Abstract

In this work we demonstrate the use of a dielectric barrier discharge plasma for the treatment of SU-8. The resulting hydrophilic surface displays a 5° contact angle and (0.40 ± 0.012) nm roughness. Using this technique we also present a proof of concept of IgG and prostate specific antigen biodetection on a thin layer of SU-8 over gold via surface plasmon resonance detection.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss modified SU-8 waveguides by direct laser writing at 405 nm

Jhonattan C. Ramirez, Juliana N. Schianti, Maria G. Almeida, Aristides Pavani, Roberto R. Panepucci, Hugo E. Hernandez-Figueroa, and Lucas H. Gabrielli
Opt. Mater. Express 7(7) 2651-2659 (2017)

Thermal UV treatment on SU-8 polymer for integrated optics

Xi-Bin Wang, Jian Sun, Chang-Ming Chen, Xiao-Qiang Sun, Fei Wang, and Da-Ming Zhang
Opt. Mater. Express 4(3) 509-517 (2014)

Selective electroless silver plating of three dimensional SU-8 microstructures on silicon for metamaterials applications

Yuanjun Yan, M. Ibnur Rashad, Ee Jin Teo, Hendrix Tanoto, Jinghua Teng, and Andrew A. Bettiol
Opt. Mater. Express 1(8) 1548-1554 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Ju, J. Kim, J. Y. Do, M. S. Kim, S. K. Park, S. Park, and M. H. Lee, “Second harmonic generation in periodically poled nonlinear polymer waveguides,” Opt. Lett. 29(1), 89–91 (2004).
    [Crossref] [PubMed]
  2. E. Melnik, R. Bruck, P. Muellner, T. Schlederer, R. Hainberger, and M. Lammerhofer, “Human IgG detection in serum on polymer based Mach-Zehnder interferometric biosensors,” J. of BioPhot. 223(3), 218–223 (2016).
    [Crossref]
  3. J. C. Ramirez, L. M. Lechuga, L. H. Gabrielli, and H. E. Hernandez-Figueroa, “Study of a low-cost trimodal polymer waveguide for interferometric optical biosensors,” Opt. Express 23(9), 11985 (2015).
    [Crossref] [PubMed]
  4. J. W. Parks and H. Schmidt, “Flexible optofluidic waveguide platform with multidimensional reconfigurability,” Sci. Rep. 6, 33008(2016).
    [Crossref]
  5. J. Noh, S. Jeong, and J. Y. Lee, “Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate,” Nat. Comm. 7, 12374 (2016).
    [Crossref]
  6. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Las. Phot. Rev. 6(4), 463 (2012).
    [Crossref]
  7. X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
    [Crossref] [PubMed]
  8. C. H. Chan, T. Y. Wu, M. H. Yen, C. E. Lin, K. T. Cheng, and C. C. Chen, “Low power consumption and high-contrast light scattering based on polymer-dispersed liquid crystals doped with silver-coated polystyrene microspheres,” Opt. Express 24(26), 29963–29971 (2016).
    [Crossref]
  9. J. C. Ramirez, J. N. Schianti, M. G. Almeida, A. Pavani, R. R. Panepucci, H. E. Hernandez-Figueroa, and L. H. Gabrielli, “Low-loss modified SU-8 waveguides by direct laser writing at 405 nm,” Opt. Mater. Express 7(7), 2651 (2017).
    [Crossref]
  10. S. Dhanekar and S. Jain, “Porous silicon biosensor: Current status,” Biosensors and Bioelectronics 41, 54–64 (2013).
    [Crossref]
  11. M. J. Banuls, R. Puchades, and A. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: A review,” Analytica Chimica Acta 777, 1–16 (2013).
    [Crossref] [PubMed]
  12. M. Nayak, A. Kotian, S. Marathe, and D. Chakravortty, “Detection of microorganisms using biosensors-A smarter way towards detection techniques,” Biosensors and Bioelectronics 25, 661–667 (2009).
    [Crossref] [PubMed]
  13. F. Walther, A. T. Drobek, A. Alexander, M. Gigler, A. M. Hennemeyer, A. M. Kaiser, B. H. Herberg, B. T. Shimitsu, C. G. E. Morfillc, and R. W. Stark, “Surface hydrophilization of SU-8 by plasma and wet chemical processes,” Surf. Interface Anal. 42, 1735–1744 (2010).
    [Crossref]
  14. J. Zhang, W. X. Zhou, M. B. Chan-Park, and S. R. Conner, “Argon Plasma Modification of SU-8 for Very High Aspect Ratio and Dense Copper Electroforming,” J. Electrochem. Soc. 152, 716–721 (2005).
    [Crossref]
