Abstract

In vivo autofluorescence hyperspectral imaging of moving objects can be challenging due to motion artifacts and to the limited amount of acquired photons. To address both limitations, we selectively reduced the number of spectral bands while maintaining accurate target identification. Several downsampling approaches were applied to data obtained from the atrial tissue of adult pigs with sites of radiofrequency ablation lesions. Standard image qualifiers such as the mean square error, the peak signal-to-noise ratio, the structural similarity index map, and an accuracy index of lesion component images were used to quantify the effects of spectral binning, an increased spectral distance between individual bands, as well as random combinations of spectral bands. Results point to several quantitative strategies for deriving combinations of a small number of spectral bands that can successfully detect target tissue. Insights from our studies can be applied to a wide range of applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vitro characterization of cardiac radiofrequency ablation lesions using optical coherence tomography

Christine P. Fleming, Kara J. Quan, Hui Wang, Guy Amit, and Andrew M. Rollins
Opt. Express 18(3) 3079-3092 (2010)

Selection of optimal filters for multispectral imaging

Iain B. Styles
Appl. Opt. 47(30) 5585-5591 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2014).
    [Crossref]
  2. Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Crit. Rev. Food Sci. Nutr. 52(11), 1039–1058 (2012).
    [Crossref] [PubMed]
  3. E. K. Hege, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surviellance,” in S. S. Shen and P. E. Lewis, eds. (International Society for Optics and Photonics, 2004), Vol. 5159, p. 380.
  4. N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
    [Crossref] [PubMed]
  5. L. Swift, D. A. Gil, R. Jaimes, M. Kay, M. Mercader, and N. Sarvazyan, “Visualization of epicardial cryoablation lesions using endogenous tissue fluorescence,” Circ Arrhythm Electrophysiol 7(5), 929–937 (2014).
    [Crossref] [PubMed]
  6. D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
    [Crossref] [PubMed]
  7. M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
    [Crossref] [PubMed]
  8. L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Hear. Rhythm 15, 564 (2017).
  9. L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
    [Crossref] [PubMed]
  10. A. Schade, J. Krug, A.-G. Szöllösi, M. El Tarahony, and T. Deneke, “Pulmonary vein isolation with a novel endoscopic ablation system using laser energy,” Expert Rev. Cardiovasc. Ther. 10(8), 995–1000 (2012).
    [Crossref] [PubMed]
  11. S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, and V. Y. Reddy, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
    [Crossref] [PubMed]
  12. N. Muselimyan, M. A. Jishi, H. Asfour, L. Swift, and N. A. Sarvazyan, “Anatomical and Optical Properties of Atrial Tissue: Search for a Suitable Animal Model,” Cardiovasc. Eng. Technol. 8(4), 505–514 (2017).
    [Crossref] [PubMed]
  13. J. G. Dwight and T. S. Tkaczyk, “Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy,” Biomed. Opt. Express 8(3), 1950–1964 (2017).
    [Crossref] [PubMed]
  14. Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
    [Crossref] [PubMed]
  15. K. Dorozynska and E. Kristensson, “Implementation of a multiplexed structured illumination method to achieve snapshot multispectral imaging,” Opt. Express 25(15), 17211–17226 (2017).
    [Crossref] [PubMed]
  16. Y. Yuan, X.-M. Ding, L.-J. Su, and W.-Y. Wang, “Modeling and analysis for the image mapping spectrometer,” Chin. Phys. B 26(4), 040701 (2017).
    [Crossref]
  17. J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
    [Crossref] [PubMed]
  18. J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 041207 (2005).
    [Crossref] [PubMed]
  19. H. Asfour, L. Swift, N. Sarvazyan, M. Doroslovački, M. Kay, and M. Doroslovacki, “Preprocessing of fluoresced transmembrane potential signals for cardiac optical mapping,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 227–230 (2011).
    [PubMed]
  20. H. Asfour, L. M. Swift, N. Sarvazyan, M. Doroslovački, and M. W. Kay, “Signal decomposition of transmembrane voltage-sensitive dye fluorescence using a multiresolution wavelet analysis,” IEEE Trans. Biomed. Eng. 58(7), 2083–2093 (2011).
    [Crossref] [PubMed]
  21. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
    [Crossref] [PubMed]
  22. H. Xu and B. W. Rice, “In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique,” J. Biomed. Opt. 14(6), 064011 (2009).
    [Crossref] [PubMed]
  23. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
    [Crossref] [PubMed]
  24. R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
    [Crossref] [PubMed]
  25. H. C. Hendargo, Y. Zhao, T. Allenby, and G. M. Palmer, “Snap-shot multispectral imaging of vascular dynamics in a mouse window-chamber model,” Opt. Lett. 40(14), 3292–3295 (2015).
    [Crossref] [PubMed]
  26. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
    [Crossref]
  27. C. B. Lucasius and G. Kateman, “Understanding and using genetic algorithms Part 1. Concepts, properties and context,” Chemom. Intell. Lab. Syst. 19(1), 1–33 (1993).
    [Crossref]
  28. C. B. Lucasius and G. Kateman, “Understanding and using genetic algorithms Part 2. Representation, configuration and hybridization,” Chemom. Intell. Lab. Syst. 25(2), 99–145 (1994).
    [Crossref]
  29. Y.-L. Chang, “A simulated annealing feature extraction approach for hyperspectral images,” Future Gener. Comput. Syst. 27(4), 419–426 (2011).
    [Crossref]
  30. J. M. Brenchley, U. Hörchner, and J. H. Kalivas, “Wavelength selection characterization for NIR spectra,” Appl. Spectrosc. 51(5), 689–699 (1997).
    [Crossref]
  31. P. Bajcsy and P. Groves, “Methodology for Hyperspectral Band Selection,” Photogramm. Eng. Remote Sensing 70(7), 793–802 (2004).
    [Crossref]
  32. S. DeBacker, P. Kempeneers, W. Debruyn, and P. Scheunders, “A Band Selection Technique for Spectral Classification,” IEEE Geosci. Remote Sens. Lett. 2(3), 319–323 (2005).
    [Crossref]
  33. S. Guan, M. Loew, H. Asfour, N. Sarvazyan, and N. Muselimyan, “Lesion detection for cardiac ablation from auto-fluorescence hyperspectral images,” in SPIE Medical Imaging (SPIE, 2018), pp. A10578–A10579.
  34. A. H. Kashani, G. R. Lopez Jaime, S. Saati, G. Martin, R. Varma, and M. S. Humayun, “Noninvasive assessment of retinal vascular oxygen content among normal and diabetic human subjects: a study using hyperspectral computed tomographic imaging spectroscopy,” Retina 34(9), 1854–1860 (2014).
    [Crossref] [PubMed]
  35. T. R. Choudhary, D. Ball, J. Fernandez Ramos, A. I. McNaught, and A. R. Harvey, “Assessment of acute mild hypoxia on retinal oxygen saturation using snapshot retinal oximetry,” Invest. Ophthalmol. Vis. Sci. 54(12), 7538–7543 (2013).
    [Crossref] [PubMed]
  36. T. Chen, P. Yuen, M. Richardson, Z. She, and G. Liu, “Wavelength and model selection for hyperspectral imaging of tissue oxygen saturation,” Imaging Sci. J. 63(5), 290–295 (2015).
    [Crossref]
  37. A. B. Castrillo and L. L. Randeberg, “A Hyperspectral Imaging System using an Acousto-Optic Tunable Filter,” thesis (2015).
  38. I. Kurtz, R. Dwelle, and P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58(11), 1996–2003 (1987).
    [Crossref]
  39. Y. J. Hsu, C.-C. Chen, C.-H. Huang, C.-H. Yeh, L.-Y. Liu, and S.-Y. Chen, “Line-scanning hyperspectral imaging based on structured illumination optical sectioning,” Biomed. Opt. Express 8(6), 3005–3016 (2017).
    [Crossref] [PubMed]
  40. E. L. P. Larsen, L. L. Randeberg, E. Olstad, O. A. Haugen, A. Aksnes, and L. O. Svaasand, “Hyperspectral imaging of atherosclerotic plaques in vitro,” J. Biomed. Opt. 16(2), 026011 (2011).
    [Crossref]
  41. H.-T. Lim and V. M. Murukeshan, “A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications,” Sci. Rep. 6(1), 24044 (2016).
    [Crossref] [PubMed]
  42. A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging,” Opt. Express 18(6), 5602–5608 (2010).
    [Crossref] [PubMed]
  43. T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
    [Crossref] [PubMed]

