Abstract

Optical diffuse reflectance spectroscopy (DRS) has great potential in the study, diagnosis, and discrimination of biological tissues. Discrimination is based on massive measurements that conform training sets. These sets are then used to classify tissues according to the biomedical application. Classification accuracy depends strongly on the training dataset, which typically comes from different samples of the same class, and from different points of the same sample. The variability of these measurements is not usually considered and is assumed to be purely random, although it could greatly influence the results. In this work, spectral variations within and between samples of different animals of ex-vivo porcine adipose tissue are evaluated. Algorithms for normalization, dimensionality reduction by principal component analysis, and variability control are applied. The PC analysis shows the dataset variability, even when a variability removal algorithm is applied. The projected data appear grouped by animal in the PC space. Mahalanobis distance is calculated for every group, and an ANOVA test is performed in order to estimate the variability. The results confirm that the variability is not random and is dependent at least on the anatomical location and the specific animal. The variability magnitude is significant, particularly if the classification accuracy is needed to be high. As a consequence, it should be taken generally into account in classification problems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Machine learning classification of human joint tissue from diffuse reflectance spectroscopy data

Rajitha Gunaratne, Isaac Monteath, Joshua Goncalves, Raymond Sheh, Charles N Ironside, Michael Kapfer, Richard Chipper, Brett Robertson, Riaz Khan, and Daniel Fick
Biomed. Opt. Express 10(8) 3889-3898 (2019)

Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy

Melissa C. Skala, Gregory M. Palmer, Kristin M. Vrotsos, Annette Gendron-Fitzpatrick, and Nirmala Ramanujam
Opt. Express 15(12) 7863-7875 (2007)

Diffuse reflectance spectroscopy of human liver tumor specimens - towards a tissue differentiating optical biopsy needle using light emitting diodes

Alina Keller, Piotr Bialecki, Torsten Johannes Wilhelm, and Marcus Klaus Vetter
Biomed. Opt. Express 9(3) 1069-1081 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Vo-Dinh, ed., Biomedical Photonics Handbook: Biomedical Diagnostics (CRC press, 2014).
  2. M. E. Brezinski, G. J. Tearney, B. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Optical biopsy with optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 68–74 (1998).
    [PubMed]
  3. F. Fanjul-Vélez, M. Pircher, B. Baumann, E. Götzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by Polarization-Sensitive Optical Coherence Tomography,” J. Biomed. Opt. 15(5), 056004 (2010).
    [PubMed]
  4. A. García-Uribe, N. Kehtarnavaz, G. Marquez, V. Prieto, M. Duvic, and L. V. Wang, “Skin cancer detection by spectroscopic oblique-incidence reflectometry: classification and physiological origins,” Appl. Opt. 43(13), 2643–2650 (2004).
    [PubMed]
  5. I. Salas-García, F. Fanjul-Vélez, and J. L. Arce-Diego, “Superficial radially-resolved fluorescence and three-dimensional photochemical time-dependent model for Photodynamic Therapy,” Opt. Lett. 39, 1845–1848 (2014).
    [PubMed]
  6. N. Ortega-Quijano, F. Fanjul-Vélez, J. de Cos-Pérez, and J. L. Arce-Diego, “Analysis of the depolarizing properties of normal and adenomatous polyps in colon mucosa for the early diagnosis of precancerous lesions,” Opt. Commun. 284, 4852–4856 (2011).
  7. F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51(2), 342–345 (1998).
    [PubMed]
  8. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
    [PubMed]
  9. G. Bale, S. Mitra, J. Meek, N. Robertson, and I. Tachtsidis, “A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury,” Biomed. Opt. Express 5(10), 3450–3466 (2014).
    [PubMed]
  10. F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers Surg. Med. 42(4), 319–325 (2010).
    [PubMed]
  11. G. J. Greening, H. M. James, M. K. Dierks, N. Vongkittiargorn, S. M. Osterholm, N. Rajaram, and T. J. Muldoon, “Towards monitoring dysplastic progression in the oral cavity using a hybrid fiber-bundle imaging and spectroscopy probe,” Sci. Rep. 6, 26734 (2016).
    [PubMed]
  12. K. Xu, Q. Qiu, J. Jiang, and X. Yang, “Non-invasive glucose sensing with near-infrared spectroscopy enhanced by optical measurement conditions reproduction technique,” Opt. Lasers Eng. 43(10), 1096–1106 (2005).
  13. R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra,” Appl. Spectrosc. 43(5), 772–777 (1989).
  14. Y. Zhu, T. Fearn, D. Samuel, A. Dhar, O. Hameed, S. G. Bown, and L. B. Lovat, “Error removal by orthogonal subtraction (EROS): a customised pre‐treatment for spectroscopic data,” J. Chemometr. 22(2), 130–134 (2008).
  15. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [PubMed]
  16. Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18(10), 101318 (2013).
    [PubMed]
  17. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
  18. E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. 19, 218–226 (2013).
  19. A. M. Goodpaster and M. A. Kennedy, “Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies,” Chemom. Intell. Lab. Syst. 109(2), 162–170 (2011).
    [PubMed]