  15. F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A. M. Gigler, and R. W. Stark, “Stability of the hydrophilic behavior of oxygen plasma activated SU-8,” J. Micromech. and Microeng. 17(24), 3 (2007).
    [Crossref]
  16. S. Ashraf, C. G. Mattsson, M. Fondell, A. Lindblad, and G. Thungstrom, “Surface modification of SU-8 for metal/SU-8 adhesion using RF plasma treatment for application in thermopile detectors,” Mat. Res. Exp. 2, 8 (2015).
    [Crossref]
  17. K. H. Rasmussen, S. S. Keller, F. Jensen, A. M. Jorgensen, and O. Hansen, “SU-8 etching in inductively coupled oxygen plasma,” Microelectron. Eng. 112, 35–40 (2013).
    [Crossref]
  18. M. Noeske, J. Degenhardt, S. Strudthoff, and U. Lommatzsch, “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion,” Int. Journal of Adhesion 24, 171 (2004).
    [Crossref]
  19. B. Riedl, C. Angel, J. Prégent, P. Blanchet, and L. Stafford, “Effect of wood surface modification by atmospheric-pressure plasma on waterborne coating adhesion,” BioResources 9, 4908–4923 (2014).
    [Crossref]
  20. M. Kim, S. Yang, J. H. Boo, and J. Han, “Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics,” Surface and Coatings Technology 174, 839–844 (2003).
    [Crossref]
  21. S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Applied Physics Letters 84, 188–190 (2004).
    [Crossref]
  22. X. Lu, G. Naidis, M. Laroussi, and K. Ostrikov, “Guide dionization waves: theory and experiments,” Physics Reports 540, 123–166 (2014).
    [Crossref]
  23. H. Sharma and R. Mutharasan, “Review of biosensors for foodborne pathogens and toxins,” Sensors and Actuators B: Chemical 183, 535–549 (2013).
    [Crossref]
  24. C. Cao, S. W. Birtwell, J. Hogberg, A. Wolff, H. Morgan, and D. D. Bang, “Gold nanoparticles-coated SU-8 for sensitive fluorescence-based detections of DNA,” Micro Total Analysis Systems 2(4), 1161–1163 (2011).
  25. M. Calleja, M. Nordstram, M. Alvarez, J. Tamayo, L. Lechuga, and A. Boisen, “Highly sensitive polymer-based cantilever-sensors for DNA detection,” Ultramicroscopy 105, 215–222 (2005).
    [Crossref] [PubMed]
  26. L. Ahmadi, M. Hiltunen, P. Stenberg, J. Hiltunen, S. Aikio, M. Roussey, J. Saarinen, and S. Honkanen, “Hybrid layered polymer slot waveguide Young interferometer,” Opt. Express 24(7), 10275 (2016).
    [Crossref] [PubMed]
  27. S. Jahns, M. Brau, B.-O. Meyer, T. Karrock, S. B. Gutekunst, L. Blohm, C. Selhuber-Unkel, R. Buhman, Y. Nazirizadeh, and M. Gerken, “Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection,” Biomed. Opt. Express 6(10), 3724 (2015).
    [Crossref] [PubMed]
  28. M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllyla, “Highly sensitive biosensor based on UV- imprinted layered polymeric – inorganic composite waveguides,” Opt. Express 20(18), 973–980 (2012).
  29. J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric-inorganic waveguides,” Appl. Phys. Lett. 98(11), 111113 (2011).
    [Crossref]
  30. M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Analytica Chimica Acta 806, 55–73 (2014).
    [Crossref]
  31. N. S. Lynn, H. Sipova, P. Adam, and J. Homola, “Enhancement of affinity-based biosensors: effect of sensing chamber geometry on sensitivity,” Lab on a Chip 13(7), 1413–1421 (2013).
    [Crossref] [PubMed]
  32. R. Otupiri, E. K. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Express 23(12), 15716 (2015).
    [Crossref] [PubMed]

2017 (1)

2016 (6)

L. Ahmadi, M. Hiltunen, P. Stenberg, J. Hiltunen, S. Aikio, M. Roussey, J. Saarinen, and S. Honkanen, “Hybrid layered polymer slot waveguide Young interferometer,” Opt. Express 24(7), 10275 (2016).
[Crossref] [PubMed]

C. H. Chan, T. Y. Wu, M. H. Yen, C. E. Lin, K. T. Cheng, and C. C. Chen, “Low power consumption and high-contrast light scattering based on polymer-dispersed liquid crystals doped with silver-coated polystyrene microspheres,” Opt. Express 24(26), 29963–29971 (2016).
[Crossref]

