Abstract

Optical coherence tomography (OCT) imaging of the skin is gaining recognition and is increasingly applied to dermatological research. A key dermatological parameter inferred from an OCT image is the epidermal (Ep) thickness as a thickened Ep can be an indicator of a skin disease. Agreement in the literature on the signal characters of Ep and the subjacent skin layer, the dermis (D), is evident. Ambiguities of the OCT signal interpretation in the literature is however seen for the transition region between the Ep and D, which from histology is known as the dermo-epidermal junction (DEJ); a distinct junction comprised of the lower surface of a single cell layer in epidermis (the stratum basale) connected to an even thinner membrane (the basement membrane). The basement membrane is attached to the underlying dermis. In this work we investigate the impact of an improved axial and lateral resolution on the applicability of OCT for imaging of the skin. To this goal, OCT images are compared produced by a commercial OCT system (Vivosight from Michaelson Diagnostics) and by an in-house built ultrahigh resolution (UHR-) OCT system for dermatology. In 11 healthy volunteers, we investigate the DEJ signal characteristics. We perform a detailed analysis of the dark (low) signal band clearly seen for UHR-OCT in the DEJ region where we, by using a transition function, find the signal transition of axial sub-resolution character, which can be directly attributed to the exact location of DEJ, both in normal (thin/hairy) and glabrous (thick) skin. To our knowledge no detailed delineating of the DEJ in the UHR-OCT image has previously been reported, despite many publications within this field. For selected healthy volunteers, we investigate the dermal papillae and the vellus hairs and identify distinct features that only UHR-OCT can resolve. Differences are seen in tracing hairs of diameter below 20 μm, and in imaging the dermal papillae where, when utilising the UHR-OCT, capillary structures are identified in the hand palm, not previously reported in OCT studies and specifically for glabrous skin not reported in any other in vivo optical imaging studies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment

Nicusor Iftimia, R. Daniel Ferguson, Mircea Mujat, Ankit H. Patel, Ellen Ziyi Zhang, William Fox, and Milind Rajadhyaksha
Biomed. Opt. Express 4(5) 680-695 (2013)

Quantitative analysis of intrinsic skin aging in dermal papillae by in vivo harmonic generation microscopy

Yi-Hua Liao, Wei-Cheng Kuo, Sin-Yo Chou, Cheng-Shiun Tsai, Guan-Liang Lin, Ming-Rung Tsai, Yuan-Ta Shih, Gwo-Giun Lee, and Chi-Kuang Sun
Biomed. Opt. Express 5(9) 3266-3279 (2014)

In-vivo imaging of psoriatic lesions with polarization multispectral dermoscopy and multiphoton microscopy

Dimitrios Kapsokalyvas, Riccardo Cicchi, Nicola Bruscino, Domenico Alfieri, Francesca Prignano, Daniela Massi, Torello Lotti, and Francesco S. Pavone
Biomed. Opt. Express 5(7) 2405-2419 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref]
  2. W. Drexler and J. Fujimoto, eds., Optical Coherence Tomography (Springer International Publishing, Switzerland, 2015).
    [Crossref]
  3. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J Am Acad Dermatol. 37, 958–963 (1997).
    [Crossref]
  4. M. R. N. Avanaki, A. G. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjat, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens-Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
    [Crossref] [PubMed]
  5. A. A. Hussain, L. Themstrup, and G. B. E. Jemec, “Optical coherence tomography in the diagnosis of basal cell carcinoma,” Arch Dermatol Res. 307, 1–10 (2015).
    [Crossref]
  6. S. Schuh, R. Kaestle, E. C. Sattler, and J. Welzel, “Optical coherence tomography of actinic keratoses and basal cell carcinomas – differentiation by quantification of signal intensity and layer thickness,” J Eur Acad Dermatol Venereol. 30, 1321–1326 (2016).
    [Crossref] [PubMed]
  7. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
    [Crossref] [PubMed]
  8. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Medicine 1, 970 (1995).
    [Crossref]
  9. C. Chin, A. Bradu, R. Lim, M. Khandwala, J. Schofield, L. Leick, and A. Podoleanu, “Master/slave optical coherence tomography imaging of eyelid basal cell carcinoma,” Appl. Opt. 55, 7378–7386 (2016).
    [Crossref] [PubMed]
  10. M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography imaging of melanocytic lesions: a pilot study,” Arch Dermatol Res. 306, 11–26 (2014).
    [Crossref]
  11. T. Gambichler, I. Plura, M. Schmid-Wendtner, K. Valavanis, D. Kulichova, M. Stücker, A. Pljakic, C. Berking, and T. Maier, “High-definition optical coherence tomography of melanocytic skin lesions,” J. Biophotonics 8, 681–686 (2015).
    [Crossref]
  12. M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: Observer-blinded evaluation by dermatologists and pathologists,” Dermatol Surg. 35, 965 (2009).
    [Crossref] [PubMed]
  13. M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
    [Crossref] [PubMed]
  14. M. Boone, A. Marneffe, M. Suppa, M. Miyamoto, I. Alarcon, R. Hofmann-Wellenhof, J. Malvehy, G. Pellacani, and V. D. Marmol, “High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma,” J Eur Acad Dermatol Venereol. 29, 1606–1615 (2015).
    [Crossref] [PubMed]
  15. T. Gambichler, M. Schmid-Wendtner, I. Plura, P. Kampilafkos, M. Stücker, C. Berking, and T. Maier, “A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi,” J Eur Acad Dermatol Venereol. 29, 537–541 (2015).
    [Crossref]
  16. M. A. L. M. Boone, M. Suppa, F. Dhaenens, M. Miyamoto, A. Marneffe, G. B. E. Jemec, V. Del Marmol, and R. Nebosis, “In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography,” Arch Dermatol Res. 308, 7–20 (2016).
    [Crossref]
  17. M. Boone, M. Suppa, M. Miyamoto, A. Marneffe, G. Jemec, and V. D. Marmol, “In vivo assessment of optical properties of basal cell carcinoma and differentiation of bcc subtypes by high-definition optical coherence tomography,” Biomed. Opt. Express 7, 2269–2284 (2016).
    [Crossref] [PubMed]
  18. M. A. L. M. Boone, M. Suppa, A. Marneffe, M. Miyamoto, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study,” Arch Dermatol Res. 307, 705–720 (2015).
    [Crossref] [PubMed]
  19. A. Li, J. Cheng, A. P. Yow, C. Wall, D. W. K. Wong, H. L. Tey, and J. Liu, “Epidermal segmentation in high-definition optical coherence tomography,” in “2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),” (2015), pp. 3045–3048.
  20. S. Schuh, R. Kaestle, E. Sattler, and J. Welzel, “Comparison of different optical coherence tomography devices for diagnosis of non-melanoma skin cancer,” Skin Res Technol. 22, 395–405 (2016).
    [Crossref] [PubMed]
  21. D. Weedon, Skin Pathology(Elsevier, 2002), 2nd ed.
  22. H. C. Nousari and G. J. Anhalt, “Pemphigus and bullous pemphigoid,” The Lancet 354, 667–672 (1999).
    [Crossref]
  23. J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
    [Crossref] [PubMed]
  24. S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. M. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J Biomed Opt. 9, 274 (2004).
    [Crossref]
  25. J. Weissman, T. Hancewicz, and P. Kaplan, “Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis,” Opt. Express 12, 5760–5769 (2004).
    [Crossref] [PubMed]
  26. T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J Eur Acad Dermatol Venereol. 20, 791–795 (2005).
  27. T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J Dermatol Sci. 44, 145–152 (2006).
    [Crossref] [PubMed]
  28. M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
    [Crossref] [PubMed]
  29. C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed oct,” Biomed. Opt. Express 3, 2636–2646 (2012).
    [Crossref] [PubMed]
  30. K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using gabor domain optical coherence microscopy,” J Biomed Opt. 17, 126006 (2012).
    [Crossref] [PubMed]
  31. W.-C. Kuo, Y.-M. Kuo, and S.-Y. Wen, “Quantitative and rapid estimations of human sub-surface skin mass using ultra-high-resolution spectral domain optical coherence tomography,” J. Biophotonics 9, 343–350 (2016).
    [Crossref]
  32. A. Taghavikhalilbad, S. Adabi, A. Clayton, H. Soltanizadeh, D. Mehregan, and M. R. N. Avanaki, “Semi-automated localization of dermal epidermal junction in optical coherence tomography images of skin,” Appl. Opt. 56, 3116–3121 (2017).
    [Crossref] [PubMed]
  33. S. Adabi, M. Hosseinzadeh, S. Noei, S. Conforto, S. Daveluy, A. Clayton, D. Mehregan, and M. Nasiriavanaki, “Universal in vivo textural model for human skin based on optical coherence tomograms,” Scientific Reports 7, 17912 (2017).
    [Crossref] [PubMed]
  34. U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered pcfs,” Opt. Express 20, 2851–2857 (2012).
    [Crossref] [PubMed]
  35. M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
    [Crossref] [PubMed]
  36. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-µm spectral-domain optical coherence tomography using bm-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
    [Crossref] [PubMed]
  37. A. Hojjatoleslami and M. R. N. Avanaki, “Oct skin image enhancement through attenuation compensation,” Appl. Opt. 51, 4927–4935 (2012).
    [Crossref] [PubMed]
  38. M. Zhang, L. Ma, and P. Yu, “Dual-band fourier domain optical coherence tomography with depth-related compensations,” Biomed Opt Express 5, 167–182 (2014).
    [Crossref] [PubMed]
  39. M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci. 52, 7738–7748 (2011).
    [Crossref] [PubMed]
  40. K. Mizukoshi, K. Yonekura, M. Futagawa, T. Nakamura, K. Hirayama, and K. Takahashi, “Changes in dermal papilla structures due to aging in the facial cheek region,” Skin Res Technol. 21, 224–231 (2015).
    [Crossref]
  41. V. Newton, J. Mcconnell, S. Hibbert, H. Graham, and R. Watson, “Skin aging: molecular pathology, dermal remodelling and the imaging revolution,” G Ital Dermatol Venereol 150, 665–674 (2015).
    [PubMed]
  42. J. Sandby-Moller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Dermato Venereologica 83, 410–413 (2003).
    [Crossref] [PubMed]
  43. D. E. Elder, Lever’s Histopathology of the Skin (Wolters Kluver, 2015), 11th ed.
  44. M. Boone, G. B. E. Jemec, and V. D. Marmol, “High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy,” Exp Dermatol. 21, 740–744 (2012).
    [Crossref] [PubMed]
  45. M. Boone, S. Norrenberg, G. Jemec, and V. D. Marmol, “Imaging of basal cell carcinoma by high-definition optical coherence tomography: histomorphological correlation. a pilot study,” Br J Dermatol. 167, 856–864 (2012).
    [Crossref] [PubMed]
  46. M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Marmol, “Imaging actinic keratosis by high-definition optical coherence tomography. histomorphologic correlation: a pilot study,” Exp Dermatol. 22, 93–97 (2013).
    [PubMed]
  47. M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch Dermatol Res. 305, 283–297 (2013).
    [Crossref] [PubMed]
  48. G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J Investig Dermatol. 127, 2759–2765 (2007).
    [Crossref] [PubMed]
  49. S. Kurugol, K. Kose, B. Park, J. G. Dy, D. H. Brooks, and M. Rajadhyaksha, “Automated delineation of dermal-epidermal junction in reflectance confocal microscopy image stacks of human skin,” J Investig Dermatol. 135, 710–717 (2015).
    [Crossref]
  50. J. Hegyi, V. Hegyi, G. Messer, P. Arenberger, T. Ruzicka, and C. Berking, “Confocal laser-scanning capillaroscopy: a novel approach to the analysis of skin capillaries in vivo,” Skin Res Technol. 15, 476–481 (2009).
    [Crossref] [PubMed]
  51. R. Archid, A. Patzelt, S. S. Ahmad, W. Sterry, J. M. Lademann, B. Lange-Asschenfeldt, M. Ulrich, E. Stockfleth, and S. Philipp, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J Biomed Opt. 17, 101511 (2012).
    [Crossref]
  52. D. B. Constantin Caruntu, “Evaluation through in vivo reflectance confocal microscopy of the cutaneous neurogenic inflammatory reaction induced by capsaicin in human subjects,” J Biomed Opt. 17, 085003 (2012).
  53. I. M. Braverman, “The cutaneous microcirculation,” J Investig Dermatol Symp Proc. 5, 3 – 9 (2000).
    [Crossref]