2017 (8)

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Hear. Rhythm 15, 564 (2017).

N. Muselimyan, M. A. Jishi, H. Asfour, L. Swift, and N. A. Sarvazyan, “Anatomical and Optical Properties of Atrial Tissue: Search for a Suitable Animal Model,” Cardiovasc. Eng. Technol. 8(4), 505–514 (2017).
[Crossref] [PubMed]

Y. Yuan, X.-M. Ding, L.-J. Su, and W.-Y. Wang, “Modeling and analysis for the image mapping spectrometer,” Chin. Phys. B 26(4), 040701 (2017).
[Crossref]

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

J. G. Dwight and T. S. Tkaczyk, “Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy,” Biomed. Opt. Express 8(3), 1950–1964 (2017).
[Crossref] [PubMed]

Y. J. Hsu, C.-C. Chen, C.-H. Huang, C.-H. Yeh, L.-Y. Liu, and S.-Y. Chen, “Line-scanning hyperspectral imaging based on structured illumination optical sectioning,” Biomed. Opt. Express 8(6), 3005–3016 (2017).
[Crossref] [PubMed]

K. Dorozynska and E. Kristensson, “Implementation of a multiplexed structured illumination method to achieve snapshot multispectral imaging,” Opt. Express 25(15), 17211–17226 (2017).
[Crossref] [PubMed]

2016 (3)

H.-T. Lim and V. M. Murukeshan, “A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications,” Sci. Rep. 6(1), 24044 (2016).
[Crossref] [PubMed]

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

2015 (3)

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, and V. Y. Reddy, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

T. Chen, P. Yuen, M. Richardson, Z. She, and G. Liu, “Wavelength and model selection for hyperspectral imaging of tissue oxygen saturation,” Imaging Sci. J. 63(5), 290–295 (2015).
[Crossref]

H. C. Hendargo, Y. Zhao, T. Allenby, and G. M. Palmer, “Snap-shot multispectral imaging of vascular dynamics in a mouse window-chamber model,” Opt. Lett. 40(14), 3292–3295 (2015).
[Crossref] [PubMed]

2014 (5)

A. H. Kashani, G. R. Lopez Jaime, S. Saati, G. Martin, R. Varma, and M. S. Humayun, “Noninvasive assessment of retinal vascular oxygen content among normal and diabetic human subjects: a study using hyperspectral computed tomographic imaging spectroscopy,” Retina 34(9), 1854–1860 (2014).
[Crossref] [PubMed]

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

L. Swift, D. A. Gil, R. Jaimes, M. Kay, M. Mercader, and N. Sarvazyan, “Visualization of epicardial cryoablation lesions using endogenous tissue fluorescence,” Circ Arrhythm Electrophysiol 7(5), 929–937 (2014).
[Crossref] [PubMed]

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2014).
[Crossref]

2013 (2)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

T. R. Choudhary, D. Ball, J. Fernandez Ramos, A. I. McNaught, and A. R. Harvey, “Assessment of acute mild hypoxia on retinal oxygen saturation using snapshot retinal oximetry,” Invest. Ophthalmol. Vis. Sci. 54(12), 7538–7543 (2013).
[Crossref] [PubMed]

2012 (4)

Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Crit. Rev. Food Sci. Nutr. 52(11), 1039–1058 (2012).
[Crossref] [PubMed]

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

A. Schade, J. Krug, A.-G. Szöllösi, M. El Tarahony, and T. Deneke, “Pulmonary vein isolation with a novel endoscopic ablation system using laser energy,” Expert Rev. Cardiovasc. Ther. 10(8), 995–1000 (2012).
[Crossref] [PubMed]

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

2011 (5)

H. Asfour, L. Swift, N. Sarvazyan, M. Doroslovački, M. Kay, and M. Doroslovacki, “Preprocessing of fluoresced transmembrane potential signals for cardiac optical mapping,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 227–230 (2011).
[PubMed]

