ S ca l ref * ( j ) ][ δ( jβ ) ] = S ^ ca l ref ( ξ ) S ^ ca l ref * ( ξ )exp( i2πξβ N ),
Δφ( ξ )= S ^ cal_ref ( ξ ) S ^ cal_tar * ( ξ )=i2πξβ/N,
[ S OCT_ref ( k ) ]=[ S OCT_ref ( LU T jk ( j ) ) ]= S ^ cal_ref ( z )
[ S OCT_tar ( k ) ]=[ S OCT_tar ( LU T jk ( j ) ) ] = S ^ cal_tar ( z ) exp( i2π Δ φ p z p z )
LU T jk ( j )=  n C n j n = C 1 j+ C 2 j 2 + C 3 j 3 +  .
σ Δϕ = ( 1 SN R OCT )+ ( z OCT z cal ) 2 ( 1 SN R cal ),

Metrics