2016 (1)

G. J. Greening, H. M. James, M. K. Dierks, N. Vongkittiargorn, S. M. Osterholm, N. Rajaram, and T. J. Muldoon, “Towards monitoring dysplastic progression in the oral cavity using a hybrid fiber-bundle imaging and spectroscopy probe,” Sci. Rep. 6, 26734 (2016).
[PubMed]

2014 (2)

2013 (3)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[PubMed]

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18(10), 101318 (2013).
[PubMed]

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. 19, 218–226 (2013).

2011 (2)

A. M. Goodpaster and M. A. Kennedy, “Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies,” Chemom. Intell. Lab. Syst. 109(2), 162–170 (2011).
[PubMed]

N. Ortega-Quijano, F. Fanjul-Vélez, J. de Cos-Pérez, and J. L. Arce-Diego, “Analysis of the depolarizing properties of normal and adenomatous polyps in colon mucosa for the early diagnosis of precancerous lesions,” Opt. Commun. 284, 4852–4856 (2011).

2010 (2)

F. Fanjul-Vélez, M. Pircher, B. Baumann, E. Götzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by Polarization-Sensitive Optical Coherence Tomography,” J. Biomed. Opt. 15(5), 056004 (2010).
[PubMed]

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers Surg. Med. 42(4), 319–325 (2010).
[PubMed]

2008 (1)

Y. Zhu, T. Fearn, D. Samuel, A. Dhar, O. Hameed, S. G. Bown, and L. B. Lovat, “Error removal by orthogonal subtraction (EROS): a customised pre‐treatment for spectroscopic data,” J. Chemometr. 22(2), 130–134 (2008).

2005 (2)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).

K. Xu, Q. Qiu, J. Jiang, and X. Yang, “Non-invasive glucose sensing with near-infrared spectroscopy enhanced by optical measurement conditions reproduction technique,” Opt. Lasers Eng. 43(10), 1096–1106 (2005).

2004 (1)

1999 (1)

1998 (2)

M. E. Brezinski, G. J. Tearney, B. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Optical biopsy with optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 68–74 (1998).
[PubMed]

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51(2), 342–345 (1998).
[PubMed]

1989 (1)

Adler, W.

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers Surg. Med. 42(4), 319–325 (2010).
[PubMed]

Aernouts, B.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. 19, 218–226 (2013).

Akers, W. J.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18(10), 101318 (2013).
[PubMed]

Arce-Diego, J. L.

I. Salas-García, F. Fanjul-Vélez, and J. L. Arce-Diego, “Superficial radially-resolved fluorescence and three-dimensional photochemical time-dependent model for Photodynamic Therapy,” Opt. Lett. 39, 1845–1848 (2014).
[PubMed]

N. Ortega-Quijano, F. Fanjul-Vélez, J. de Cos-Pérez, and J. L. Arce-Diego, “Analysis of the depolarizing properties of normal and adenomatous polyps in colon mucosa for the early diagnosis of precancerous lesions,” Opt. Commun. 284, 4852–4856 (2011).