H. Asfour, L. M. Swift, N. Sarvazyan, M. Doroslovački, and M. W. Kay, “Signal decomposition of transmembrane voltage-sensitive dye fluorescence using a multiresolution wavelet analysis,” IEEE Trans. Biomed. Eng. 58(7), 2083–2093 (2011).
[Crossref] [PubMed]

E. L. P. Larsen, L. L. Randeberg, E. Olstad, O. A. Haugen, A. Aksnes, and L. O. Svaasand, “Hyperspectral imaging of atherosclerotic plaques in vitro,” J. Biomed. Opt. 16(2), 026011 (2011).
[Crossref]

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

Y.-L. Chang, “A simulated annealing feature extraction approach for hyperspectral images,” Future Gener. Comput. Syst. 27(4), 419–426 (2011).
[Crossref]

2010 (1)

2009 (1)

H. Xu and B. W. Rice, “In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique,” J. Biomed. Opt. 14(6), 064011 (2009).
[Crossref] [PubMed]

2005 (2)

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 041207 (2005).
[Crossref] [PubMed]

S. DeBacker, P. Kempeneers, W. Debruyn, and P. Scheunders, “A Band Selection Technique for Spectral Classification,” IEEE Geosci. Remote Sens. Lett. 2(3), 319–323 (2005).
[Crossref]

2004 (2)

P. Bajcsy and P. Groves, “Methodology for Hyperspectral Band Selection,” Photogramm. Eng. Remote Sensing 70(7), 793–802 (2004).
[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

1997 (1)

1994 (1)

C. B. Lucasius and G. Kateman, “Understanding and using genetic algorithms Part 2. Representation, configuration and hybridization,” Chemom. Intell. Lab. Syst. 25(2), 99–145 (1994).
[Crossref]

1993 (1)

C. B. Lucasius and G. Kateman, “Understanding and using genetic algorithms Part 1. Concepts, properties and context,” Chemom. Intell. Lab. Syst. 19(1), 1–33 (1993).
[Crossref]

1987 (1)

I. Kurtz, R. Dwelle, and P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58(11), 1996–2003 (1987).
[Crossref]

Aksnes, A.

E. L. P. Larsen, L. L. Randeberg, E. Olstad, O. A. Haugen, A. Aksnes, and L. O. Svaasand, “Hyperspectral imaging of atherosclerotic plaques in vitro,” J. Biomed. Opt. 16(2), 026011 (2011).
[Crossref]

Allenby, T.

Armstrong, K.

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Hear. Rhythm 15, 564 (2017).

Aryana, A.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, and V. Y. Reddy, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Asfour, H.

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Hear. Rhythm 15, 564 (2017).

N. Muselimyan, M. A. Jishi, H. Asfour, L. Swift, and N. A. Sarvazyan, “Anatomical and Optical Properties of Atrial Tissue: Search for a Suitable Animal Model,” Cardiovasc. Eng. Technol. 8(4), 505–514 (2017).
[Crossref] [PubMed]

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

H. Asfour, L. M. Swift, N. Sarvazyan, M. Doroslovački, and M. W. Kay, “Signal decomposition of transmembrane voltage-sensitive dye fluorescence using a multiresolution wavelet analysis,” IEEE Trans. Biomed. Eng. 58(7), 2083–2093 (2011).
[Crossref] [PubMed]

H. Asfour, L. Swift, N. Sarvazyan, M. Doroslovački, M. Kay, and M. Doroslovacki, “Preprocessing of fluoresced transmembrane potential signals for cardiac optical mapping,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 227–230 (2011).
[PubMed]

Bahnson, T. D.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, and V. Y. Reddy, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Bain, A. J.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Bajcsy, P.

P. Bajcsy and P. Groves, “Methodology for Hyperspectral Band Selection,” Photogramm. Eng. Remote Sensing 70(7), 793–802 (2004).
[Crossref]

Ball, D.

T. R. Choudhary, D. Ball, J. Fernandez Ramos, A. I. McNaught, and A. R. Harvey, “Assessment of acute mild hypoxia on retinal oxygen saturation using snapshot retinal oximetry,” Invest. Ophthalmol. Vis. Sci. 54(12), 7538–7543 (2013).
[Crossref] [PubMed]

Bedard, N.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

Blacker, T. S.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

Brenchley, J. M.

Calin, M. A.

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2014).
[Crossref]

Chahbazian, T.

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

Chang, Y.-L.

Y.-L. Chang, “A simulated annealing feature extraction approach for hyperspectral images,” Future Gener. Comput. Syst. 27(4), 419–426 (2011).
[Crossref]

Chen, C.-C.

Chen, S.-Y.

Chen, T.

T. Chen, P. Yuen, M. Richardson, Z. She, and G. Liu, “Wavelength and model selection for hyperspectral imaging of tissue oxygen saturation,” Imaging Sci. J. 63(5), 290–295 (2015).
[Crossref]

Choudhary, T. R.

T. R. Choudhary, D. Ball, J. Fernandez Ramos, A. I. McNaught, and A. R. Harvey, “Assessment of acute mild hypoxia on retinal oxygen saturation using snapshot retinal oximetry,” Invest. Ophthalmol. Vis. Sci. 54(12), 7538–7543 (2013).
[Crossref] [PubMed]

Coffee, R. E.

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

Cuoco, F.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, and V. Y. Reddy, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

DeBacker, S.

S. DeBacker, P. Kempeneers, W. Debruyn, and P. Scheunders, “A Band Selection Technique for Spectral Classification,” IEEE Geosci. Remote Sens. Lett. 2(3), 319–323 (2005).
[Crossref]

Debruyn, W.

S. DeBacker, P. Kempeneers, W. Debruyn, and P. Scheunders, “A Band Selection Technique for Spectral Classification,” IEEE Geosci. Remote Sens. Lett. 2(3), 319–323 (2005).
[Crossref]

Deneke, T.

A. Schade, J. Krug, A.-G. Szöllösi, M. El Tarahony, and T. Deneke, “Pulmonary vein isolation with a novel endoscopic ablation system using laser energy,” Expert Rev. Cardiovasc. Ther. 10(8), 995–1000 (2012).
[Crossref] [PubMed]

Denis, A.

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

Derval, N.

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

Ding, X.-M.