2017 (3)

2016 (6)

M. Boone, M. Suppa, M. Miyamoto, A. Marneffe, G. Jemec, and V. D. Marmol, “In vivo assessment of optical properties of basal cell carcinoma and differentiation of bcc subtypes by high-definition optical coherence tomography,” Biomed. Opt. Express 7, 2269–2284 (2016).
[Crossref] [PubMed]

C. Chin, A. Bradu, R. Lim, M. Khandwala, J. Schofield, L. Leick, and A. Podoleanu, “Master/slave optical coherence tomography imaging of eyelid basal cell carcinoma,” Appl. Opt. 55, 7378–7386 (2016).
[Crossref] [PubMed]

M. A. L. M. Boone, M. Suppa, F. Dhaenens, M. Miyamoto, A. Marneffe, G. B. E. Jemec, V. Del Marmol, and R. Nebosis, “In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography,” Arch Dermatol Res. 308, 7–20 (2016).
[Crossref]

S. Schuh, R. Kaestle, E. C. Sattler, and J. Welzel, “Optical coherence tomography of actinic keratoses and basal cell carcinomas – differentiation by quantification of signal intensity and layer thickness,” J Eur Acad Dermatol Venereol. 30, 1321–1326 (2016).
[Crossref] [PubMed]

S. Schuh, R. Kaestle, E. Sattler, and J. Welzel, “Comparison of different optical coherence tomography devices for diagnosis of non-melanoma skin cancer,” Skin Res Technol. 22, 395–405 (2016).
[Crossref] [PubMed]

W.-C. Kuo, Y.-M. Kuo, and S.-Y. Wen, “Quantitative and rapid estimations of human sub-surface skin mass using ultra-high-resolution spectral domain optical coherence tomography,” J. Biophotonics 9, 343–350 (2016).
[Crossref]

2015 (9)

K. Mizukoshi, K. Yonekura, M. Futagawa, T. Nakamura, K. Hirayama, and K. Takahashi, “Changes in dermal papilla structures due to aging in the facial cheek region,” Skin Res Technol. 21, 224–231 (2015).
[Crossref]

V. Newton, J. Mcconnell, S. Hibbert, H. Graham, and R. Watson, “Skin aging: molecular pathology, dermal remodelling and the imaging revolution,” G Ital Dermatol Venereol 150, 665–674 (2015).
[PubMed]

S. Kurugol, K. Kose, B. Park, J. G. Dy, D. H. Brooks, and M. Rajadhyaksha, “Automated delineation of dermal-epidermal junction in reflectance confocal microscopy image stacks of human skin,” J Investig Dermatol. 135, 710–717 (2015).
[Crossref]

M. A. L. M. Boone, M. Suppa, A. Marneffe, M. Miyamoto, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study,” Arch Dermatol Res. 307, 705–720 (2015).
[Crossref] [PubMed]

A. A. Hussain, L. Themstrup, and G. B. E. Jemec, “Optical coherence tomography in the diagnosis of basal cell carcinoma,” Arch Dermatol Res. 307, 1–10 (2015).
[Crossref]

T. Gambichler, I. Plura, M. Schmid-Wendtner, K. Valavanis, D. Kulichova, M. Stücker, A. Pljakic, C. Berking, and T. Maier, “High-definition optical coherence tomography of melanocytic skin lesions,” J. Biophotonics 8, 681–686 (2015).
[Crossref]

M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
[Crossref] [PubMed]

M. Boone, A. Marneffe, M. Suppa, M. Miyamoto, I. Alarcon, R. Hofmann-Wellenhof, J. Malvehy, G. Pellacani, and V. D. Marmol, “High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma,” J Eur Acad Dermatol Venereol. 29, 1606–1615 (2015).
[Crossref] [PubMed]

T. Gambichler, M. Schmid-Wendtner, I. Plura, P. Kampilafkos, M. Stücker, C. Berking, and T. Maier, “A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi,” J Eur Acad Dermatol Venereol. 29, 537–541 (2015).
[Crossref]

2014 (3)

M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography imaging of melanocytic lesions: a pilot study,” Arch Dermatol Res. 306, 11–26 (2014).
[Crossref]

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

M. Zhang, L. Ma, and P. Yu, “Dual-band fourier domain optical coherence tomography with depth-related compensations,” Biomed Opt Express 5, 167–182 (2014).
[Crossref] [PubMed]

2013 (3)

M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Marmol, “Imaging actinic keratosis by high-definition optical coherence tomography. histomorphologic correlation: a pilot study,” Exp Dermatol. 22, 93–97 (2013).
[PubMed]

M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch Dermatol Res. 305, 283–297 (2013).
[Crossref] [PubMed]

M. R. N. Avanaki, A. G. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjat, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens-Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
[Crossref] [PubMed]

2012 (8)

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered pcfs,” Opt. Express 20, 2851–2857 (2012).
[Crossref] [PubMed]

A. Hojjatoleslami and M. R. N. Avanaki, “Oct skin image enhancement through attenuation compensation,” Appl. Opt. 51, 4927–4935 (2012).
[Crossref] [PubMed]

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed oct,” Biomed. Opt. Express 3, 2636–2646 (2012).
[Crossref] [PubMed]

M. Boone, G. B. E. Jemec, and V. D. Marmol, “High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy,” Exp Dermatol. 21, 740–744 (2012).
[Crossref] [PubMed]

M. Boone, S. Norrenberg, G. Jemec, and V. D. Marmol, “Imaging of basal cell carcinoma by high-definition optical coherence tomography: histomorphological correlation. a pilot study,” Br J Dermatol. 167, 856–864 (2012).
[Crossref] [PubMed]

R. Archid, A. Patzelt, S. S. Ahmad, W. Sterry, J. M. Lademann, B. Lange-Asschenfeldt, M. Ulrich, E. Stockfleth, and S. Philipp, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J Biomed Opt. 17, 101511 (2012).
[Crossref]

D. B. Constantin Caruntu, “Evaluation through in vivo reflectance confocal microscopy of the cutaneous neurogenic inflammatory reaction induced by capsaicin in human subjects,” J Biomed Opt. 17, 085003 (2012).

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using gabor domain optical coherence microscopy,” J Biomed Opt. 17, 126006 (2012).
[Crossref] [PubMed]

2011 (1)

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci. 52, 7738–7748 (2011).
[Crossref] [PubMed]

2009 (2)

J. Hegyi, V. Hegyi, G. Messer, P. Arenberger, T. Ruzicka, and C. Berking, “Confocal laser-scanning capillaroscopy: a novel approach to the analysis of skin capillaries in vivo,” Skin Res Technol. 15, 476–481 (2009).
[Crossref] [PubMed]

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: Observer-blinded evaluation by dermatologists and pathologists,” Dermatol Surg. 35, 965 (2009).
[Crossref] [PubMed]

2008 (2)

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
[Crossref] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-µm spectral-domain optical coherence tomography using bm-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
[Crossref] [PubMed]

2007 (1)

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J Investig Dermatol. 127, 2759–2765 (2007).
[Crossref] [PubMed]

2006 (1)

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J Dermatol Sci. 44, 145–152 (2006).
[Crossref] [PubMed]

2005 (1)

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J Eur Acad Dermatol Venereol. 20, 791–795 (2005).

2004 (2)

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. M. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J Biomed Opt. 9, 274 (2004).
[Crossref]

J. Weissman, T. Hancewicz, and P. Kaplan, “Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis,” Opt. Express 12, 5760–5769 (2004).
[Crossref] [PubMed]

2003 (1)

J. Sandby-Moller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Dermato Venereologica 83, 410–413 (2003).
[Crossref] [PubMed]

2000 (1)

I. M. Braverman, “The cutaneous microcirculation,” J Investig Dermatol Symp Proc. 5, 3 – 9 (2000).
[Crossref]

1999 (1)

H. C. Nousari and G. J. Anhalt, “Pemphigus and bullous pemphigoid,” The Lancet 354, 667–672 (1999).
[Crossref]

1997 (1)

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J Am Acad Dermatol. 37, 958–963 (1997).
[Crossref]

1995 (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Medicine 1, 970 (1995).
[Crossref]

1994 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Adabi, S.