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

E. Melnik, R. Bruck, P. Muellner, T. Schlederer, R. Hainberger, and M. Lammerhofer, “Human IgG detection in serum on polymer based Mach-Zehnder interferometric biosensors,” J. of BioPhot. 223(3), 218–223 (2016).
[Crossref]

J. W. Parks and H. Schmidt, “Flexible optofluidic waveguide platform with multidimensional reconfigurability,” Sci. Rep. 6, 33008(2016).
[Crossref]

J. Noh, S. Jeong, and J. Y. Lee, “Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate,” Nat. Comm. 7, 12374 (2016).
[Crossref]

2015 (4)

2014 (3)

M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Analytica Chimica Acta 806, 55–73 (2014).
[Crossref]

B. Riedl, C. Angel, J. Prégent, P. Blanchet, and L. Stafford, “Effect of wood surface modification by atmospheric-pressure plasma on waterborne coating adhesion,” BioResources 9, 4908–4923 (2014).
[Crossref]

X. Lu, G. Naidis, M. Laroussi, and K. Ostrikov, “Guide dionization waves: theory and experiments,” Physics Reports 540, 123–166 (2014).
[Crossref]

2013 (5)

H. Sharma and R. Mutharasan, “Review of biosensors for foodborne pathogens and toxins,” Sensors and Actuators B: Chemical 183, 535–549 (2013).
[Crossref]

K. H. Rasmussen, S. S. Keller, F. Jensen, A. M. Jorgensen, and O. Hansen, “SU-8 etching in inductively coupled oxygen plasma,” Microelectron. Eng. 112, 35–40 (2013).
[Crossref]

S. Dhanekar and S. Jain, “Porous silicon biosensor: Current status,” Biosensors and Bioelectronics 41, 54–64 (2013).
[Crossref]

M. J. Banuls, R. Puchades, and A. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: A review,” Analytica Chimica Acta 777, 1–16 (2013).
[Crossref] [PubMed]

N. S. Lynn, H. Sipova, P. Adam, and J. Homola, “Enhancement of affinity-based biosensors: effect of sensing chamber geometry on sensitivity,” Lab on a Chip 13(7), 1413–1421 (2013).
[Crossref] [PubMed]

2012 (2)

M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllyla, “Highly sensitive biosensor based on UV- imprinted layered polymeric – inorganic composite waveguides,” Opt. Express 20(18), 973–980 (2012).

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Las. Phot. Rev. 6(4), 463 (2012).
[Crossref]

2011 (2)

C. Cao, S. W. Birtwell, J. Hogberg, A. Wolff, H. Morgan, and D. D. Bang, “Gold nanoparticles-coated SU-8 for sensitive fluorescence-based detections of DNA,” Micro Total Analysis Systems 2(4), 1161–1163 (2011).

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric-inorganic waveguides,” Appl. Phys. Lett. 98(11), 111113 (2011).
[Crossref]

2010 (1)

F. Walther, A. T. Drobek, A. Alexander, M. Gigler, A. M. Hennemeyer, A. M. Kaiser, B. H. Herberg, B. T. Shimitsu, C. G. E. Morfillc, and R. W. Stark, “Surface hydrophilization of SU-8 by plasma and wet chemical processes,” Surf. Interface Anal. 42, 1735–1744 (2010).
[Crossref]

2009 (1)

M. Nayak, A. Kotian, S. Marathe, and D. Chakravortty, “Detection of microorganisms using biosensors-A smarter way towards detection techniques,” Biosensors and Bioelectronics 25, 661–667 (2009).
[Crossref] [PubMed]

2007 (1)

F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A. M. Gigler, and R. W. Stark, “Stability of the hydrophilic behavior of oxygen plasma activated SU-8,” J. Micromech. and Microeng. 17(24), 3 (2007).
[Crossref]

2005 (2)

M. Calleja, M. Nordstram, M. Alvarez, J. Tamayo, L. Lechuga, and A. Boisen, “Highly sensitive polymer-based cantilever-sensors for DNA detection,” Ultramicroscopy 105, 215–222 (2005).
[Crossref] [PubMed]

J. Zhang, W. X. Zhou, M. B. Chan-Park, and S. R. Conner, “Argon Plasma Modification of SU-8 for Very High Aspect Ratio and Dense Copper Electroforming,” J. Electrochem. Soc. 152, 716–721 (2005).
[Crossref]

2004 (3)

M. Noeske, J. Degenhardt, S. Strudthoff, and U. Lommatzsch, “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion,” Int. Journal of Adhesion 24, 171 (2004).
[Crossref]

S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Applied Physics Letters 84, 188–190 (2004).
[Crossref]

J. J. Ju, J. Kim, J. Y. Do, M. S. Kim, S. K. Park, S. Park, and M. H. Lee, “Second harmonic generation in periodically poled nonlinear polymer waveguides,” Opt. Lett. 29(1), 89–91 (2004).
[Crossref] [PubMed]

2003 (1)

M. Kim, S. Yang, J. H. Boo, and J. Han, “Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics,” Surface and Coatings Technology 174, 839–844 (2003).
[Crossref]

Adam, P.