Y. Yuan, X.-M. Ding, L.-J. Su, and W.-Y. Wang, “Modeling and analysis for the image mapping spectrometer,” Chin. Phys. B 26(4), 040701 (2017).
[Crossref]

Doroslovacki, M.

H. Asfour, L. M. Swift, N. Sarvazyan, M. Doroslovački, and M. W. Kay, “Signal decomposition of transmembrane voltage-sensitive dye fluorescence using a multiresolution wavelet analysis,” IEEE Trans. Biomed. Eng. 58(7), 2083–2093 (2011).
[Crossref] [PubMed]

H. Asfour, L. Swift, N. Sarvazyan, M. Doroslovački, M. Kay, and M. Doroslovacki, “Preprocessing of fluoresced transmembrane potential signals for cardiac optical mapping,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 227–230 (2011).
[PubMed]

H. Asfour, L. Swift, N. Sarvazyan, M. Doroslovački, M. Kay, and M. Doroslovacki, “Preprocessing of fluoresced transmembrane potential signals for cardiac optical mapping,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 227–230 (2011).
[PubMed]

Dorozynska, K.

Duchen, M. R.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Dukkipati, S. R.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, and V. Y. Reddy, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Dwelle, R.

I. Kurtz, R. Dwelle, and P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58(11), 1996–2003 (1987).
[Crossref]

Dwight, J. G.

J. G. Dwight and T. S. Tkaczyk, “Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy,” Biomed. Opt. Express 8(3), 1950–1964 (2017).
[Crossref] [PubMed]

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

El Tarahony, M.

A. Schade, J. Krug, A.-G. Szöllösi, M. El Tarahony, and T. Deneke, “Pulmonary vein isolation with a novel endoscopic ablation system using laser energy,” Expert Rev. Cardiovasc. Ther. 10(8), 995–1000 (2012).
[Crossref] [PubMed]

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

Feng, Y.-Z.

Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Crit. Rev. Food Sci. Nutr. 52(11), 1039–1058 (2012).
[Crossref] [PubMed]

Fernandez Ramos, J.

T. R. Choudhary, D. Ball, J. Fernandez Ramos, A. I. McNaught, and A. R. Harvey, “Assessment of acute mild hypoxia on retinal oxygen saturation using snapshot retinal oximetry,” Invest. Ophthalmol. Vis. Sci. 54(12), 7538–7543 (2013).
[Crossref] [PubMed]

Fletcher-Holmes, D. W.

Gale, J. E.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Gao, L.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

Gil, D. A.

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

L. Swift, D. A. Gil, R. Jaimes, M. Kay, M. Mercader, and N. Sarvazyan, “Visualization of epicardial cryoablation lesions using endogenous tissue fluorescence,” Circ Arrhythm Electrophysiol 7(5), 929–937 (2014).
[Crossref] [PubMed]

Gorman, A.

Gossage, K. W.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 041207 (2005).
[Crossref] [PubMed]

Groves, P.

P. Bajcsy and P. Groves, “Methodology for Hyperspectral Band Selection,” Photogramm. Eng. Remote Sensing 70(7), 793–802 (2004).
[Crossref]

Hagen, N.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Haïssaguerre, M.

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

Harvey, A. R.

T. R. Choudhary, D. Ball, J. Fernandez Ramos, A. I. McNaught, and A. R. Harvey, “Assessment of acute mild hypoxia on retinal oxygen saturation using snapshot retinal oximetry,” Invest. Ophthalmol. Vis. Sci. 54(12), 7538–7543 (2013).
[Crossref] [PubMed]

A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging,” Opt. Express 18(6), 5602–5608 (2010).
[Crossref] [PubMed]

Haugen, O. A.

E. L. P. Larsen, L. L. Randeberg, E. Olstad, O. A. Haugen, A. Aksnes, and L. O. Svaasand, “Hyperspectral imaging of atherosclerotic plaques in vitro,” J. Biomed. Opt. 16(2), 026011 (2011).
[Crossref]

Hendargo, H. C.

Hocini, M.

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

Hörchner, U.

Hoyt, C. C.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 041207 (2005).
[Crossref] [PubMed]

Hsu, Y. J.

Huang, C.-H.

Humayun, M. S.

A. H. Kashani, G. R. Lopez Jaime, S. Saati, G. Martin, R. Varma, and M. S. Humayun, “Noninvasive assessment of retinal vascular oxygen content among normal and diabetic human subjects: a study using hyperspectral computed tomographic imaging spectroscopy,” Retina 34(9), 1854–1860 (2014).
[Crossref] [PubMed]

Issa, Z. F.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, and V. Y. Reddy, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Jaimes, R.

L. Swift, D. A. Gil, R. Jaimes, M. Kay, M. Mercader, and N. Sarvazyan, “Visualization of epicardial cryoablation lesions using endogenous tissue fluorescence,” Circ Arrhythm Electrophysiol 7(5), 929–937 (2014).
[Crossref] [PubMed]

Jaïs, P.

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

Jishi, M. A.

N. Muselimyan, M. A. Jishi, H. Asfour, L. Swift, and N. A. Sarvazyan, “Anatomical and Optical Properties of Atrial Tissue: Search for a Suitable Animal Model,” Cardiovasc. Eng. Technol. 8(4), 505–514 (2017).
[Crossref] [PubMed]

Kalivas, J. H.

Kashani, A. H.

A. H. Kashani, G. R. Lopez Jaime, S. Saati, G. Martin, R. Varma, and M. S. Humayun, “Noninvasive assessment of retinal vascular oxygen content among normal and diabetic human subjects: a study using hyperspectral computed tomographic imaging spectroscopy,” Retina 34(9), 1854–1860 (2014).
[Crossref] [PubMed]

Kateman, G.

C. B. Lucasius and G. Kateman, “Understanding and using genetic algorithms Part 2. Representation, configuration and hybridization,” Chemom. Intell. Lab. Syst. 25(2), 99–145 (1994).
[Crossref]

C. B. Lucasius and G. Kateman, “Understanding and using genetic algorithms Part 1. Concepts, properties and context,” Chemom. Intell. Lab. Syst. 19(1), 1–33 (1993).
[Crossref]

Katzka, P.

I. Kurtz, R. Dwelle, and P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58(11), 1996–2003 (1987).
[Crossref]

Kay, M.