S. Adabi, M. Hosseinzadeh, S. Noei, S. Conforto, S. Daveluy, A. Clayton, D. Mehregan, and M. Nasiriavanaki, “Universal in vivo textural model for human skin based on optical coherence tomograms,” Scientific Reports 7, 17912 (2017).
[Crossref] [PubMed]

A. Taghavikhalilbad, S. Adabi, A. Clayton, H. Soltanizadeh, D. Mehregan, and M. R. N. Avanaki, “Semi-automated localization of dermal epidermal junction in optical coherence tomography images of skin,” Appl. Opt. 56, 3116–3121 (2017).
[Crossref] [PubMed]

Ahmad, S. S.

R. Archid, A. Patzelt, S. S. Ahmad, W. Sterry, J. M. Lademann, B. Lange-Asschenfeldt, M. Ulrich, E. Stockfleth, and S. Philipp, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J Biomed Opt. 17, 101511 (2012).
[Crossref]

Alarcon, I.

M. Boone, A. Marneffe, M. Suppa, M. Miyamoto, I. Alarcon, R. Hofmann-Wellenhof, J. Malvehy, G. Pellacani, and V. D. Marmol, “High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma,” J Eur Acad Dermatol Venereol. 29, 1606–1615 (2015).
[Crossref] [PubMed]

M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
[Crossref] [PubMed]

Alex, A.

Altmeyer, P.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J Dermatol Sci. 44, 145–152 (2006).
[Crossref] [PubMed]

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J Eur Acad Dermatol Venereol. 20, 791–795 (2005).

Anhalt, G. J.

H. C. Nousari and G. J. Anhalt, “Pemphigus and bullous pemphigoid,” The Lancet 354, 667–672 (1999).
[Crossref]

Archid, R.

R. Archid, A. Patzelt, S. S. Ahmad, W. Sterry, J. M. Lademann, B. Lange-Asschenfeldt, M. Ulrich, E. Stockfleth, and S. Philipp, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J Biomed Opt. 17, 101511 (2012).
[Crossref]

Arenberger, P.

J. Hegyi, V. Hegyi, G. Messer, P. Arenberger, T. Ruzicka, and C. Berking, “Confocal laser-scanning capillaroscopy: a novel approach to the analysis of skin capillaries in vivo,” Skin Res Technol. 15, 476–481 (2009).
[Crossref] [PubMed]

Avanaki, M. R. N.

Avramidis, M.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J Investig Dermatol. 127, 2759–2765 (2007).
[Crossref] [PubMed]

Bang, O.

Bauer, E. A.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Bauer, J. W.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Berking, C.

T. Gambichler, I. Plura, M. Schmid-Wendtner, K. Valavanis, D. Kulichova, M. Stücker, A. Pljakic, C. Berking, and T. Maier, “High-definition optical coherence tomography of melanocytic skin lesions,” J. Biophotonics 8, 681–686 (2015).
[Crossref]

T. Gambichler, M. Schmid-Wendtner, I. Plura, P. Kampilafkos, M. Stücker, C. Berking, and T. Maier, “A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi,” J Eur Acad Dermatol Venereol. 29, 537–541 (2015).
[Crossref]

J. Hegyi, V. Hegyi, G. Messer, P. Arenberger, T. Ruzicka, and C. Berking, “Confocal laser-scanning capillaroscopy: a novel approach to the analysis of skin capillaries in vivo,” Skin Res Technol. 15, 476–481 (2009).
[Crossref] [PubMed]

Birngruber, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J Am Acad Dermatol. 37, 958–963 (1997).
[Crossref]

Bisschop, M. A.

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. M. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J Biomed Opt. 9, 274 (2004).
[Crossref]

Blatter, C.

Boms, S.

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J Eur Acad Dermatol Venereol. 20, 791–795 (2005).

Boone, M.

M. Boone, M. Suppa, M. Miyamoto, A. Marneffe, G. Jemec, and V. D. Marmol, “In vivo assessment of optical properties of basal cell carcinoma and differentiation of bcc subtypes by high-definition optical coherence tomography,” Biomed. Opt. Express 7, 2269–2284 (2016).
[Crossref] [PubMed]

M. Boone, A. Marneffe, M. Suppa, M. Miyamoto, I. Alarcon, R. Hofmann-Wellenhof, J. Malvehy, G. Pellacani, and V. D. Marmol, “High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma,” J Eur Acad Dermatol Venereol. 29, 1606–1615 (2015).
[Crossref] [PubMed]

M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
[Crossref] [PubMed]

M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch Dermatol Res. 305, 283–297 (2013).
[Crossref] [PubMed]

M. Boone, G. B. E. Jemec, and V. D. Marmol, “High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy,” Exp Dermatol. 21, 740–744 (2012).
[Crossref] [PubMed]

M. Boone, S. Norrenberg, G. Jemec, and V. D. Marmol, “Imaging of basal cell carcinoma by high-definition optical coherence tomography: histomorphological correlation. a pilot study,” Br J Dermatol. 167, 856–864 (2012).
[Crossref] [PubMed]

Boone, M. A. L. M.

M. A. L. M. Boone, M. Suppa, F. Dhaenens, M. Miyamoto, A. Marneffe, G. B. E. Jemec, V. Del Marmol, and R. Nebosis, “In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography,” Arch Dermatol Res. 308, 7–20 (2016).
[Crossref]

M. A. L. M. Boone, M. Suppa, A. Marneffe, M. Miyamoto, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study,” Arch Dermatol Res. 307, 705–720 (2015).
[Crossref] [PubMed]

M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography imaging of melanocytic lesions: a pilot study,” Arch Dermatol Res. 306, 11–26 (2014).
[Crossref]

M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Marmol, “Imaging actinic keratosis by high-definition optical coherence tomography. histomorphologic correlation: a pilot study,” Exp Dermatol. 22, 93–97 (2013).
[PubMed]

Boppart, S. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Medicine 1, 970 (1995).
[Crossref]

Bouma, B.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Medicine 1, 970 (1995).
[Crossref]

Bradu, A.

Braverman, I. M.

I. M. Braverman, “The cutaneous microcirculation,” J Investig Dermatol Symp Proc. 5, 3 – 9 (2000).
[Crossref]

Brezinski, M. E.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Medicine 1, 970 (1995).
[Crossref]

Brooks, D. H.

S. Kurugol, K. Kose, B. Park, J. G. Dy, D. H. Brooks, and M. Rajadhyaksha, “Automated delineation of dermal-epidermal junction in reflectance confocal microscopy image stacks of human skin,” J Investig Dermatol. 135, 710–717 (2015).
[Crossref]

Bruckner-Tuderman, L.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Cheng, J.

A. Li, J. Cheng, A. P. Yow, C. Wall, D. W. K. Wong, H. L. Tey, and J. Liu, “Epidermal segmentation in high-definition optical coherence tomography,” in “2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),” (2015), pp. 3045–3048.

Chin, C.

Clayton, A.

A. Taghavikhalilbad, S. Adabi, A. Clayton, H. Soltanizadeh, D. Mehregan, and M. R. N. Avanaki, “Semi-automated localization of dermal epidermal junction in optical coherence tomography images of skin,” Appl. Opt. 56, 3116–3121 (2017).
[Crossref] [PubMed]

S. Adabi, M. Hosseinzadeh, S. Noei, S. Conforto, S. Daveluy, A. Clayton, D. Mehregan, and M. Nasiriavanaki, “Universal in vivo textural model for human skin based on optical coherence tomograms,” Scientific Reports 7, 17912 (2017).
[Crossref] [PubMed]

Conforto, S.

S. Adabi, M. Hosseinzadeh, S. Noei, S. Conforto, S. Daveluy, A. Clayton, D. Mehregan, and M. Nasiriavanaki, “Universal in vivo textural model for human skin based on optical coherence tomograms,” Scientific Reports 7, 17912 (2017).
[Crossref] [PubMed]

Constantin Caruntu, D. B.

D. B. Constantin Caruntu, “Evaluation through in vivo reflectance confocal microscopy of the cutaneous neurogenic inflammatory reaction induced by capsaicin in human subjects,” J Biomed Opt. 17, 085003 (2012).

Daveluy, S.

S. Adabi, M. Hosseinzadeh, S. Noei, S. Conforto, S. Daveluy, A. Clayton, D. Mehregan, and M. Nasiriavanaki, “Universal in vivo textural model for human skin based on optical coherence tomograms,” Scientific Reports 7, 17912 (2017).
[Crossref] [PubMed]

Del Marmol, V.

M. A. L. M. Boone, M. Suppa, F. Dhaenens, M. Miyamoto, A. Marneffe, G. B. E. Jemec, V. Del Marmol, and R. Nebosis, “In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography,” Arch Dermatol Res. 308, 7–20 (2016).
[Crossref]

M. A. L. M. Boone, M. Suppa, A. Marneffe, M. Miyamoto, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study,” Arch Dermatol Res. 307, 705–720 (2015).
[Crossref] [PubMed]

M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography imaging of melanocytic lesions: a pilot study,” Arch Dermatol Res. 306, 11–26 (2014).
[Crossref]

M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch Dermatol Res. 305, 283–297 (2013).
[Crossref] [PubMed]

Denninger, M.

Dhaenens, F.

M. A. L. M. Boone, M. Suppa, F. Dhaenens, M. Miyamoto, A. Marneffe, G. B. E. Jemec, V. Del Marmol, and R. Nebosis, “In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography,” Arch Dermatol Res. 308, 7–20 (2016).
[Crossref]

Drexler, W.

Dy, J. G.

S. Kurugol, K. Kose, B. Park, J. G. Dy, D. H. Brooks, and M. Rajadhyaksha, “Automated delineation of dermal-epidermal junction in reflectance confocal microscopy image stacks of human skin,” J Investig Dermatol. 135, 710–717 (2015).
[Crossref]

Eady, R. A. J.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Elder, D. E.

D. E. Elder, Lever’s Histopathology of the Skin (Wolters Kluver, 2015), 11th ed.

Engelhardt, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J Am Acad Dermatol. 37, 958–963 (1997).
[Crossref]

Ethier, C. R.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci. 52, 7738–7748 (2011).
[Crossref] [PubMed]

Fabritius, T.

Feuchter, T.

Fine, J.-D.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Fujimoto, J. G.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Medicine 1, 970 (1995).
[Crossref]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Futagawa, M.

K. Mizukoshi, K. Yonekura, M. Futagawa, T. Nakamura, K. Hirayama, and K. Takahashi, “Changes in dermal papilla structures due to aging in the facial cheek region,” Skin Res Technol. 21, 224–231 (2015).
[Crossref]

Gambichler, T.