F. Fanjul-Vélez, M. Pircher, B. Baumann, E. Götzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by Polarization-Sensitive Optical Coherence Tomography,” J. Biomed. Opt. 15(5), 056004 (2010).
[PubMed]

Backman, V.

Bale, G.

Barnes, R. J.

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).

Baumann, B.

F. Fanjul-Vélez, M. Pircher, B. Baumann, E. Götzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by Polarization-Sensitive Optical Coherence Tomography,” J. Biomed. Opt. 15(5), 056004 (2010).
[PubMed]

Berezin, M. Y.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18(10), 101318 (2013).
[PubMed]

Boppart, S. A.

M. E. Brezinski, G. J. Tearney, B. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Optical biopsy with optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 68–74 (1998).
[PubMed]

Bouma, B.

M. E. Brezinski, G. J. Tearney, B. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Optical biopsy with optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 68–74 (1998).
[PubMed]

Bown, S. G.

Y. Zhu, T. Fearn, D. Samuel, A. Dhar, O. Hameed, S. G. Bown, and L. B. Lovat, “Error removal by orthogonal subtraction (EROS): a customised pre‐treatment for spectroscopic data,” J. Chemometr. 22(2), 130–134 (2008).

Brezinski, M. E.

M. E. Brezinski, G. J. Tearney, B. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Optical biopsy with optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 68–74 (1998).
[PubMed]

Cao, Q.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18(10), 101318 (2013).
[PubMed]

de Cos-Pérez, J.

N. Ortega-Quijano, F. Fanjul-Vélez, J. de Cos-Pérez, and J. L. Arce-Diego, “Analysis of the depolarizing properties of normal and adenomatous polyps in colon mucosa for the early diagnosis of precancerous lesions,” Opt. Commun. 284, 4852–4856 (2011).

Deutsch, T. F.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51(2), 342–345 (1998).
[PubMed]

Dhanoa, M. S.

Dhar, A.

Y. Zhu, T. Fearn, D. Samuel, A. Dhar, O. Hameed, S. G. Bown, and L. B. Lovat, “Error removal by orthogonal subtraction (EROS): a customised pre‐treatment for spectroscopic data,” J. Chemometr. 22(2), 130–134 (2008).

Dierks, M. K.

G. J. Greening, H. M. James, M. K. Dierks, N. Vongkittiargorn, S. M. Osterholm, N. Rajaram, and T. J. Muldoon, “Towards monitoring dysplastic progression in the oral cavity using a hybrid fiber-bundle imaging and spectroscopy probe,” Sci. Rep. 6, 26734 (2016).
[PubMed]

Douplik, A.

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers Surg. Med. 42(4), 319–325 (2010).
[PubMed]

Duvic, M.

Enquist, H.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51(2), 342–345 (1998).
[PubMed]

Fanjul-Vélez, F.

I. Salas-García, F. Fanjul-Vélez, and J. L. Arce-Diego, “Superficial radially-resolved fluorescence and three-dimensional photochemical time-dependent model for Photodynamic Therapy,” Opt. Lett. 39, 1845–1848 (2014).
[PubMed]

N. Ortega-Quijano, F. Fanjul-Vélez, J. de Cos-Pérez, and J. L. Arce-Diego, “Analysis of the depolarizing properties of normal and adenomatous polyps in colon mucosa for the early diagnosis of precancerous lesions,” Opt. Commun. 284, 4852–4856 (2011).

F. Fanjul-Vélez, M. Pircher, B. Baumann, E. Götzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by Polarization-Sensitive Optical Coherence Tomography,” J. Biomed. Opt. 15(5), 056004 (2010).
[PubMed]

Fearn, T.

Y. Zhu, T. Fearn, D. Samuel, A. Dhar, O. Hameed, S. G. Bown, and L. B. Lovat, “Error removal by orthogonal subtraction (EROS): a customised pre‐treatment for spectroscopic data,” J. Chemometr. 22(2), 130–134 (2008).