L. Swift, D. A. Gil, R. Jaimes, M. Kay, M. Mercader, and N. Sarvazyan, “Visualization of epicardial cryoablation lesions using endogenous tissue fluorescence,” Circ Arrhythm Electrophysiol 7(5), 929–937 (2014).
[Crossref] [PubMed]

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

H. Asfour, L. Swift, N. Sarvazyan, M. Doroslovački, M. Kay, and M. Doroslovacki, “Preprocessing of fluoresced transmembrane potential signals for cardiac optical mapping,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 227–230 (2011).
[PubMed]

Kay, M. W.

H. Asfour, L. M. Swift, N. Sarvazyan, M. Doroslovački, and M. W. Kay, “Signal decomposition of transmembrane voltage-sensitive dye fluorescence using a multiresolution wavelet analysis,” IEEE Trans. Biomed. Eng. 58(7), 2083–2093 (2011).
[Crossref] [PubMed]

Kempeneers, P.

S. DeBacker, P. Kempeneers, W. Debruyn, and P. Scheunders, “A Band Selection Technique for Spectral Classification,” IEEE Geosci. Remote Sens. Lett. 2(3), 319–323 (2005).
[Crossref]

Kester, R. T.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

Komatsu, Y.

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

Kristensson, E.

Krug, J.

A. Schade, J. Krug, A.-G. Szöllösi, M. El Tarahony, and T. Deneke, “Pulmonary vein isolation with a novel endoscopic ablation system using laser energy,” Expert Rev. Cardiovasc. Ther. 10(8), 995–1000 (2012).
[Crossref] [PubMed]

Kudenov, M. W.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Kurtz, I.

I. Kurtz, R. Dwelle, and P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58(11), 1996–2003 (1987).
[Crossref]

Kutinsky, I.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, and V. Y. Reddy, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Lakkireddy, D.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, and V. Y. Reddy, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Larsen, E. L. P.

E. L. P. Larsen, L. L. Randeberg, E. Olstad, O. A. Haugen, A. Aksnes, and L. O. Svaasand, “Hyperspectral imaging of atherosclerotic plaques in vitro,” J. Biomed. Opt. 16(2), 026011 (2011).
[Crossref]

Larson, C.

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Hear. Rhythm 15, 564 (2017).

Levenson, R. M.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 041207 (2005).
[Crossref] [PubMed]

Lim, H.-T.

H.-T. Lim and V. M. Murukeshan, “A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications,” Sci. Rep. 6(1), 24044 (2016).
[Crossref] [PubMed]

Liu, G.

T. Chen, P. Yuen, M. Richardson, Z. She, and G. Liu, “Wavelength and model selection for hyperspectral imaging of tissue oxygen saturation,” Imaging Sci. J. 63(5), 290–295 (2015).
[Crossref]

Liu, L.-Y.

Lopez Jaime, G. R.

A. H. Kashani, G. R. Lopez Jaime, S. Saati, G. Martin, R. Varma, and M. S. Humayun, “Noninvasive assessment of retinal vascular oxygen content among normal and diabetic human subjects: a study using hyperspectral computed tomographic imaging spectroscopy,” Retina 34(9), 1854–1860 (2014).
[Crossref] [PubMed]

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

Lucasius, C. B.

C. B. Lucasius and G. Kateman, “Understanding and using genetic algorithms Part 2. Representation, configuration and hybridization,” Chemom. Intell. Lab. Syst. 25(2), 99–145 (1994).
[Crossref]

C. B. Lucasius and G. Kateman, “Understanding and using genetic algorithms Part 1. Concepts, properties and context,” Chemom. Intell. Lab. Syst. 19(1), 1–33 (1993).
[Crossref]

Manea, D.

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2014).
[Crossref]

Mann, Z. F.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Mansfield, J. R.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 041207 (2005).
[Crossref] [PubMed]

Martin, G.

A. H. Kashani, G. R. Lopez Jaime, S. Saati, G. Martin, R. Varma, and M. S. Humayun, “Noninvasive assessment of retinal vascular oxygen content among normal and diabetic human subjects: a study using hyperspectral computed tomographic imaging spectroscopy,” Retina 34(9), 1854–1860 (2014).
[Crossref] [PubMed]

Mazhari, R.

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

McNaught, A. I.

T. R. Choudhary, D. Ball, J. Fernandez Ramos, A. I. McNaught, and A. R. Harvey, “Assessment of acute mild hypoxia on retinal oxygen saturation using snapshot retinal oximetry,” Invest. Ophthalmol. Vis. Sci. 54(12), 7538–7543 (2013).
[Crossref] [PubMed]

Mercader, M.

L. Swift, D. A. Gil, R. Jaimes, M. Kay, M. Mercader, and N. Sarvazyan, “Visualization of epicardial cryoablation lesions using endogenous tissue fluorescence,” Circ Arrhythm Electrophysiol 7(5), 929–937 (2014).
[Crossref] [PubMed]

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

Mercader, M. A.

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

Murukeshan, V. M.

H.-T. Lim and V. M. Murukeshan, “A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications,” Sci. Rep. 6(1), 24044 (2016).
[Crossref] [PubMed]

Muselimyan, N.

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Hear. Rhythm 15, 564 (2017).

N. Muselimyan, M. A. Jishi, H. Asfour, L. Swift, and N. A. Sarvazyan, “Anatomical and Optical Properties of Atrial Tissue: Search for a Suitable Animal Model,” Cardiovasc. Eng. Technol. 8(4), 505–514 (2017).
[Crossref] [PubMed]

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

Natale, A.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, and V. Y. Reddy, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Olstad, E.

E. L. P. Larsen, L. L. Randeberg, E. Olstad, O. A. Haugen, A. Aksnes, and L. O. Svaasand, “Hyperspectral imaging of atherosclerotic plaques in vitro,” J. Biomed. Opt. 16(2), 026011 (2011).
[Crossref]

Palmer, G. M.

Parasca, S. V.

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2014).
[Crossref]

Pascale, P.

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

Pawlowski, M. E.

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

Ramoul, K.

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

Randeberg, L. L.

E. L. P. Larsen, L. L. Randeberg, E. Olstad, O. A. Haugen, A. Aksnes, and L. O. Svaasand, “Hyperspectral imaging of atherosclerotic plaques in vitro,” J. Biomed. Opt. 16(2), 026011 (2011).
[Crossref]

Reddy, V. Y.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, and V. Y. Reddy, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Rice, B. W.