N. S. Lynn, H. Sipova, P. Adam, and J. Homola, “Enhancement of affinity-based biosensors: effect of sensing chamber geometry on sensitivity,” Lab on a Chip 13(7), 1413–1421 (2013).
[Crossref] [PubMed]

Ahmadi, L.

Aikio, S.

Akowuah, E. K.

Alexander, A.

F. Walther, A. T. Drobek, A. Alexander, M. Gigler, A. M. Hennemeyer, A. M. Kaiser, B. H. Herberg, B. T. Shimitsu, C. G. E. Morfillc, and R. W. Stark, “Surface hydrophilization of SU-8 by plasma and wet chemical processes,” Surf. Interface Anal. 42, 1735–1744 (2010).
[Crossref]

Almeida, M. G.

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Las. Phot. Rev. 6(4), 463 (2012).
[Crossref]

M. Calleja, M. Nordstram, M. Alvarez, J. Tamayo, L. Lechuga, and A. Boisen, “Highly sensitive polymer-based cantilever-sensors for DNA detection,” Ultramicroscopy 105, 215–222 (2005).
[Crossref] [PubMed]

Angel, C.

B. Riedl, C. Angel, J. Prégent, P. Blanchet, and L. Stafford, “Effect of wood surface modification by atmospheric-pressure plasma on waterborne coating adhesion,” BioResources 9, 4908–4923 (2014).
[Crossref]

Ashraf, S.

S. Ashraf, C. G. Mattsson, M. Fondell, A. Lindblad, and G. Thungstrom, “Surface modification of SU-8 for metal/SU-8 adhesion using RF plasma treatment for application in thermopile detectors,” Mat. Res. Exp. 2, 8 (2015).
[Crossref]

Bang, D. D.

C. Cao, S. W. Birtwell, J. Hogberg, A. Wolff, H. Morgan, and D. D. Bang, “Gold nanoparticles-coated SU-8 for sensitive fluorescence-based detections of DNA,” Micro Total Analysis Systems 2(4), 1161–1163 (2011).

Banuls, M. J.

M. J. Banuls, R. Puchades, and A. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: A review,” Analytica Chimica Acta 777, 1–16 (2013).
[Crossref] [PubMed]

Birtwell, S. W.

C. Cao, S. W. Birtwell, J. Hogberg, A. Wolff, H. Morgan, and D. D. Bang, “Gold nanoparticles-coated SU-8 for sensitive fluorescence-based detections of DNA,” Micro Total Analysis Systems 2(4), 1161–1163 (2011).

Blanchet, P.

B. Riedl, C. Angel, J. Prégent, P. Blanchet, and L. Stafford, “Effect of wood surface modification by atmospheric-pressure plasma on waterborne coating adhesion,” BioResources 9, 4908–4923 (2014).
[Crossref]

Blohm, L.

Boisen, A.

M. Calleja, M. Nordstram, M. Alvarez, J. Tamayo, L. Lechuga, and A. Boisen, “Highly sensitive polymer-based cantilever-sensors for DNA detection,” Ultramicroscopy 105, 215–222 (2005).
[Crossref] [PubMed]

Boo, J. H.

M. Kim, S. Yang, J. H. Boo, and J. Han, “Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics,” Surface and Coatings Technology 174, 839–844 (2003).
[Crossref]

Brau, M.

Bruck, R.

E. Melnik, R. Bruck, P. Muellner, T. Schlederer, R. Hainberger, and M. Lammerhofer, “Human IgG detection in serum on polymer based Mach-Zehnder interferometric biosensors,” J. of BioPhot. 223(3), 218–223 (2016).
[Crossref]

Buhman, R.

Calleja, M.

M. Calleja, M. Nordstram, M. Alvarez, J. Tamayo, L. Lechuga, and A. Boisen, “Highly sensitive polymer-based cantilever-sensors for DNA detection,” Ultramicroscopy 105, 215–222 (2005).
[Crossref] [PubMed]

Cao, C.