Feld, M. S.

Fitzmaurice, M.

Fujimoto, J. G.

M. E. Brezinski, G. J. Tearney, B. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Optical biopsy with optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 68–74 (1998).
[PubMed]

García-Uribe, A.

Garrido-Varo, A.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. 19, 218–226 (2013).

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).

Goodpaster, A. M.

A. M. Goodpaster and M. A. Kennedy, “Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies,” Chemom. Intell. Lab. Syst. 109(2), 162–170 (2011).
[PubMed]

Götzinger, E.

F. Fanjul-Vélez, M. Pircher, B. Baumann, E. Götzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by Polarization-Sensitive Optical Coherence Tomography,” J. Biomed. Opt. 15(5), 056004 (2010).
[PubMed]

Greening, G. J.

G. J. Greening, H. M. James, M. K. Dierks, N. Vongkittiargorn, S. M. Osterholm, N. Rajaram, and T. J. Muldoon, “Towards monitoring dysplastic progression in the oral cavity using a hybrid fiber-bundle imaging and spectroscopy probe,” Sci. Rep. 6, 26734 (2016).
[PubMed]

Guerrero-Ginel, J. E.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. 19, 218–226 (2013).

Hameed, O.

Y. Zhu, T. Fearn, D. Samuel, A. Dhar, O. Hameed, S. G. Bown, and L. B. Lovat, “Error removal by orthogonal subtraction (EROS): a customised pre‐treatment for spectroscopic data,” J. Chemometr. 22(2), 130–134 (2008).

Hitzenberger, C. K.

F. Fanjul-Vélez, M. Pircher, B. Baumann, E. Götzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by Polarization-Sensitive Optical Coherence Tomography,” J. Biomed. Opt. 15(5), 056004 (2010).
[PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[PubMed]

James, H. M.

G. J. Greening, H. M. James, M. K. Dierks, N. Vongkittiargorn, S. M. Osterholm, N. Rajaram, and T. J. Muldoon, “Towards monitoring dysplastic progression in the oral cavity using a hybrid fiber-bundle imaging and spectroscopy probe,” Sci. Rep. 6, 26734 (2016).
[PubMed]

Jiang, J.

K. Xu, Q. Qiu, J. Jiang, and X. Yang, “Non-invasive glucose sensing with near-infrared spectroscopy enhanced by optical measurement conditions reproduction technique,” Opt. Lasers Eng. 43(10), 1096–1106 (2005).

Kehtarnavaz, N.

Kennedy, M. A.

A. M. Goodpaster and M. A. Kennedy, “Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies,” Chemom. Intell. Lab. Syst. 109(2), 162–170 (2011).
[PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).

Koenig, F.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51(2), 342–345 (1998).
[PubMed]

Kollias, N.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51(2), 342–345 (1998).
[PubMed]

Larne, R.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51(2), 342–345 (1998).
[PubMed]

Lister, S. J.

Lovat, L. B.

Y. Zhu, T. Fearn, D. Samuel, A. Dhar, O. Hameed, S. G. Bown, and L. B. Lovat, “Error removal by orthogonal subtraction (EROS): a customised pre‐treatment for spectroscopic data,” J. Chemometr. 22(2), 130–134 (2008).

Manoharan, R.

Marquez, G.

McGovern, F. J.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51(2), 342–345 (1998).
[PubMed]

Meek, J.

Mitra, S.

Muldoon, T. J.

G. J. Greening, H. M. James, M. K. Dierks, N. Vongkittiargorn, S. M. Osterholm, N. Rajaram, and T. J. Muldoon, “Towards monitoring dysplastic progression in the oral cavity using a hybrid fiber-bundle imaging and spectroscopy probe,” Sci. Rep. 6, 26734 (2016).
[PubMed]

Nkenke, E.

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers Surg. Med. 42(4), 319–325 (2010).
[PubMed]

Ortega-Quijano, N.

N. Ortega-Quijano, F. Fanjul-Vélez, J. de Cos-Pérez, and J. L. Arce-Diego, “Analysis of the depolarizing properties of normal and adenomatous polyps in colon mucosa for the early diagnosis of precancerous lesions,” Opt. Commun. 284, 4852–4856 (2011).