H. Xu and B. W. Rice, “In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique,” J. Biomed. Opt. 14(6), 064011 (2009).
[Crossref] [PubMed]

Richardson, M.

T. Chen, P. Yuen, M. Richardson, Z. She, and G. Liu, “Wavelength and model selection for hyperspectral imaging of tissue oxygen saturation,” Imaging Sci. J. 63(5), 290–295 (2015).
[Crossref]

Roten, L.

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

Saati, S.

A. H. Kashani, G. R. Lopez Jaime, S. Saati, G. Martin, R. Varma, and M. S. Humayun, “Noninvasive assessment of retinal vascular oxygen content among normal and diabetic human subjects: a study using hyperspectral computed tomographic imaging spectroscopy,” Retina 34(9), 1854–1860 (2014).
[Crossref] [PubMed]

Sacher, F.

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

Sarvazyan, N.

L. Swift, D. A. Gil, R. Jaimes, M. Kay, M. Mercader, and N. Sarvazyan, “Visualization of epicardial cryoablation lesions using endogenous tissue fluorescence,” Circ Arrhythm Electrophysiol 7(5), 929–937 (2014).
[Crossref] [PubMed]

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

H. Asfour, L. M. Swift, N. Sarvazyan, M. Doroslovački, and M. W. Kay, “Signal decomposition of transmembrane voltage-sensitive dye fluorescence using a multiresolution wavelet analysis,” IEEE Trans. Biomed. Eng. 58(7), 2083–2093 (2011).
[Crossref] [PubMed]

H. Asfour, L. Swift, N. Sarvazyan, M. Doroslovački, M. Kay, and M. Doroslovacki, “Preprocessing of fluoresced transmembrane potential signals for cardiac optical mapping,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 227–230 (2011).
[PubMed]

Sarvazyan, N. A.

N. Muselimyan, M. A. Jishi, H. Asfour, L. Swift, and N. A. Sarvazyan, “Anatomical and Optical Properties of Atrial Tissue: Search for a Suitable Animal Model,” Cardiovasc. Eng. Technol. 8(4), 505–514 (2017).
[Crossref] [PubMed]

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Hear. Rhythm 15, 564 (2017).

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

Savastru, D.

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2014).
[Crossref]

Schade, A.

A. Schade, J. Krug, A.-G. Szöllösi, M. El Tarahony, and T. Deneke, “Pulmonary vein isolation with a novel endoscopic ablation system using laser energy,” Expert Rev. Cardiovasc. Ther. 10(8), 995–1000 (2012).
[Crossref] [PubMed]

Scherr, D.

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

Scheunders, P.

S. DeBacker, P. Kempeneers, W. Debruyn, and P. Scheunders, “A Band Selection Technique for Spectral Classification,” IEEE Geosci. Remote Sens. Lett. 2(3), 319–323 (2005).
[Crossref]

Shah, A.

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

She, Z.

T. Chen, P. Yuen, M. Richardson, Z. She, and G. Liu, “Wavelength and model selection for hyperspectral imaging of tissue oxygen saturation,” Imaging Sci. J. 63(5), 290–295 (2015).
[Crossref]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

Sood, S.

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

Su, L.-J.

Y. Yuan, X.-M. Ding, L.-J. Su, and W.-Y. Wang, “Modeling and analysis for the image mapping spectrometer,” Chin. Phys. B 26(4), 040701 (2017).
[Crossref]

Sun, D.-W.

Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Crit. Rev. Food Sci. Nutr. 52(11), 1039–1058 (2012).
[Crossref] [PubMed]

Svaasand, L. O.

E. L. P. Larsen, L. L. Randeberg, E. Olstad, O. A. Haugen, A. Aksnes, and L. O. Svaasand, “Hyperspectral imaging of atherosclerotic plaques in vitro,” J. Biomed. Opt. 16(2), 026011 (2011).
[Crossref]

Swift, L.

N. Muselimyan, M. A. Jishi, H. Asfour, L. Swift, and N. A. Sarvazyan, “Anatomical and Optical Properties of Atrial Tissue: Search for a Suitable Animal Model,” Cardiovasc. Eng. Technol. 8(4), 505–514 (2017).
[Crossref] [PubMed]

L. Swift, D. A. Gil, R. Jaimes, M. Kay, M. Mercader, and N. Sarvazyan, “Visualization of epicardial cryoablation lesions using endogenous tissue fluorescence,” Circ Arrhythm Electrophysiol 7(5), 929–937 (2014).
[Crossref] [PubMed]

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

H. Asfour, L. Swift, N. Sarvazyan, M. Doroslovački, M. Kay, and M. Doroslovacki, “Preprocessing of fluoresced transmembrane potential signals for cardiac optical mapping,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 227–230 (2011).
[PubMed]

Swift, L. M.

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Hear. Rhythm 15, 564 (2017).

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

H. Asfour, L. M. Swift, N. Sarvazyan, M. Doroslovački, and M. W. Kay, “Signal decomposition of transmembrane voltage-sensitive dye fluorescence using a multiresolution wavelet analysis,” IEEE Trans. Biomed. Eng. 58(7), 2083–2093 (2011).
[Crossref] [PubMed]

Szabadkai, G.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Szöllösi, A.-G.

A. Schade, J. Krug, A.-G. Szöllösi, M. El Tarahony, and T. Deneke, “Pulmonary vein isolation with a novel endoscopic ablation system using laser energy,” Expert Rev. Cardiovasc. Ther. 10(8), 995–1000 (2012).
[Crossref] [PubMed]

Tkaczyk, T. S.

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

J. G. Dwight and T. S. Tkaczyk, “Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy,” Biomed. Opt. Express 8(3), 1950–1964 (2017).
[Crossref] [PubMed]

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

Varma, R.

A. H. Kashani, G. R. Lopez Jaime, S. Saati, G. Martin, R. Varma, and M. S. Humayun, “Noninvasive assessment of retinal vascular oxygen content among normal and diabetic human subjects: a study using hyperspectral computed tomographic imaging spectroscopy,” Retina 34(9), 1854–1860 (2014).
[Crossref] [PubMed]

Wang, W.-Y.