T. Gambichler, M. Schmid-Wendtner, I. Plura, P. Kampilafkos, M. Stücker, C. Berking, and T. Maier, “A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi,” J Eur Acad Dermatol Venereol. 29, 537–541 (2015).
[Crossref]

T. Gambichler, I. Plura, M. Schmid-Wendtner, K. Valavanis, D. Kulichova, M. Stücker, A. Pljakic, C. Berking, and T. Maier, “High-definition optical coherence tomography of melanocytic skin lesions,” J. Biophotonics 8, 681–686 (2015).
[Crossref]

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J Dermatol Sci. 44, 145–152 (2006).
[Crossref] [PubMed]

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J Eur Acad Dermatol Venereol. 20, 791–795 (2005).

Girard, M. J. A.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci. 52, 7738–7748 (2011).
[Crossref] [PubMed]

Gonzalo, I. B.

Graham, H.

V. Newton, J. Mcconnell, S. Hibbert, H. Graham, and R. Watson, “Skin aging: molecular pathology, dermal remodelling and the imaging revolution,” G Ital Dermatol Venereol 150, 665–674 (2015).
[PubMed]

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Guitera, P.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J Investig Dermatol. 127, 2759–2765 (2007).
[Crossref] [PubMed]

Hancewicz, T.

Has, C.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Heagerty, A.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Hee, M. R.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Medicine 1, 970 (1995).
[Crossref]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Hegyi, J.

J. Hegyi, V. Hegyi, G. Messer, P. Arenberger, T. Ruzicka, and C. Berking, “Confocal laser-scanning capillaroscopy: a novel approach to the analysis of skin capillaries in vivo,” Skin Res Technol. 15, 476–481 (2009).
[Crossref] [PubMed]

Hegyi, V.

J. Hegyi, V. Hegyi, G. Messer, P. Arenberger, T. Ruzicka, and C. Berking, “Confocal laser-scanning capillaroscopy: a novel approach to the analysis of skin capillaries in vivo,” Skin Res Technol. 15, 476–481 (2009).
[Crossref] [PubMed]

Hibbert, S.

V. Newton, J. Mcconnell, S. Hibbert, H. Graham, and R. Watson, “Skin aging: molecular pathology, dermal remodelling and the imaging revolution,” G Ital Dermatol Venereol 150, 665–674 (2015).
[PubMed]

Hintner, H.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Hirayama, K.

K. Mizukoshi, K. Yonekura, M. Futagawa, T. Nakamura, K. Hirayama, and K. Takahashi, “Changes in dermal papilla structures due to aging in the facial cheek region,” Skin Res Technol. 21, 224–231 (2015).
[Crossref]

Hoffmann, K.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J Dermatol Sci. 44, 145–152 (2006).
[Crossref] [PubMed]

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J Eur Acad Dermatol Venereol. 20, 791–795 (2005).

Hofmann-Wellenhof, R.

M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
[Crossref] [PubMed]

M. Boone, A. Marneffe, M. Suppa, M. Miyamoto, I. Alarcon, R. Hofmann-Wellenhof, J. Malvehy, G. Pellacani, and V. D. Marmol, “High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma,” J Eur Acad Dermatol Venereol. 29, 1606–1615 (2015).
[Crossref] [PubMed]

Hojjat, A.

Hojjatoleslami, A.

Hosseinzadeh, M.

S. Adabi, M. Hosseinzadeh, S. Noei, S. Conforto, S. Daveluy, A. Clayton, D. Mehregan, and M. Nasiriavanaki, “Universal in vivo textural model for human skin based on optical coherence tomograms,” Scientific Reports 7, 17912 (2017).
[Crossref] [PubMed]

Hovnanian, A.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Huber, R.

Hussain, A. A.

A. A. Hussain, L. Themstrup, and G. B. E. Jemec, “Optical coherence tomography in the diagnosis of basal cell carcinoma,” Arch Dermatol Res. 307, 1–10 (2015).
[Crossref]

Ibrahim, S. F.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using gabor domain optical coherence microscopy,” J Biomed Opt. 17, 126006 (2012).
[Crossref] [PubMed]

Izatt, J. A.

Jakobsen, C.

Jemec, G.

M. Boone, M. Suppa, M. Miyamoto, A. Marneffe, G. Jemec, and V. D. Marmol, “In vivo assessment of optical properties of basal cell carcinoma and differentiation of bcc subtypes by high-definition optical coherence tomography,” Biomed. Opt. Express 7, 2269–2284 (2016).
[Crossref] [PubMed]

M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
[Crossref] [PubMed]

M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch Dermatol Res. 305, 283–297 (2013).
[Crossref] [PubMed]

M. Boone, S. Norrenberg, G. Jemec, and V. D. Marmol, “Imaging of basal cell carcinoma by high-definition optical coherence tomography: histomorphological correlation. a pilot study,” Br J Dermatol. 167, 856–864 (2012).
[Crossref] [PubMed]

Jemec, G. B. E.

M. A. L. M. Boone, M. Suppa, F. Dhaenens, M. Miyamoto, A. Marneffe, G. B. E. Jemec, V. Del Marmol, and R. Nebosis, “In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography,” Arch Dermatol Res. 308, 7–20 (2016).
[Crossref]

A. A. Hussain, L. Themstrup, and G. B. E. Jemec, “Optical coherence tomography in the diagnosis of basal cell carcinoma,” Arch Dermatol Res. 307, 1–10 (2015).
[Crossref]

M. A. L. M. Boone, M. Suppa, A. Marneffe, M. Miyamoto, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study,” Arch Dermatol Res. 307, 705–720 (2015).
[Crossref] [PubMed]

M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography imaging of melanocytic lesions: a pilot study,” Arch Dermatol Res. 306, 11–26 (2014).
[Crossref]

M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Marmol, “Imaging actinic keratosis by high-definition optical coherence tomography. histomorphologic correlation: a pilot study,” Exp Dermatol. 22, 93–97 (2013).
[PubMed]

M. Boone, G. B. E. Jemec, and V. D. Marmol, “High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy,” Exp Dermatol. 21, 740–744 (2012).
[Crossref] [PubMed]

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: Observer-blinded evaluation by dermatologists and pathologists,” Dermatol Surg. 35, 965 (2009).
[Crossref] [PubMed]

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
[Crossref] [PubMed]

Joergensen, T. M.

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: Observer-blinded evaluation by dermatologists and pathologists,” Dermatol Surg. 35, 965 (2009).
[Crossref] [PubMed]

Johansen, J.

Jones, C.

Jonkman, M. F.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Kaestle, R.

S. Schuh, R. Kaestle, E. Sattler, and J. Welzel, “Comparison of different optical coherence tomography devices for diagnosis of non-melanoma skin cancer,” Skin Res Technol. 22, 395–405 (2016).
[Crossref] [PubMed]

S. Schuh, R. Kaestle, E. C. Sattler, and J. Welzel, “Optical coherence tomography of actinic keratoses and basal cell carcinomas – differentiation by quantification of signal intensity and layer thickness,” J Eur Acad Dermatol Venereol. 30, 1321–1326 (2016).
[Crossref] [PubMed]

Kampilafkos, P.

T. Gambichler, M. Schmid-Wendtner, I. Plura, P. Kampilafkos, M. Stücker, C. Berking, and T. Maier, “A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi,” J Eur Acad Dermatol Venereol. 29, 537–541 (2015).
[Crossref]

Kaplan, P.

Khandwala, M.

Khoudeir, L.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using gabor domain optical coherence microscopy,” J Biomed Opt. 17, 126006 (2012).
[Crossref] [PubMed]

Kose, K.

S. Kurugol, K. Kose, B. Park, J. G. Dy, D. H. Brooks, and M. Rajadhyaksha, “Automated delineation of dermal-epidermal junction in reflectance confocal microscopy image stacks of human skin,” J Investig Dermatol. 135, 710–717 (2015).
[Crossref]

Kreuter, A.

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J Eur Acad Dermatol Venereol. 20, 791–795 (2005).

Kulichova, D.

T. Gambichler, I. Plura, M. Schmid-Wendtner, K. Valavanis, D. Kulichova, M. Stücker, A. Pljakic, C. Berking, and T. Maier, “High-definition optical coherence tomography of melanocytic skin lesions,” J. Biophotonics 8, 681–686 (2015).
[Crossref]

Kuo, W.-C.

W.-C. Kuo, Y.-M. Kuo, and S.-Y. Wen, “Quantitative and rapid estimations of human sub-surface skin mass using ultra-high-resolution spectral domain optical coherence tomography,” J. Biophotonics 9, 343–350 (2016).
[Crossref]

Kuo, Y.-M.

W.-C. Kuo, Y.-M. Kuo, and S.-Y. Wen, “Quantitative and rapid estimations of human sub-surface skin mass using ultra-high-resolution spectral domain optical coherence tomography,” J. Biophotonics 9, 343–350 (2016).
[Crossref]

Kurugol, S.

S. Kurugol, K. Kose, B. Park, J. G. Dy, D. H. Brooks, and M. Rajadhyaksha, “Automated delineation of dermal-epidermal junction in reflectance confocal microscopy image stacks of human skin,” J Investig Dermatol. 135, 710–717 (2015).
[Crossref]

Lademann, J. M.

R. Archid, A. Patzelt, S. S. Ahmad, W. Sterry, J. M. Lademann, B. Lange-Asschenfeldt, M. Ulrich, E. Stockfleth, and S. Philipp, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J Biomed Opt. 17, 101511 (2012).
[Crossref]

Lange-Asschenfeldt, B.

R. Archid, A. Patzelt, S. S. Ahmad, W. Sterry, J. M. Lademann, B. Lange-Asschenfeldt, M. Ulrich, E. Stockfleth, and S. Philipp, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J Biomed Opt. 17, 101511 (2012).
[Crossref]

Lankenau, E.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J Am Acad Dermatol. 37, 958–963 (1997).
[Crossref]

Lee, K.-S.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using gabor domain optical coherence microscopy,” J Biomed Opt. 17, 126006 (2012).
[Crossref] [PubMed]

Leick, L.

Leigh, I.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Leitgeb, R. A.

Lenderink, E.

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. M. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J Biomed Opt. 9, 274 (2004).
[Crossref]

Li, A.

A. Li, J. Cheng, A. P. Yow, C. Wall, D. W. K. Wong, H. L. Tey, and J. Liu, “Epidermal segmentation in high-definition optical coherence tomography,” in “2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),” (2015), pp. 3045–3048.