Osterholm, S. M.

G. J. Greening, H. M. James, M. K. Dierks, N. Vongkittiargorn, S. M. Osterholm, N. Rajaram, and T. J. Muldoon, “Towards monitoring dysplastic progression in the oral cavity using a hybrid fiber-bundle imaging and spectroscopy probe,” Sci. Rep. 6, 26734 (2016).
[PubMed]

Perelman, L. T.

Pérez-Marín, D.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. 19, 218–226 (2013).

Pircher, M.

F. Fanjul-Vélez, M. Pircher, B. Baumann, E. Götzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by Polarization-Sensitive Optical Coherence Tomography,” J. Biomed. Opt. 15(5), 056004 (2010).
[PubMed]

Pitris, C.

M. E. Brezinski, G. J. Tearney, B. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Optical biopsy with optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 68–74 (1998).
[PubMed]

Prieto, V.

Qiu, Q.

K. Xu, Q. Qiu, J. Jiang, and X. Yang, “Non-invasive glucose sensing with near-infrared spectroscopy enhanced by optical measurement conditions reproduction technique,” Opt. Lasers Eng. 43(10), 1096–1106 (2005).

Rajaram, N.

G. J. Greening, H. M. James, M. K. Dierks, N. Vongkittiargorn, S. M. Osterholm, N. Rajaram, and T. J. Muldoon, “Towards monitoring dysplastic progression in the oral cavity using a hybrid fiber-bundle imaging and spectroscopy probe,” Sci. Rep. 6, 26734 (2016).
[PubMed]

Robertson, N.

Saeys, W.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. 19, 218–226 (2013).

Salas-García, I.

Samuel, D.

Y. Zhu, T. Fearn, D. Samuel, A. Dhar, O. Hameed, S. G. Bown, and L. B. Lovat, “Error removal by orthogonal subtraction (EROS): a customised pre‐treatment for spectroscopic data,” J. Chemometr. 22(2), 130–134 (2008).

Schmidt, M.

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers Surg. Med. 42(4), 319–325 (2010).
[PubMed]

Schomacker, K. T.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51(2), 342–345 (1998).
[PubMed]

Southern, J. F.

M. E. Brezinski, G. J. Tearney, B. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Optical biopsy with optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 68–74 (1998).
[PubMed]

Stelzle, F.

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers Surg. Med. 42(4), 319–325 (2010).
[PubMed]

Tachtsidis, I.

Tangermann-Gerk, K.

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers Surg. Med. 42(4), 319–325 (2010).
[PubMed]

Tearney, G. J.

M. E. Brezinski, G. J. Tearney, B. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Optical biopsy with optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 68–74 (1998).
[PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).

Van Dam, J.

Vongkittiargorn, N.

G. J. Greening, H. M. James, M. K. Dierks, N. Vongkittiargorn, S. M. Osterholm, N. Rajaram, and T. J. Muldoon, “Towards monitoring dysplastic progression in the oral cavity using a hybrid fiber-bundle imaging and spectroscopy probe,” Sci. Rep. 6, 26734 (2016).
[PubMed]

Wang, L. V.

Wang, S. T.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18(10), 101318 (2013).
[PubMed]

Xu, K.

K. Xu, Q. Qiu, J. Jiang, and X. Yang, “Non-invasive glucose sensing with near-infrared spectroscopy enhanced by optical measurement conditions reproduction technique,” Opt. Lasers Eng. 43(10), 1096–1106 (2005).

Yang, X.

K. Xu, Q. Qiu, J. Jiang, and X. Yang, “Non-invasive glucose sensing with near-infrared spectroscopy enhanced by optical measurement conditions reproduction technique,” Opt. Lasers Eng. 43(10), 1096–1106 (2005).

Zam, A.

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers Surg. Med. 42(4), 319–325 (2010).
[PubMed]

Zamora-Rojas, E.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. 19, 218–226 (2013).