C. Cao, S. W. Birtwell, J. Hogberg, A. Wolff, H. Morgan, and D. D. Bang, “Gold nanoparticles-coated SU-8 for sensitive fluorescence-based detections of DNA,” Micro Total Analysis Systems 2(4), 1161–1163 (2011).

Chakravortty, D.

M. Nayak, A. Kotian, S. Marathe, and D. Chakravortty, “Detection of microorganisms using biosensors-A smarter way towards detection techniques,” Biosensors and Bioelectronics 25, 661–667 (2009).
[Crossref] [PubMed]

Chan, C. H.

Chan-Park, M. B.

J. Zhang, W. X. Zhou, M. B. Chan-Park, and S. R. Conner, “Argon Plasma Modification of SU-8 for Very High Aspect Ratio and Dense Copper Electroforming,” J. Electrochem. Soc. 152, 716–721 (2005).
[Crossref]

Charlton, M.

M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllyla, “Highly sensitive biosensor based on UV- imprinted layered polymeric – inorganic composite waveguides,” Opt. Express 20(18), 973–980 (2012).

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric-inorganic waveguides,” Appl. Phys. Lett. 98(11), 111113 (2011).
[Crossref]

Chen, C. C.

Chen, X.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

Cheng, K. T.

Choe, W.

S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Applied Physics Letters 84, 188–190 (2004).
[Crossref]

Conner, S. R.

J. Zhang, W. X. Zhou, M. B. Chan-Park, and S. R. Conner, “Argon Plasma Modification of SU-8 for Very High Aspect Ratio and Dense Copper Electroforming,” J. Electrochem. Soc. 152, 716–721 (2005).
[Crossref]

Davydovskaya, P.

F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A. M. Gigler, and R. W. Stark, “Stability of the hydrophilic behavior of oxygen plasma activated SU-8,” J. Micromech. and Microeng. 17(24), 3 (2007).
[Crossref]

Degenhardt, J.

M. Noeske, J. Degenhardt, S. Strudthoff, and U. Lommatzsch, “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion,” Int. Journal of Adhesion 24, 171 (2004).
[Crossref]

Dhanekar, S.

S. Dhanekar and S. Jain, “Porous silicon biosensor: Current status,” Biosensors and Bioelectronics 41, 54–64 (2013).
[Crossref]

Do, J. Y.

Drobek, A. T.

F. Walther, A. T. Drobek, A. Alexander, M. Gigler, A. M. Hennemeyer, A. M. Kaiser, B. H. Herberg, B. T. Shimitsu, C. G. E. Morfillc, and R. W. Stark, “Surface hydrophilization of SU-8 by plasma and wet chemical processes,” Surf. Interface Anal. 42, 1735–1744 (2010).
[Crossref]

Estevez, M. C.

M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Analytica Chimica Acta 806, 55–73 (2014).
[Crossref]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Las. Phot. Rev. 6(4), 463 (2012).
[Crossref]

Fondell, M.

S. Ashraf, C. G. Mattsson, M. Fondell, A. Lindblad, and G. Thungstrom, “Surface modification of SU-8 for metal/SU-8 adhesion using RF plasma treatment for application in thermopile detectors,” Mat. Res. Exp. 2, 8 (2015).
[Crossref]

Gabrielli, L. H.

Gerken, M.

Gigler, A. M.

F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A. M. Gigler, and R. W. Stark, “Stability of the hydrophilic behavior of oxygen plasma activated SU-8,” J. Micromech. and Microeng. 17(24), 3 (2007).
[Crossref]

Gigler, M.

F. Walther, A. T. Drobek, A. Alexander, M. Gigler, A. M. Hennemeyer, A. M. Kaiser, B. H. Herberg, B. T. Shimitsu, C. G. E. Morfillc, and R. W. Stark, “Surface hydrophilization of SU-8 by plasma and wet chemical processes,” Surf. Interface Anal. 42, 1735–1744 (2010).
[Crossref]

Guo, L. J.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

Gutekunst, S. B.

Hainberger, R.

E. Melnik, R. Bruck, P. Muellner, T. Schlederer, R. Hainberger, and M. Lammerhofer, “Human IgG detection in serum on polymer based Mach-Zehnder interferometric biosensors,” J. of BioPhot. 223(3), 218–223 (2016).
[Crossref]

Hakalahti, L.

M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllyla, “Highly sensitive biosensor based on UV- imprinted layered polymeric – inorganic composite waveguides,” Opt. Express 20(18), 973–980 (2012).

Han, J.

M. Kim, S. Yang, J. H. Boo, and J. Han, “Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics,” Surface and Coatings Technology 174, 839–844 (2003).
[Crossref]

Hansen, O.