Lim, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Liu, J.

A. Li, J. Cheng, A. P. Yow, C. Wall, D. W. K. Wong, H. L. Tey, and J. Liu, “Epidermal segmentation in high-definition optical coherence tomography,” in “2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),” (2015), pp. 3045–3048.

Liu, Y.

Longo, C.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J Investig Dermatol. 127, 2759–2765 (2007).
[Crossref] [PubMed]

Lucassen, G. W.

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. M. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J Biomed Opt. 9, 274 (2004).
[Crossref]

Ma, L.

M. Zhang, L. Ma, and P. Yu, “Dual-band fourier domain optical coherence tomography with depth-related compensations,” Biomed Opt Express 5, 167–182 (2014).
[Crossref] [PubMed]

Maier, T.

T. Gambichler, I. Plura, M. Schmid-Wendtner, K. Valavanis, D. Kulichova, M. Stücker, A. Pljakic, C. Berking, and T. Maier, “High-definition optical coherence tomography of melanocytic skin lesions,” J. Biophotonics 8, 681–686 (2015).
[Crossref]

T. Gambichler, M. Schmid-Wendtner, I. Plura, P. Kampilafkos, M. Stücker, C. Berking, and T. Maier, “A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi,” J Eur Acad Dermatol Venereol. 29, 537–541 (2015).
[Crossref]

Makita, S.

Malvehy, J.

M. Boone, A. Marneffe, M. Suppa, M. Miyamoto, I. Alarcon, R. Hofmann-Wellenhof, J. Malvehy, G. Pellacani, and V. D. Marmol, “High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma,” J Eur Acad Dermatol Venereol. 29, 1606–1615 (2015).
[Crossref] [PubMed]

M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
[Crossref] [PubMed]

Mari, J. M.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci. 52, 7738–7748 (2011).
[Crossref] [PubMed]

Maria, M.

Marinkovich, M. P.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Marmol, V.

M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Marmol, “Imaging actinic keratosis by high-definition optical coherence tomography. histomorphologic correlation: a pilot study,” Exp Dermatol. 22, 93–97 (2013).
[PubMed]

Marmol, V. D.

M. Boone, M. Suppa, M. Miyamoto, A. Marneffe, G. Jemec, and V. D. Marmol, “In vivo assessment of optical properties of basal cell carcinoma and differentiation of bcc subtypes by high-definition optical coherence tomography,” Biomed. Opt. Express 7, 2269–2284 (2016).
[Crossref] [PubMed]

M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
[Crossref] [PubMed]

M. Boone, A. Marneffe, M. Suppa, M. Miyamoto, I. Alarcon, R. Hofmann-Wellenhof, J. Malvehy, G. Pellacani, and V. D. Marmol, “High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma,” J Eur Acad Dermatol Venereol. 29, 1606–1615 (2015).
[Crossref] [PubMed]

M. Boone, S. Norrenberg, G. Jemec, and V. D. Marmol, “Imaging of basal cell carcinoma by high-definition optical coherence tomography: histomorphological correlation. a pilot study,” Br J Dermatol. 167, 856–864 (2012).
[Crossref] [PubMed]

M. Boone, G. B. E. Jemec, and V. D. Marmol, “High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy,” Exp Dermatol. 21, 740–744 (2012).
[Crossref] [PubMed]

Marneffe, A.

M. A. L. M. Boone, M. Suppa, F. Dhaenens, M. Miyamoto, A. Marneffe, G. B. E. Jemec, V. Del Marmol, and R. Nebosis, “In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography,” Arch Dermatol Res. 308, 7–20 (2016).
[Crossref]

M. Boone, M. Suppa, M. Miyamoto, A. Marneffe, G. Jemec, and V. D. Marmol, “In vivo assessment of optical properties of basal cell carcinoma and differentiation of bcc subtypes by high-definition optical coherence tomography,” Biomed. Opt. Express 7, 2269–2284 (2016).
[Crossref] [PubMed]

M. Boone, A. Marneffe, M. Suppa, M. Miyamoto, I. Alarcon, R. Hofmann-Wellenhof, J. Malvehy, G. Pellacani, and V. D. Marmol, “High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma,” J Eur Acad Dermatol Venereol. 29, 1606–1615 (2015).
[Crossref] [PubMed]

M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
[Crossref] [PubMed]

M. A. L. M. Boone, M. Suppa, A. Marneffe, M. Miyamoto, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study,” Arch Dermatol Res. 307, 705–720 (2015).
[Crossref] [PubMed]

Martinez, A. E.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Matip, R.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J Dermatol Sci. 44, 145–152 (2006).
[Crossref] [PubMed]

Mcconnell, J.

V. Newton, J. Mcconnell, S. Hibbert, H. Graham, and R. Watson, “Skin aging: molecular pathology, dermal remodelling and the imaging revolution,” G Ital Dermatol Venereol 150, 665–674 (2015).
[PubMed]

McGrath, J. A.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Meemon, N.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using gabor domain optical coherence microscopy,” J Biomed Opt. 17, 126006 (2012).
[Crossref] [PubMed]

Mehregan, D.

S. Adabi, M. Hosseinzadeh, S. Noei, S. Conforto, S. Daveluy, A. Clayton, D. Mehregan, and M. Nasiriavanaki, “Universal in vivo textural model for human skin based on optical coherence tomograms,” Scientific Reports 7, 17912 (2017).
[Crossref] [PubMed]

A. Taghavikhalilbad, S. Adabi, A. Clayton, H. Soltanizadeh, D. Mehregan, and M. R. N. Avanaki, “Semi-automated localization of dermal epidermal junction in optical coherence tomography images of skin,” Appl. Opt. 56, 3116–3121 (2017).
[Crossref] [PubMed]

Mellerio, J. E.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Menzies, S.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J Investig Dermatol. 127, 2759–2765 (2007).
[Crossref] [PubMed]

Messer, G.

J. Hegyi, V. Hegyi, G. Messer, P. Arenberger, T. Ruzicka, and C. Berking, “Confocal laser-scanning capillaroscopy: a novel approach to the analysis of skin capillaries in vivo,” Skin Res Technol. 15, 476–481 (2009).
[Crossref] [PubMed]

Miyamoto, M.

M. A. L. M. Boone, M. Suppa, F. Dhaenens, M. Miyamoto, A. Marneffe, G. B. E. Jemec, V. Del Marmol, and R. Nebosis, “In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography,” Arch Dermatol Res. 308, 7–20 (2016).
[Crossref]

M. Boone, M. Suppa, M. Miyamoto, A. Marneffe, G. Jemec, and V. D. Marmol, “In vivo assessment of optical properties of basal cell carcinoma and differentiation of bcc subtypes by high-definition optical coherence tomography,” Biomed. Opt. Express 7, 2269–2284 (2016).
[Crossref] [PubMed]

M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
[Crossref] [PubMed]

M. Boone, A. Marneffe, M. Suppa, M. Miyamoto, I. Alarcon, R. Hofmann-Wellenhof, J. Malvehy, G. Pellacani, and V. D. Marmol, “High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma,” J Eur Acad Dermatol Venereol. 29, 1606–1615 (2015).
[Crossref] [PubMed]

M. A. L. M. Boone, M. Suppa, A. Marneffe, M. Miyamoto, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study,” Arch Dermatol Res. 307, 705–720 (2015).
[Crossref] [PubMed]

Mizukoshi, K.

K. Mizukoshi, K. Yonekura, M. Futagawa, T. Nakamura, K. Hirayama, and K. Takahashi, “Changes in dermal papilla structures due to aging in the facial cheek region,” Skin Res Technol. 21, 224–231 (2015).
[Crossref]

Mogensen, M.

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: Observer-blinded evaluation by dermatologists and pathologists,” Dermatol Surg. 35, 965 (2009).
[Crossref] [PubMed]

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
[Crossref] [PubMed]

Møller, U.

Morsy, H. A.

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: Observer-blinded evaluation by dermatologists and pathologists,” Dermatol Surg. 35, 965 (2009).
[Crossref] [PubMed]

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
[Crossref] [PubMed]

Moselund, P. M.

Moss, C.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Moussa, G.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J Dermatol Sci. 44, 145–152 (2006).
[Crossref] [PubMed]

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J Eur Acad Dermatol Venereol. 20, 791–795 (2005).

Murrell, D. F.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Nakamura, T.

K. Mizukoshi, K. Yonekura, M. Futagawa, T. Nakamura, K. Hirayama, and K. Takahashi, “Changes in dermal papilla structures due to aging in the facial cheek region,” Skin Res Technol. 21, 224–231 (2015).
[Crossref]

Nasiriavanaki, M.

S. Adabi, M. Hosseinzadeh, S. Noei, S. Conforto, S. Daveluy, A. Clayton, D. Mehregan, and M. Nasiriavanaki, “Universal in vivo textural model for human skin based on optical coherence tomograms,” Scientific Reports 7, 17912 (2017).
[Crossref] [PubMed]

Nebosis, R.

M. A. L. M. Boone, M. Suppa, F. Dhaenens, M. Miyamoto, A. Marneffe, G. B. E. Jemec, V. Del Marmol, and R. Nebosis, “In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography,” Arch Dermatol Res. 308, 7–20 (2016).
[Crossref]

Neerken, S.

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. M. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J Biomed Opt. 9, 274 (2004).
[Crossref]

Newton, V.

V. Newton, J. Mcconnell, S. Hibbert, H. Graham, and R. Watson, “Skin aging: molecular pathology, dermal remodelling and the imaging revolution,” G Ital Dermatol Venereol 150, 665–674 (2015).
[PubMed]

Noei, S.

S. Adabi, M. Hosseinzadeh, S. Noei, S. Conforto, S. Daveluy, A. Clayton, D. Mehregan, and M. Nasiriavanaki, “Universal in vivo textural model for human skin based on optical coherence tomograms,” Scientific Reports 7, 17912 (2017).
[Crossref] [PubMed]

Norrenberg, S.

M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography imaging of melanocytic lesions: a pilot study,” Arch Dermatol Res. 306, 11–26 (2014).
[Crossref]

M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch Dermatol Res. 305, 283–297 (2013).
[Crossref] [PubMed]

M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Marmol, “Imaging actinic keratosis by high-definition optical coherence tomography. histomorphologic correlation: a pilot study,” Exp Dermatol. 22, 93–97 (2013).
[PubMed]

M. Boone, S. Norrenberg, G. Jemec, and V. D. Marmol, “Imaging of basal cell carcinoma by high-definition optical coherence tomography: histomorphological correlation. a pilot study,” Br J Dermatol. 167, 856–864 (2012).
[Crossref] [PubMed]

Nousari, H. C.