Y. Yuan, X.-M. Ding, L.-J. Su, and W.-Y. Wang, “Modeling and analysis for the image mapping spectrometer,” Chin. Phys. B 26(4), 040701 (2017).
[Crossref]

Wang, Y.

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

Weng, C. Y.

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

Woollett, I.

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, and V. Y. Reddy, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

Xu, H.

H. Xu and B. W. Rice, “In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique,” J. Biomed. Opt. 14(6), 064011 (2009).
[Crossref] [PubMed]

Yeh, C.-H.

Yuan, Y.

Y. Yuan, X.-M. Ding, L.-J. Su, and W.-Y. Wang, “Modeling and analysis for the image mapping spectrometer,” Chin. Phys. B 26(4), 040701 (2017).
[Crossref]

Yuen, P.

T. Chen, P. Yuen, M. Richardson, Z. She, and G. Liu, “Wavelength and model selection for hyperspectral imaging of tissue oxygen saturation,” Imaging Sci. J. 63(5), 290–295 (2015).
[Crossref]

Zhao, Y.

Ziegler, M.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

M. Mercader, L. Swift, S. Sood, H. Asfour, M. Kay, and N. Sarvazyan, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps,” Am. J. Physiol. Heart Circ. Physiol. 302(10), H2131–H2138 (2012).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2014).
[Crossref]

Biomed. Opt. Express (2)

Cardiovasc. Eng. Technol. (1)

N. Muselimyan, M. A. Jishi, H. Asfour, L. Swift, and N. A. Sarvazyan, “Anatomical and Optical Properties of Atrial Tissue: Search for a Suitable Animal Model,” Cardiovasc. Eng. Technol. 8(4), 505–514 (2017).
[Crossref] [PubMed]

Chemom. Intell. Lab. Syst. (2)

C. B. Lucasius and G. Kateman, “Understanding and using genetic algorithms Part 1. Concepts, properties and context,” Chemom. Intell. Lab. Syst. 19(1), 1–33 (1993).
[Crossref]

C. B. Lucasius and G. Kateman, “Understanding and using genetic algorithms Part 2. Representation, configuration and hybridization,” Chemom. Intell. Lab. Syst. 25(2), 99–145 (1994).
[Crossref]

Chin. Phys. B (1)

Y. Yuan, X.-M. Ding, L.-J. Su, and W.-Y. Wang, “Modeling and analysis for the image mapping spectrometer,” Chin. Phys. B 26(4), 040701 (2017).
[Crossref]

Circ Arrhythm Electrophysiol (1)

L. Swift, D. A. Gil, R. Jaimes, M. Kay, M. Mercader, and N. Sarvazyan, “Visualization of epicardial cryoablation lesions using endogenous tissue fluorescence,” Circ Arrhythm Electrophysiol 7(5), 929–937 (2014).
[Crossref] [PubMed]

Conf. Proc. IEEE Eng. Med. Biol. Soc. (1)

H. Asfour, L. Swift, N. Sarvazyan, M. Doroslovački, M. Kay, and M. Doroslovacki, “Preprocessing of fluoresced transmembrane potential signals for cardiac optical mapping,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 227–230 (2011).
[PubMed]

Crit. Rev. Food Sci. Nutr. (1)

Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Crit. Rev. Food Sci. Nutr. 52(11), 1039–1058 (2012).
[Crossref] [PubMed]

Curr. Cardiol. Rev. (1)

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu, A. Shah, K. Ramoul, A. Denis, F. Sacher, M. Hocini, M. Haïssaguerre, and P. Jaïs, “Current hot potatoes in atrial fibrillation ablation,” Curr. Cardiol. Rev. 8(4), 327–346 (2012).
[Crossref] [PubMed]

Expert Rev. Cardiovasc. Ther. (1)

A. Schade, J. Krug, A.-G. Szöllösi, M. El Tarahony, and T. Deneke, “Pulmonary vein isolation with a novel endoscopic ablation system using laser energy,” Expert Rev. Cardiovasc. Ther. 10(8), 995–1000 (2012).
[Crossref] [PubMed]

Future Gener. Comput. Syst. (1)

Y.-L. Chang, “A simulated annealing feature extraction approach for hyperspectral images,” Future Gener. Comput. Syst. 27(4), 419–426 (2011).
[Crossref]

Hear. Rhythm (1)

L. M. Swift, H. Asfour, N. Muselimyan, C. Larson, K. Armstrong, and N. A. Sarvazyan, “Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions,” Hear. Rhythm 15, 564 (2017).

IEEE Geosci. Remote Sens. Lett. (1)

S. DeBacker, P. Kempeneers, W. Debruyn, and P. Scheunders, “A Band Selection Technique for Spectral Classification,” IEEE Geosci. Remote Sens. Lett. 2(3), 319–323 (2005).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

H. Asfour, L. M. Swift, N. Sarvazyan, M. Doroslovački, and M. W. Kay, “Signal decomposition of transmembrane voltage-sensitive dye fluorescence using a multiresolution wavelet analysis,” IEEE Trans. Biomed. Eng. 58(7), 2083–2093 (2011).
[Crossref] [PubMed]

IEEE Trans. Image Process. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

Imaging Sci. J. (1)

T. Chen, P. Yuen, M. Richardson, Z. She, and G. Liu, “Wavelength and model selection for hyperspectral imaging of tissue oxygen saturation,” Imaging Sci. J. 63(5), 290–295 (2015).
[Crossref]

Int. Ophthalmol. Clin. (1)

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

T. R. Choudhary, D. Ball, J. Fernandez Ramos, A. I. McNaught, and A. R. Harvey, “Assessment of acute mild hypoxia on retinal oxygen saturation using snapshot retinal oximetry,” Invest. Ophthalmol. Vis. Sci. 54(12), 7538–7543 (2013).
[Crossref] [PubMed]

J. Am. Coll. Cardiol. (1)

S. R. Dukkipati, F. Cuoco, I. Kutinsky, A. Aryana, T. D. Bahnson, D. Lakkireddy, I. Woollett, Z. F. Issa, A. Natale, and V. Y. Reddy, “Pulmonary Vein Isolation Using the Visually Guided Laser Balloon,” J. Am. Coll. Cardiol. 66(12), 1350–1360 (2015).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 041207 (2005).
[Crossref] [PubMed]