K. H. Rasmussen, S. S. Keller, F. Jensen, A. M. Jorgensen, and O. Hansen, “SU-8 etching in inductively coupled oxygen plasma,” Microelectron. Eng. 112, 35–40 (2013).
[Crossref]

Haxha, S.

Hennemeyer, A. M.

F. Walther, A. T. Drobek, A. Alexander, M. Gigler, A. M. Hennemeyer, A. M. Kaiser, B. H. Herberg, B. T. Shimitsu, C. G. E. Morfillc, and R. W. Stark, “Surface hydrophilization of SU-8 by plasma and wet chemical processes,” Surf. Interface Anal. 42, 1735–1744 (2010).
[Crossref]

Herberg, B. H.

F. Walther, A. T. Drobek, A. Alexander, M. Gigler, A. M. Hennemeyer, A. M. Kaiser, B. H. Herberg, B. T. Shimitsu, C. G. E. Morfillc, and R. W. Stark, “Surface hydrophilization of SU-8 by plasma and wet chemical processes,” Surf. Interface Anal. 42, 1735–1744 (2010).
[Crossref]

Herberg, H.

F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A. M. Gigler, and R. W. Stark, “Stability of the hydrophilic behavior of oxygen plasma activated SU-8,” J. Micromech. and Microeng. 17(24), 3 (2007).
[Crossref]

Hernandez-Figueroa, H. E.

Hiltunen, J.

L. Ahmadi, M. Hiltunen, P. Stenberg, J. Hiltunen, S. Aikio, M. Roussey, J. Saarinen, and S. Honkanen, “Hybrid layered polymer slot waveguide Young interferometer,” Opt. Express 24(7), 10275 (2016).
[Crossref] [PubMed]

M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllyla, “Highly sensitive biosensor based on UV- imprinted layered polymeric – inorganic composite waveguides,” Opt. Express 20(18), 973–980 (2012).

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric-inorganic waveguides,” Appl. Phys. Lett. 98(11), 111113 (2011).
[Crossref]

Hiltunen, M.

Hogberg, J.

C. Cao, S. W. Birtwell, J. Hogberg, A. Wolff, H. Morgan, and D. D. Bang, “Gold nanoparticles-coated SU-8 for sensitive fluorescence-based detections of DNA,” Micro Total Analysis Systems 2(4), 1161–1163 (2011).

Homola, J.

N. S. Lynn, H. Sipova, P. Adam, and J. Homola, “Enhancement of affinity-based biosensors: effect of sensing chamber geometry on sensitivity,” Lab on a Chip 13(7), 1413–1421 (2013).
[Crossref] [PubMed]

Honkanen, S.

Jahns, S.

Jain, S.

S. Dhanekar and S. Jain, “Porous silicon biosensor: Current status,” Biosensors and Bioelectronics 41, 54–64 (2013).
[Crossref]

Jensen, F.

K. H. Rasmussen, S. S. Keller, F. Jensen, A. M. Jorgensen, and O. Hansen, “SU-8 etching in inductively coupled oxygen plasma,” Microelectron. Eng. 112, 35–40 (2013).
[Crossref]

Jeong, S.

J. Noh, S. Jeong, and J. Y. Lee, “Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate,” Nat. Comm. 7, 12374 (2016).
[Crossref]

Jorgensen, A. M.

K. H. Rasmussen, S. S. Keller, F. Jensen, A. M. Jorgensen, and O. Hansen, “SU-8 etching in inductively coupled oxygen plasma,” Microelectron. Eng. 112, 35–40 (2013).
[Crossref]

Ju, J. J.

Kaiser, A. M.

F. Walther, A. T. Drobek, A. Alexander, M. Gigler, A. M. Hennemeyer, A. M. Kaiser, B. H. Herberg, B. T. Shimitsu, C. G. E. Morfillc, and R. W. Stark, “Surface hydrophilization of SU-8 by plasma and wet chemical processes,” Surf. Interface Anal. 42, 1735–1744 (2010).
[Crossref]

Kaiser, M.

F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A. M. Gigler, and R. W. Stark, “Stability of the hydrophilic behavior of oxygen plasma activated SU-8,” J. Micromech. and Microeng. 17(24), 3 (2007).
[Crossref]

Kang, B. K.

S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Applied Physics Letters 84, 188–190 (2004).
[Crossref]

Karioja, P.

M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllyla, “Highly sensitive biosensor based on UV- imprinted layered polymeric – inorganic composite waveguides,” Opt. Express 20(18), 973–980 (2012).

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric-inorganic waveguides,” Appl. Phys. Lett. 98(11), 111113 (2011).
[Crossref]

Karrock, T.

Keller, S. S.