H. C. Nousari and G. J. Anhalt, “Pemphigus and bullous pemphigoid,” The Lancet 354, 667–672 (1999).
[Crossref]

Nuijs, T. A. M.

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. M. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J Biomed Opt. 9, 274 (2004).
[Crossref]

Nürnberg, B. M.

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: Observer-blinded evaluation by dermatologists and pathologists,” Dermatol Surg. 35, 965 (2009).
[Crossref] [PubMed]

Owen, G. M.

Park, B.

S. Kurugol, K. Kose, B. Park, J. G. Dy, D. H. Brooks, and M. Rajadhyaksha, “Automated delineation of dermal-epidermal junction in reflectance confocal microscopy image stacks of human skin,” J Investig Dermatol. 135, 710–717 (2015).
[Crossref]

Patzelt, A.

R. Archid, A. Patzelt, S. S. Ahmad, W. Sterry, J. M. Lademann, B. Lange-Asschenfeldt, M. Ulrich, E. Stockfleth, and S. Philipp, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J Biomed Opt. 17, 101511 (2012).
[Crossref]

Pellacani, G.

M. Boone, A. Marneffe, M. Suppa, M. Miyamoto, I. Alarcon, R. Hofmann-Wellenhof, J. Malvehy, G. Pellacani, and V. D. Marmol, “High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma,” J Eur Acad Dermatol Venereol. 29, 1606–1615 (2015).
[Crossref] [PubMed]

M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
[Crossref] [PubMed]

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J Investig Dermatol. 127, 2759–2765 (2007).
[Crossref] [PubMed]

Philipp, S.

R. Archid, A. Patzelt, S. S. Ahmad, W. Sterry, J. M. Lademann, B. Lange-Asschenfeldt, M. Ulrich, E. Stockfleth, and S. Philipp, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J Biomed Opt. 17, 101511 (2012).
[Crossref]

Pljakic, A.

T. Gambichler, I. Plura, M. Schmid-Wendtner, K. Valavanis, D. Kulichova, M. Stücker, A. Pljakic, C. Berking, and T. Maier, “High-definition optical coherence tomography of melanocytic skin lesions,” J. Biophotonics 8, 681–686 (2015).
[Crossref]

Plura, I.

T. Gambichler, M. Schmid-Wendtner, I. Plura, P. Kampilafkos, M. Stücker, C. Berking, and T. Maier, “A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi,” J Eur Acad Dermatol Venereol. 29, 537–541 (2015).
[Crossref]

T. Gambichler, I. Plura, M. Schmid-Wendtner, K. Valavanis, D. Kulichova, M. Stücker, A. Pljakic, C. Berking, and T. Maier, “High-definition optical coherence tomography of melanocytic skin lesions,” J. Biophotonics 8, 681–686 (2015).
[Crossref]

Podoleanu, A.

Podoleanu, A. G.

Poulsen, T.

J. Sandby-Moller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Dermato Venereologica 83, 410–413 (2003).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Rajadhyaksha, M.

S. Kurugol, K. Kose, B. Park, J. G. Dy, D. H. Brooks, and M. Rajadhyaksha, “Automated delineation of dermal-epidermal junction in reflectance confocal microscopy image stacks of human skin,” J Investig Dermatol. 135, 710–717 (2015).
[Crossref]

Rolland, J. P.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using gabor domain optical coherence microscopy,” J Biomed Opt. 17, 126006 (2012).
[Crossref] [PubMed]

Ruini, C.

M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
[Crossref] [PubMed]

Ruzicka, T.

J. Hegyi, V. Hegyi, G. Messer, P. Arenberger, T. Ruzicka, and C. Berking, “Confocal laser-scanning capillaroscopy: a novel approach to the analysis of skin capillaries in vivo,” Skin Res Technol. 15, 476–481 (2009).
[Crossref] [PubMed]

Sand, M.

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J Eur Acad Dermatol Venereol. 20, 791–795 (2005).

Sandby-Moller, J.

J. Sandby-Moller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Dermato Venereologica 83, 410–413 (2003).
[Crossref] [PubMed]

Sattler, E.

S. Schuh, R. Kaestle, E. Sattler, and J. Welzel, “Comparison of different optical coherence tomography devices for diagnosis of non-melanoma skin cancer,” Skin Res Technol. 22, 395–405 (2016).
[Crossref] [PubMed]

Sattler, E. C.

S. Schuh, R. Kaestle, E. C. Sattler, and J. Welzel, “Optical coherence tomography of actinic keratoses and basal cell carcinomas – differentiation by quantification of signal intensity and layer thickness,” J Eur Acad Dermatol Venereol. 30, 1321–1326 (2016).
[Crossref] [PubMed]

Schmid-Wendtner, M.

T. Gambichler, I. Plura, M. Schmid-Wendtner, K. Valavanis, D. Kulichova, M. Stücker, A. Pljakic, C. Berking, and T. Maier, “High-definition optical coherence tomography of melanocytic skin lesions,” J. Biophotonics 8, 681–686 (2015).
[Crossref]

T. Gambichler, M. Schmid-Wendtner, I. Plura, P. Kampilafkos, M. Stücker, C. Berking, and T. Maier, “A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi,” J Eur Acad Dermatol Venereol. 29, 537–541 (2015).
[Crossref]

Schofield, J.

Schofield, J. B.

Schuh, S.

S. Schuh, R. Kaestle, E. C. Sattler, and J. Welzel, “Optical coherence tomography of actinic keratoses and basal cell carcinomas – differentiation by quantification of signal intensity and layer thickness,” J Eur Acad Dermatol Venereol. 30, 1321–1326 (2016).
[Crossref] [PubMed]

S. Schuh, R. Kaestle, E. Sattler, and J. Welzel, “Comparison of different optical coherence tomography devices for diagnosis of non-melanoma skin cancer,” Skin Res Technol. 22, 395–405 (2016).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Seidenari, S.

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J Investig Dermatol. 127, 2759–2765 (2007).
[Crossref] [PubMed]

Shimizu, H.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Sira, M.

Soltanizadeh, H.

Sørensen, S. T.

Southern, J. F.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Medicine 1, 970 (1995).
[Crossref]

Sterry, W.

R. Archid, A. Patzelt, S. S. Ahmad, W. Sterry, J. M. Lademann, B. Lange-Asschenfeldt, M. Ulrich, E. Stockfleth, and S. Philipp, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J Biomed Opt. 17, 101511 (2012).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Stockfleth, E.

R. Archid, A. Patzelt, S. S. Ahmad, W. Sterry, J. M. Lademann, B. Lange-Asschenfeldt, M. Ulrich, E. Stockfleth, and S. Philipp, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J Biomed Opt. 17, 101511 (2012).
[Crossref]

Strouthidis, N. G.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci. 52, 7738–7748 (2011).
[Crossref] [PubMed]

Stücker, M.

T. Gambichler, I. Plura, M. Schmid-Wendtner, K. Valavanis, D. Kulichova, M. Stücker, A. Pljakic, C. Berking, and T. Maier, “High-definition optical coherence tomography of melanocytic skin lesions,” J. Biophotonics 8, 681–686 (2015).
[Crossref]

T. Gambichler, M. Schmid-Wendtner, I. Plura, P. Kampilafkos, M. Stücker, C. Berking, and T. Maier, “A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi,” J Eur Acad Dermatol Venereol. 29, 537–541 (2015).
[Crossref]

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J Eur Acad Dermatol Venereol. 20, 791–795 (2005).

Suppa, M.

M. Boone, M. Suppa, M. Miyamoto, A. Marneffe, G. Jemec, and V. D. Marmol, “In vivo assessment of optical properties of basal cell carcinoma and differentiation of bcc subtypes by high-definition optical coherence tomography,” Biomed. Opt. Express 7, 2269–2284 (2016).
[Crossref] [PubMed]

M. A. L. M. Boone, M. Suppa, F. Dhaenens, M. Miyamoto, A. Marneffe, G. B. E. Jemec, V. Del Marmol, and R. Nebosis, “In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography,” Arch Dermatol Res. 308, 7–20 (2016).
[Crossref]

M. A. L. M. Boone, M. Suppa, A. Marneffe, M. Miyamoto, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study,” Arch Dermatol Res. 307, 705–720 (2015).
[Crossref] [PubMed]

M. Boone, A. Marneffe, M. Suppa, M. Miyamoto, I. Alarcon, R. Hofmann-Wellenhof, J. Malvehy, G. Pellacani, and V. D. Marmol, “High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma,” J Eur Acad Dermatol Venereol. 29, 1606–1615 (2015).
[Crossref] [PubMed]

M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
[Crossref] [PubMed]

Swanson, E. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Medicine 1, 970 (1995).
[Crossref]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Taghavikhalilbad, A.

Takahashi, K.

K. Mizukoshi, K. Yonekura, M. Futagawa, T. Nakamura, K. Hirayama, and K. Takahashi, “Changes in dermal papilla structures due to aging in the facial cheek region,” Skin Res Technol. 21, 224–231 (2015).
[Crossref]

Tearney, G. J.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Medicine 1, 970 (1995).
[Crossref]

Tey, H. L.

A. Li, J. Cheng, A. P. Yow, C. Wall, D. W. K. Wong, H. L. Tey, and J. Liu, “Epidermal segmentation in high-definition optical coherence tomography,” in “2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),” (2015), pp. 3045–3048.

Themstrup, L.

A. A. Hussain, L. Themstrup, and G. B. E. Jemec, “Optical coherence tomography in the diagnosis of basal cell carcinoma,” Arch Dermatol Res. 307, 1–10 (2015).
[Crossref]

Thomsen, C. L.

Thomsen, J. B.

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: Observer-blinded evaluation by dermatologists and pathologists,” Dermatol Surg. 35, 965 (2009).
[Crossref] [PubMed]

Thrane, L.

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: Observer-blinded evaluation by dermatologists and pathologists,” Dermatol Surg. 35, 965 (2009).
[Crossref] [PubMed]

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
[Crossref] [PubMed]

Uitto, J.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Ulrich, M.