H. Xu and B. W. Rice, “In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique,” J. Biomed. Opt. 14(6), 064011 (2009).
[Crossref] [PubMed]

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

E. L. P. Larsen, L. L. Randeberg, E. Olstad, O. A. Haugen, A. Aksnes, and L. O. Svaasand, “Hyperspectral imaging of atherosclerotic plaques in vitro,” J. Biomed. Opt. 16(2), 026011 (2011).
[Crossref]

J. Biophotonics (1)

D. A. Gil, L. M. Swift, H. Asfour, N. Muselimyan, M. A. Mercader, and N. A. Sarvazyan, “Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue,” J. Biophotonics 10(8), 1008–1017 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Opt. Eng. (2)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Photogramm. Eng. Remote Sensing (1)

P. Bajcsy and P. Groves, “Methodology for Hyperspectral Band Selection,” Photogramm. Eng. Remote Sensing 70(7), 793–802 (2004).
[Crossref]

PLoS One (1)

N. Muselimyan, L. M. Swift, H. Asfour, T. Chahbazian, R. Mazhari, M. A. Mercader, and N. A. Sarvazyan, “Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach,” PLoS One 11(12), e0167760 (2016).
[Crossref] [PubMed]

Retina (1)

A. H. Kashani, G. R. Lopez Jaime, S. Saati, G. Martin, R. Varma, and M. S. Humayun, “Noninvasive assessment of retinal vascular oxygen content among normal and diabetic human subjects: a study using hyperspectral computed tomographic imaging spectroscopy,” Retina 34(9), 1854–1860 (2014).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

I. Kurtz, R. Dwelle, and P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58(11), 1996–2003 (1987).
[Crossref]

Sci. Rep. (1)

H.-T. Lim and V. M. Murukeshan, “A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications,” Sci. Rep. 6(1), 24044 (2016).
[Crossref] [PubMed]

Other (3)

A. B. Castrillo and L. L. Randeberg, “A Hyperspectral Imaging System using an Acousto-Optic Tunable Filter,” thesis (2015).

S. Guan, M. Loew, H. Asfour, N. Sarvazyan, and N. Muselimyan, “Lesion detection for cardiac ablation from auto-fluorescence hyperspectral images,” in SPIE Medical Imaging (SPIE, 2018), pp. A10578–A10579.

E. K. Hege, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surviellance,” in S. S. Shen and P. E. Lewis, eds. (International Society for Optics and Photonics, 2004), Vol. 5159, p. 380.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Hyperspectral Image acquisition and manual unmixing. A. Imaging set up comprised of Nuance FX camera and LCTF filter. Arrow points to an example of a hypercube. Example of spectral information of pixel is sketched in red. A raw image on the far right shows the difficulty of visualizing lesions with UV illumination. Average spectra of pixels from two regions of interests shown in red and green were used for the unmixing protocol. B. Example of corrected and normalized spectra for non-ablated and ablated cardiac tissue with an example of corresponding lesion component images (LCIs) used in the analysis presented this paper.
Fig. 2
Fig. 2 Effect of step size on SNR of ablated component image. A. Ablated component images of porcine left atria showing 5 lesions. Component images were obtained by unmixing hypercubes with spectral step sizes of 2nm, 10nm, 20nm, 50nm and 100nm. The red dotted line indicates the line of pixels corresponding to spectra shown in B. B. Line profile of ablated component image obtained using component images shown in A). C. Quantified and Normalized Signal-to-Noise Ratio (SNR) of spectra shown in B (N = 3, n = 8). A decreasing linear trend between SNR and step size was found significant (R2 = 0.91).
Fig. 3
Fig. 3 Effect of spectral step size on the quality of ablated component images. A-D. Mean Standard Error, Peak Signal to Noise Ratio (PSNR), Structural Similarity Matrix (SSIM) and Accuracy indices were computed to compare the quality of LCIs obtained from unmixing under sampled hypercubes (10, 20, 50 and 100 nm spectral step size) vs LCIs obtained by unmixing 2nm step size hypercubes. Linear trends were observed for MSE, PSNR and SSIM indices (R2 = 0.91, 09.1, and 0.98 respectively). (E). Example images of SSIMs showing the differences in the quality of LCIs as we increase the step size compared to the reference component image F. Difference images between LCIs and reference image.
Fig. 4
Fig. 4 Effect of binning multiple wavelengths on the quality of ablated component images. A. Results of Peak SNR (PSNR), Mean Standard Error and Structural Similarity Matrix index (SSIM index) for 60nm binned ranges (2nm spectral resolution) Example LCIs are shown on the left. B. Results of all measures from smaller bin sizes (gray) shown in comparison to the full range (black). Example LCIs are shown on the right.
Fig. 5
Fig. 5 Four, three and two band cubes for speedy detection of RF lesions. A. Relation between SSIM and PSNR is non-linear and bimodal. B. Histogram of SSIM indices and PSNR for all combinations of 2, 3 and 4 band cubes. Frequency of combinations with higher SSIM indices and/ or PSNR increases with increased size cubes.
Fig. 6
Fig. 6 Four, three and two band cubes for speedy detection of RF lesions. Accuracy results of the fast unmixing using 2-, 3-, 4- band cubes sorted in decreasing order. The mean accuracy value from 14 experimental studies is depicted by the thick grey line with black lines showing standard deviation.
Fig. 7
Fig. 7 Fast unmixing protocol described in Methods. The algorithm was adopted from Ref. [21] (Xu et al) and optimized for speed as depicted above.
Fig. 8
Fig. 8 Comparing the quality assessment measures (MSE, PSN and SSIMs) between Nuance unmixing protocol [11] and fast unmixing protocol adapted from [21]. Sample 1. (B). Sample 2.
Fig. 9
Fig. 9 Left: Histogram distribution of Accuracies of all 14 studies used in this report. Right. Boxplot results for all 14 studies obtained using the fast unmixing protocol to reveal the distribution of Accuracies in the 2, 3 and 4 band cases. All possible combinations were tested thru the fast unmixing protocol to reveal lesion using only 2- or 3- or 4-band cases.

Tables (2)

Tables Icon

Table 1 Top accuracy values for two-, three- and four-band combinations.

Tables Icon

Table 2 Example of current high resolution, high speed spectral imagers