K. H. Rasmussen, S. S. Keller, F. Jensen, A. M. Jorgensen, and O. Hansen, “SU-8 etching in inductively coupled oxygen plasma,” Microelectron. Eng. 112, 35–40 (2013).
[Crossref]

Kim, J.

Kim, M.

M. Kim, S. Yang, J. H. Boo, and J. Han, “Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics,” Surface and Coatings Technology 174, 839–844 (2003).
[Crossref]

Kim, M. S.

Kotian, A.

M. Nayak, A. Kotian, S. Marathe, and D. Chakravortty, “Detection of microorganisms using biosensors-A smarter way towards detection techniques,” Biosensors and Bioelectronics 25, 661–667 (2009).
[Crossref] [PubMed]

Lammerhofer, M.

E. Melnik, R. Bruck, P. Muellner, T. Schlederer, R. Hainberger, and M. Lammerhofer, “Human IgG detection in serum on polymer based Mach-Zehnder interferometric biosensors,” J. of BioPhot. 223(3), 218–223 (2016).
[Crossref]

Lappalainen, J.

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric-inorganic waveguides,” Appl. Phys. Lett. 98(11), 111113 (2011).
[Crossref]

Laroussi, M.

X. Lu, G. Naidis, M. Laroussi, and K. Ostrikov, “Guide dionization waves: theory and experiments,” Physics Reports 540, 123–166 (2014).
[Crossref]

Lechuga, L.

M. Calleja, M. Nordstram, M. Alvarez, J. Tamayo, L. Lechuga, and A. Boisen, “Highly sensitive polymer-based cantilever-sensors for DNA detection,” Ultramicroscopy 105, 215–222 (2005).
[Crossref] [PubMed]

Lechuga, L. M.

J. C. Ramirez, L. M. Lechuga, L. H. Gabrielli, and H. E. Hernandez-Figueroa, “Study of a low-cost trimodal polymer waveguide for interferometric optical biosensors,” Opt. Express 23(9), 11985 (2015).
[Crossref] [PubMed]

M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Analytica Chimica Acta 806, 55–73 (2014).
[Crossref]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Las. Phot. Rev. 6(4), 463 (2012).
[Crossref]

Lee, J. Y.

J. Noh, S. Jeong, and J. Y. Lee, “Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate,” Nat. Comm. 7, 12374 (2016).
[Crossref]

Lee, M. H.

Liedert, C.

M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllyla, “Highly sensitive biosensor based on UV- imprinted layered polymeric – inorganic composite waveguides,” Opt. Express 20(18), 973–980 (2012).

Lin, C. E.

Lindblad, A.

S. Ashraf, C. G. Mattsson, M. Fondell, A. Lindblad, and G. Thungstrom, “Surface modification of SU-8 for metal/SU-8 adhesion using RF plasma treatment for application in thermopile detectors,” Mat. Res. Exp. 2, 8 (2015).
[Crossref]

Lommatzsch, U.

M. Noeske, J. Degenhardt, S. Strudthoff, and U. Lommatzsch, “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion,” Int. Journal of Adhesion 24, 171 (2004).
[Crossref]

Lu, X.

X. Lu, G. Naidis, M. Laroussi, and K. Ostrikov, “Guide dionization waves: theory and experiments,” Physics Reports 540, 123–166 (2014).
[Crossref]

Lynn, N. S.

N. S. Lynn, H. Sipova, P. Adam, and J. Homola, “Enhancement of affinity-based biosensors: effect of sensing chamber geometry on sensitivity,” Lab on a Chip 13(7), 1413–1421 (2013).
[Crossref] [PubMed]

Maquieira, A.

M. J. Banuls, R. Puchades, and A. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: A review,” Analytica Chimica Acta 777, 1–16 (2013).
[Crossref] [PubMed]

Marathe, S.

M. Nayak, A. Kotian, S. Marathe, and D. Chakravortty, “Detection of microorganisms using biosensors-A smarter way towards detection techniques,” Biosensors and Bioelectronics 25, 661–667 (2009).
[Crossref] [PubMed]

Mattsson, C. G.

S. Ashraf, C. G. Mattsson, M. Fondell, A. Lindblad, and G. Thungstrom, “Surface modification of SU-8 for metal/SU-8 adhesion using RF plasma treatment for application in thermopile detectors,” Mat. Res. Exp. 2, 8 (2015).
[Crossref]

Melnik, E.

E. Melnik, R. Bruck, P. Muellner, T. Schlederer, R. Hainberger, and M. Lammerhofer, “Human IgG detection in serum on polymer based Mach-Zehnder interferometric biosensors,” J. of BioPhot. 223(3), 218–223 (2016).
[Crossref]

Meyer, B.-O.