R. Archid, A. Patzelt, S. S. Ahmad, W. Sterry, J. M. Lademann, B. Lange-Asschenfeldt, M. Ulrich, E. Stockfleth, and S. Philipp, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J Biomed Opt. 17, 101511 (2012).
[Crossref]

Valavanis, K.

T. Gambichler, I. Plura, M. Schmid-Wendtner, K. Valavanis, D. Kulichova, M. Stücker, A. Pljakic, C. Berking, and T. Maier, “High-definition optical coherence tomography of melanocytic skin lesions,” J. Biophotonics 8, 681–686 (2015).
[Crossref]

Wall, C.

A. Li, J. Cheng, A. P. Yow, C. Wall, D. W. K. Wong, H. L. Tey, and J. Liu, “Epidermal segmentation in high-definition optical coherence tomography,” in “2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),” (2015), pp. 3045–3048.

Watson, R.

V. Newton, J. Mcconnell, S. Hibbert, H. Graham, and R. Watson, “Skin aging: molecular pathology, dermal remodelling and the imaging revolution,” G Ital Dermatol Venereol 150, 665–674 (2015).
[PubMed]

Weedon, D.

D. Weedon, Skin Pathology(Elsevier, 2002), 2nd ed.

Weingast, J.

Weissman, J.

Welzel, J.

S. Schuh, R. Kaestle, E. C. Sattler, and J. Welzel, “Optical coherence tomography of actinic keratoses and basal cell carcinomas – differentiation by quantification of signal intensity and layer thickness,” J Eur Acad Dermatol Venereol. 30, 1321–1326 (2016).
[Crossref] [PubMed]

S. Schuh, R. Kaestle, E. Sattler, and J. Welzel, “Comparison of different optical coherence tomography devices for diagnosis of non-melanoma skin cancer,” Skin Res Technol. 22, 395–405 (2016).
[Crossref] [PubMed]

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J Am Acad Dermatol. 37, 958–963 (1997).
[Crossref]

Wen, S.-Y.

W.-C. Kuo, Y.-M. Kuo, and S.-Y. Wen, “Quantitative and rapid estimations of human sub-surface skin mass using ultra-high-resolution spectral domain optical coherence tomography,” J. Biophotonics 9, 343–350 (2016).
[Crossref]

Wieser, W.

Wong, D. W. K.

A. Li, J. Cheng, A. P. Yow, C. Wall, D. W. K. Wong, H. L. Tey, and J. Liu, “Epidermal segmentation in high-definition optical coherence tomography,” in “2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),” (2015), pp. 3045–3048.

Woodley, D.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Wulf, H. C.

J. Sandby-Moller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Dermato Venereologica 83, 410–413 (2003).
[Crossref] [PubMed]

Yasuno, Y.

Yonekura, K.

K. Mizukoshi, K. Yonekura, M. Futagawa, T. Nakamura, K. Hirayama, and K. Takahashi, “Changes in dermal papilla structures due to aging in the facial cheek region,” Skin Res Technol. 21, 224–231 (2015).
[Crossref]

Yow, A. P.

A. Li, J. Cheng, A. P. Yow, C. Wall, D. W. K. Wong, H. L. Tey, and J. Liu, “Epidermal segmentation in high-definition optical coherence tomography,” in “2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),” (2015), pp. 3045–3048.

Yu, P.

M. Zhang, L. Ma, and P. Yu, “Dual-band fourier domain optical coherence tomography with depth-related compensations,” Biomed Opt Express 5, 167–182 (2014).
[Crossref] [PubMed]

Zambruno, G.

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

Zhang, M.

M. Zhang, L. Ma, and P. Yu, “Dual-band fourier domain optical coherence tomography with depth-related compensations,” Biomed Opt Express 5, 167–182 (2014).
[Crossref] [PubMed]

Zhao, H.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using gabor domain optical coherence microscopy,” J Biomed Opt. 17, 126006 (2012).
[Crossref] [PubMed]

Acta Dermato Venereologica (1)

J. Sandby-Moller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Dermato Venereologica 83, 410–413 (2003).
[Crossref] [PubMed]

Appl. Opt. (4)

Arch Dermatol Res. (5)

M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch Dermatol Res. 305, 283–297 (2013).
[Crossref] [PubMed]

A. A. Hussain, L. Themstrup, and G. B. E. Jemec, “Optical coherence tomography in the diagnosis of basal cell carcinoma,” Arch Dermatol Res. 307, 1–10 (2015).
[Crossref]

M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography imaging of melanocytic lesions: a pilot study,” Arch Dermatol Res. 306, 11–26 (2014).
[Crossref]

M. A. L. M. Boone, M. Suppa, F. Dhaenens, M. Miyamoto, A. Marneffe, G. B. E. Jemec, V. Del Marmol, and R. Nebosis, “In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography,” Arch Dermatol Res. 308, 7–20 (2016).
[Crossref]

M. A. L. M. Boone, M. Suppa, A. Marneffe, M. Miyamoto, G. B. E. Jemec, and V. Del Marmol, “High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study,” Arch Dermatol Res. 307, 705–720 (2015).
[Crossref] [PubMed]

Biomed Opt Express (1)

M. Zhang, L. Ma, and P. Yu, “Dual-band fourier domain optical coherence tomography with depth-related compensations,” Biomed Opt Express 5, 167–182 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Br J Dermatol. (1)

M. Boone, S. Norrenberg, G. Jemec, and V. D. Marmol, “Imaging of basal cell carcinoma by high-definition optical coherence tomography: histomorphological correlation. a pilot study,” Br J Dermatol. 167, 856–864 (2012).
[Crossref] [PubMed]

Dermatol Surg. (1)

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: Observer-blinded evaluation by dermatologists and pathologists,” Dermatol Surg. 35, 965 (2009).
[Crossref] [PubMed]

Dermatology (1)

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008).
[Crossref] [PubMed]

Exp Dermatol. (2)

M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Marmol, “Imaging actinic keratosis by high-definition optical coherence tomography. histomorphologic correlation: a pilot study,” Exp Dermatol. 22, 93–97 (2013).
[PubMed]

M. Boone, G. B. E. Jemec, and V. D. Marmol, “High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy,” Exp Dermatol. 21, 740–744 (2012).
[Crossref] [PubMed]

G Ital Dermatol Venereol (1)

V. Newton, J. Mcconnell, S. Hibbert, H. Graham, and R. Watson, “Skin aging: molecular pathology, dermal remodelling and the imaging revolution,” G Ital Dermatol Venereol 150, 665–674 (2015).
[PubMed]

Invest Ophthalmol Vis Sci. (1)

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci. 52, 7738–7748 (2011).
[Crossref] [PubMed]

J Am Acad Dermatol. (2)

J.-D. Fine, L. Bruckner-Tuderman, R. A. J. Eady, E. A. Bauer, J. W. Bauer, C. Has, A. Heagerty, H. Hintner, A. Hovnanian, M. F. Jonkman, I. Leigh, M. P. Marinkovich, A. E. Martinez, J. A. McGrath, J. E. Mellerio, C. Moss, D. F. Murrell, H. Shimizu, J. Uitto, D. Woodley, and G. Zambruno, “Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification,” J Am Acad Dermatol. 70, 1103–1126 (2014).
[Crossref] [PubMed]

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J Am Acad Dermatol. 37, 958–963 (1997).
[Crossref]

J Biomed Opt. (4)

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. M. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J Biomed Opt. 9, 274 (2004).
[Crossref]

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using gabor domain optical coherence microscopy,” J Biomed Opt. 17, 126006 (2012).
[Crossref] [PubMed]

R. Archid, A. Patzelt, S. S. Ahmad, W. Sterry, J. M. Lademann, B. Lange-Asschenfeldt, M. Ulrich, E. Stockfleth, and S. Philipp, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J Biomed Opt. 17, 101511 (2012).
[Crossref]

D. B. Constantin Caruntu, “Evaluation through in vivo reflectance confocal microscopy of the cutaneous neurogenic inflammatory reaction induced by capsaicin in human subjects,” J Biomed Opt. 17, 085003 (2012).

J Dermatol Sci. (1)

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J Dermatol Sci. 44, 145–152 (2006).
[Crossref] [PubMed]

J Eur Acad Dermatol Venereol. (5)

T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J Eur Acad Dermatol Venereol. 20, 791–795 (2005).

M. Boone, M. Suppa, G. Pellacani, A. Marneffe, M. Miyamoto, I. Alarcon, C. Ruini, R. Hofmann-Wellenhof, J. Malvehy, G. Jemec, and V. D. Marmol, “High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical bcc imitators and differentiation between common subtypes,” J Eur Acad Dermatol Venereol. 29, 1771–1780 (2015).
[Crossref] [PubMed]

M. Boone, A. Marneffe, M. Suppa, M. Miyamoto, I. Alarcon, R. Hofmann-Wellenhof, J. Malvehy, G. Pellacani, and V. D. Marmol, “High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma,” J Eur Acad Dermatol Venereol. 29, 1606–1615 (2015).
[Crossref] [PubMed]

T. Gambichler, M. Schmid-Wendtner, I. Plura, P. Kampilafkos, M. Stücker, C. Berking, and T. Maier, “A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi,” J Eur Acad Dermatol Venereol. 29, 537–541 (2015).
[Crossref]

S. Schuh, R. Kaestle, E. C. Sattler, and J. Welzel, “Optical coherence tomography of actinic keratoses and basal cell carcinomas – differentiation by quantification of signal intensity and layer thickness,” J Eur Acad Dermatol Venereol. 30, 1321–1326 (2016).
[Crossref] [PubMed]

J Investig Dermatol Symp Proc. (1)

I. M. Braverman, “The cutaneous microcirculation,” J Investig Dermatol Symp Proc. 5, 3 – 9 (2000).
[Crossref]

J Investig Dermatol. (2)

G. Pellacani, P. Guitera, C. Longo, M. Avramidis, S. Seidenari, and S. Menzies, “The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions,” J Investig Dermatol. 127, 2759–2765 (2007).
[Crossref] [PubMed]

S. Kurugol, K. Kose, B. Park, J. G. Dy, D. H. Brooks, and M. Rajadhyaksha, “Automated delineation of dermal-epidermal junction in reflectance confocal microscopy image stacks of human skin,” J Investig Dermatol. 135, 710–717 (2015).
[Crossref]

J. Biophotonics (2)

W.-C. Kuo, Y.-M. Kuo, and S.-Y. Wen, “Quantitative and rapid estimations of human sub-surface skin mass using ultra-high-resolution spectral domain optical coherence tomography,” J. Biophotonics 9, 343–350 (2016).
[Crossref]