Zhegalova, N. G.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18(10), 101318 (2013).
[PubMed]

Zhu, Y.

Y. Zhu, T. Fearn, D. Samuel, A. Dhar, O. Hameed, S. G. Bown, and L. B. Lovat, “Error removal by orthogonal subtraction (EROS): a customised pre‐treatment for spectroscopic data,” J. Chemometr. 22(2), 130–134 (2008).

Zonios, G.

Ann. N. Y. Acad. Sci. (1)

M. E. Brezinski, G. J. Tearney, B. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “Optical biopsy with optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 68–74 (1998).
[PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

Chemom. Intell. Lab. Syst. (1)

A. M. Goodpaster and M. A. Kennedy, “Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies,” Chemom. Intell. Lab. Syst. 109(2), 162–170 (2011).
[PubMed]

Innov. Food Sci. Emerg. (1)

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. 19, 218–226 (2013).

J. Biomed. Opt. (2)

F. Fanjul-Vélez, M. Pircher, B. Baumann, E. Götzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by Polarization-Sensitive Optical Coherence Tomography,” J. Biomed. Opt. 15(5), 056004 (2010).
[PubMed]

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, and M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18(10), 101318 (2013).
[PubMed]

J. Chemometr. (1)

Y. Zhu, T. Fearn, D. Samuel, A. Dhar, O. Hameed, S. G. Bown, and L. B. Lovat, “Error removal by orthogonal subtraction (EROS): a customised pre‐treatment for spectroscopic data,” J. Chemometr. 22(2), 130–134 (2008).

J. Phys. D Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).

Lasers Surg. Med. (1)

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers Surg. Med. 42(4), 319–325 (2010).
[PubMed]

Opt. Commun. (1)

N. Ortega-Quijano, F. Fanjul-Vélez, J. de Cos-Pérez, and J. L. Arce-Diego, “Analysis of the depolarizing properties of normal and adenomatous polyps in colon mucosa for the early diagnosis of precancerous lesions,” Opt. Commun. 284, 4852–4856 (2011).

Opt. Lasers Eng. (1)

K. Xu, Q. Qiu, J. Jiang, and X. Yang, “Non-invasive glucose sensing with near-infrared spectroscopy enhanced by optical measurement conditions reproduction technique,” Opt. Lasers Eng. 43(10), 1096–1106 (2005).

Opt. Lett. (1)

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[PubMed]

Sci. Rep. (1)

G. J. Greening, H. M. James, M. K. Dierks, N. Vongkittiargorn, S. M. Osterholm, N. Rajaram, and T. J. Muldoon, “Towards monitoring dysplastic progression in the oral cavity using a hybrid fiber-bundle imaging and spectroscopy probe,” Sci. Rep. 6, 26734 (2016).
[PubMed]

Urology (1)

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51(2), 342–345 (1998).
[PubMed]

Other (1)

T. Vo-Dinh, ed., Biomedical Photonics Handbook: Biomedical Diagnostics (CRC press, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of diffuse reflectance spectroscopy.
Fig. 2
Fig. 2 (a) Measurements of two samples (A and B) of animal number 1; (b) Mean spectrum and standard deviation at significant points after normalization.
Fig. 3
Fig. 3 (a) First three PC components. (b) PCA scores plot for the data set (first and second components). (c) PCA scores plot for the corrected data set. The first and second scores are shown.
Fig. 4
Fig. 4 Boxplot of distance distribution for intra- (a) and inter- (b) class variability analysis; median (horizontal orange line), interquartile range (rectangle) and standard deviation around the centroid (range bar).
Fig. 5
Fig. 5 Boxplot of distance distribution for classification analysis; median (horizontal orange line), interquartile range (rectangle) and standard deviation around the centroid (range bar).

Tables (1)

Tables Icon

Table 1 Results of one-way ANOVA tests: p-value.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

X corr = X ( IP P T ),
W= i=1 m Z i   Z i T (rm) ,
D M ( x n )= ( x n μ ) T  Σ 1  ( x n μ ) ,

Metrics