T. Gambichler, I. Plura, M. Schmid-Wendtner, K. Valavanis, D. Kulichova, M. Stücker, A. Pljakic, C. Berking, and T. Maier, “High-definition optical coherence tomography of melanocytic skin lesions,” J. Biophotonics 8, 681–686 (2015).
[Crossref]

Nature Medicine (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Medicine 1, 970 (1995).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Scientific Reports (1)

S. Adabi, M. Hosseinzadeh, S. Noei, S. Conforto, S. Daveluy, A. Clayton, D. Mehregan, and M. Nasiriavanaki, “Universal in vivo textural model for human skin based on optical coherence tomograms,” Scientific Reports 7, 17912 (2017).
[Crossref] [PubMed]

Skin Res Technol. (3)

K. Mizukoshi, K. Yonekura, M. Futagawa, T. Nakamura, K. Hirayama, and K. Takahashi, “Changes in dermal papilla structures due to aging in the facial cheek region,” Skin Res Technol. 21, 224–231 (2015).
[Crossref]

J. Hegyi, V. Hegyi, G. Messer, P. Arenberger, T. Ruzicka, and C. Berking, “Confocal laser-scanning capillaroscopy: a novel approach to the analysis of skin capillaries in vivo,” Skin Res Technol. 15, 476–481 (2009).
[Crossref] [PubMed]

S. Schuh, R. Kaestle, E. Sattler, and J. Welzel, “Comparison of different optical coherence tomography devices for diagnosis of non-melanoma skin cancer,” Skin Res Technol. 22, 395–405 (2016).
[Crossref] [PubMed]

The Lancet (1)

H. C. Nousari and G. J. Anhalt, “Pemphigus and bullous pemphigoid,” The Lancet 354, 667–672 (1999).
[Crossref]

Other (4)

D. Weedon, Skin Pathology(Elsevier, 2002), 2nd ed.

A. Li, J. Cheng, A. P. Yow, C. Wall, D. W. K. Wong, H. L. Tey, and J. Liu, “Epidermal segmentation in high-definition optical coherence tomography,” in “2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),” (2015), pp. 3045–3048.

W. Drexler and J. Fujimoto, eds., Optical Coherence Tomography (Springer International Publishing, Switzerland, 2015).
[Crossref]

D. E. Elder, Lever’s Histopathology of the Skin (Wolters Kluver, 2015), 11th ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Photographs of the C-OCT (a) and the UHR-OCT system (b) applied for the comparative study. (c) depicts the home-built handheld probe of the UHR-OCT system.
Fig. 2
Fig. 2 (a): OCT images from HP 5 of the cheek generated with the C-OCT and the UHR-OCT system with the green delineations marking the surface tracing performed and representing the axial positions zS. (b) Image signal average along ’x’ relative to the surface trace. The horisontal dashed lines mark the signal readings of Ep and D utilised for computing the Ed-D contrast. (c) presents the Ep-D contrasts calculated for central B-scans each associated with a HP volume scan. HP 1 is excluded due to crucial artefacts in the scans.
Fig. 3
Fig. 3 UHR-OCT system: DEJ evaluation for central B-scan of the cheek of HP 2 (top image), scale bar representing 100 μm. A ROI is selected (dashed rectangle) of which a zoom-in is presented (bottom image). Within the zoom-in three subsets (A1, A2 and A3) are emphasised (green vertical lines) and a guide to the eye of the DB propagation through the skin (purple dashed) is given. The subsets, comprising each ten A-scans and representing regions of constant axial DEJ position, are averaged laterally (horizontally in image) to accentuate the DEJ from the speckle noise providing three graphs with means and stds (top graphs). A double sigmoid fitting (bottom graphs) is performed for each average to extract DEJ information.
Fig. 4
Fig. 4 C-OCT system: DEJ evaluation for central B-scan of the cheek of HP 2 (top image), scale bar representing 100 μm. A ROI is selected (dashed rectangle) of which a zoom-in is presented (bottom image). Within the zoom-in three subsets (K1, K2 and K3) are emphasised (green vertical lines) and a guide to the eye of the DB propagation through the skin (purple dashed) is given. The subsets, comprising each ten A-scans and representing regions of constant axial DEJ position, are averaged laterally (horizontally in image) to accentuate the DEJ from the speckle noise providing three graphs with means and stds (top graphs). A double sigmoid fitting (bottom graphs) is performed for each average to extract DEJ information.
Fig. 5
Fig. 5 The cheek: Ep thickness values and DEJ edge sharpness values found from the double sigmoid fitting procedure for both C-OCT and UHR-OCT system central B-scans for the cheek. A, B and C (K, L and M) denote the three subsets of each of the three high-contrast B-scans denoted 1, 2 and 3 (HP2, HP4 and HP9).
Fig. 6
Fig. 6 (a): OCT images from HP 7 of the hand palm generated with the C-OCT and the UHR-OCT system with the green delineations marking the surface tracing performed. (b) Image signal average along ’x’ relative to the surface trace. The horisontal dashed lines mark the signal readings of Ep, DEJ and D utilised for computing the Ed-D contrast. (c) presents the Ep-D contrasts calculated for central B-scans each associated with a HP volume scan. HP 2, HP 6 and HP 9 are excluded due to significant deviations in the DEJ relative position in the scans caused by special skin features.
Fig. 7
Fig. 7 UHR-OCT system: DEJ evaluation for central B-scan of the hand palm of HP 3 (top image), scale bar representing 100 μm. A ROI is selected (dashed rectangle) of which a zoom-in is presented (bottom image). Within the zoom-in three subsets (A1, A2 and A3) are emphasised (green vertical lines) and a guide to the eye of the DB propagation through the skin (purple dashed) is given. The subsets, comprising each ten A-scans and representing regions of constant axial DEJ position, are averaged laterally (horizontally in image) to accentuate the DEJ from the speckle noise providing three graphs with means and stds (top graphs). A double sigmoid fitting (bottom graphs) is performed for each average to extract DEJ information.
Fig. 8
Fig. 8 C-OCT system: DEJ evaluation for central B-scan of the hand palm of HP 3 (top image), scale bar representing 100 μm. A ROI is selected (dashed rectangle) of which a zoom-in is presented (bottom image). Within the zoom-in three subsets (K1, K2 and K3) are emphasised (green vertical lines) and a guide to the eye of the DB propagation through the skin (purple dashed) is given. The subsets, comprising each ten A-scans and representing regions of constant axial DEJ position, are averaged laterally (horizontally in image) to accentuate the DEJ from the speckle noise providing three graphs with means and stds (top graphs). A double sigmoid fitting (bottom graphs) is performed for each average to extract DEJ information.
Fig. 9
Fig. 9 The palm: Ep thickness values and DEJ edge sharpness values found from the double sigmoid fitting procedure for both C-OCT and UHR-OCT system central B-scans for the palm. A, B and C (K, L and M) denote the three subsets of each of the three high-contrast B-scans denoted 1, 2 and 3 (HP3, HP5 and HP7).
Fig. 10
Fig. 10 B-scan zoom-in highlighting skin structures in the palm of the high contrast HPs for C-OCT and UHR-OCT. Stratum corneum (Sc) and stratum spinosum (Ss) and D is marked for HP3. Dermal papillaries and the exact DEJ is marked for HP5. The characteristic two dark bands (DB1 and DB2) seen for OCT signals of glabrous skin are surrounded by oval contours. The scale bars represent 100 μm.
Fig. 11
Fig. 11 Zoom-ins on individual dermal papillae of the palm of HP5. (a)-(d) depicts capillaries of the dermal papillae seen in the UHR-OCT images generated from 3–5 averaged B-scans each. Scale bars are 20 μm.
Fig. 12
Fig. 12 Imaging of smaller and larger hairs on cheek of HP 4 comparing C-OCT and UHR-OCT systems. In images a–f and g–l hair follicles are located, each with scale bars representing 100 μm. a and g show larger hairs. fz and lz are zoom-ins of f and l, respectively, and pairs of vertical dashed green lines mark hair-to-surroundings bounderies, each pair enclosing three rows of pixels. Scale bars in fz and lz represent 20 μm.
Fig. 13
Fig. 13 Histology images of human skin representing the gold standard of histology. (a) is a histology projection of normal skin of the cheek and (b) presents a glabrous skin histology image of the palm with associated adnexal structures including dermal papillae capillaries. Scale bars represent 100 μm. Images by courtesy of R. H. Nielsen, Rigshospitalet, Denmark.
Fig. 14
Fig. 14 Sketch of the double sigmoid model curve (MC) with definitions of the dark band (DB) and the edge sharpness (ES). A, B1, B2, C1, C2, and D refer to the parameters in eq. (1)
Fig. 15
Fig. 15 Image comparison between commonly logarithmically scaled images and a shadow compensated image. (a)–(c) display the same image using three different 8-bit thresholds on logarithmic scale. (d) shows the same image with shadow compensation and linear scaling.
Fig. 16
Fig. 16 Profiles of laterally averaged central B-scans of the cheek for all HPs but HP1 containing severe artefacts. The dashed and solid lines introduced for HP2 mark the respective maximum (D) and minimum (Ep) signal readings applied in determining the DEJ region Ep-D contrast presented in Fig 2(c). All depth-axis are optical distances, i.e. scaled as in free space.
Fig. 17
Fig. 17 Profiles of laterally averaged central B-scans of the palm for all HPs but HP2, HP6 and HP9 containing severe artefacts. The dashed and dotted lines introduced for HP1 mark the respective Ep and D maxima signal readings where solid lines mark minima (DB) readings. The data is applied in determining the DEJ region Ep-D contrast presented in Fig 6(c). All depth-axis are optical distances, i.e. scaled as in free space.

Tables (2)

Tables Icon

Table 1 Key characteristics of the OCT systems. Information on the C-OCT system is gained from the official website: vivosight.com/researcher. The skin tissue is assumed to have a refractive index of n = 1.35. *Based on the fast-axis lateral pixel-step in the exported images.The scanning area chosen for this specific study.Measured with photo-diode S122C from Thorlabs.

Tables Icon

Table 2 Overview on age, skin-type and gender information of the healthy participants.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

MC = A + ( B 1 A ) 1 + 10 | D | ( z C 1 ) + ( B 2 A ) 1 + 10 | D | ( z C 2 ) ;

Metrics