Moon, S. Y.

S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Applied Physics Letters 84, 188–190 (2004).
[Crossref]

Morfillc, C. G. E.

F. Walther, A. T. Drobek, A. Alexander, M. Gigler, A. M. Hennemeyer, A. M. Kaiser, B. H. Herberg, B. T. Shimitsu, C. G. E. Morfillc, and R. W. Stark, “Surface hydrophilization of SU-8 by plasma and wet chemical processes,” Surf. Interface Anal. 42, 1735–1744 (2010).
[Crossref]

Morgan, H.

C. Cao, S. W. Birtwell, J. Hogberg, A. Wolff, H. Morgan, and D. D. Bang, “Gold nanoparticles-coated SU-8 for sensitive fluorescence-based detections of DNA,” Micro Total Analysis Systems 2(4), 1161–1163 (2011).

Muellner, P.

E. Melnik, R. Bruck, P. Muellner, T. Schlederer, R. Hainberger, and M. Lammerhofer, “Human IgG detection in serum on polymer based Mach-Zehnder interferometric biosensors,” J. of BioPhot. 223(3), 218–223 (2016).
[Crossref]

Mutharasan, R.

H. Sharma and R. Mutharasan, “Review of biosensors for foodborne pathogens and toxins,” Sensors and Actuators B: Chemical 183, 535–549 (2013).
[Crossref]

Myllyla, R.

M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllyla, “Highly sensitive biosensor based on UV- imprinted layered polymeric – inorganic composite waveguides,” Opt. Express 20(18), 973–980 (2012).

Naidis, G.

X. Lu, G. Naidis, M. Laroussi, and K. Ostrikov, “Guide dionization waves: theory and experiments,” Physics Reports 540, 123–166 (2014).
[Crossref]

Nayak, M.

M. Nayak, A. Kotian, S. Marathe, and D. Chakravortty, “Detection of microorganisms using biosensors-A smarter way towards detection techniques,” Biosensors and Bioelectronics 25, 661–667 (2009).
[Crossref] [PubMed]

Nazirizadeh, Y.

Noeske, M.

M. Noeske, J. Degenhardt, S. Strudthoff, and U. Lommatzsch, “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion,” Int. Journal of Adhesion 24, 171 (2004).
[Crossref]

Noh, J.

J. Noh, S. Jeong, and J. Y. Lee, “Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate,” Nat. Comm. 7, 12374 (2016).
[Crossref]

Nordstram, M.

M. Calleja, M. Nordstram, M. Alvarez, J. Tamayo, L. Lechuga, and A. Boisen, “Highly sensitive polymer-based cantilever-sensors for DNA detection,” Ultramicroscopy 105, 215–222 (2005).
[Crossref] [PubMed]

Ostrikov, K.

X. Lu, G. Naidis, M. Laroussi, and K. Ostrikov, “Guide dionization waves: theory and experiments,” Physics Reports 540, 123–166 (2014).
[Crossref]

Otte, M. A.

M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Analytica Chimica Acta 806, 55–73 (2014).
[Crossref]

Otupiri, R.

Panepucci, R. R.

Park, S.

Park, S. K.

Parks, J. W.

J. W. Parks and H. Schmidt, “Flexible optofluidic waveguide platform with multidimensional reconfigurability,” Sci. Rep. 6, 33008(2016).
[Crossref]

Pavani, A.

Pearce, S.

M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllyla, “Highly sensitive biosensor based on UV- imprinted layered polymeric – inorganic composite waveguides,” Opt. Express 20(18), 973–980 (2012).

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric-inorganic waveguides,” Appl. Phys. Lett. 98(11), 111113 (2011).
[Crossref]

Prégent, J.

B. Riedl, C. Angel, J. Prégent, P. Blanchet, and L. Stafford, “Effect of wood surface modification by atmospheric-pressure plasma on waterborne coating adhesion,” BioResources 9, 4908–4923 (2014).
[Crossref]

Puchades, R.

M. J. Banuls, R. Puchades, and A. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: A review,” Analytica Chimica Acta 777, 1–16 (2013).
[Crossref] [PubMed]

Puustinen, J.

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric-inorganic waveguides,” Appl. Phys. Lett. 98(11), 111113 (2011).
[Crossref]

Ramirez, J. C.

Rasmussen, K. H.

K. H. Rasmussen, S. S. Keller, F. Jensen, A. M. Jorgensen, and O. Hansen, “SU-8 etching in inductively coupled oxygen plasma,” Microelectron. Eng. 112, 35–40 (2013).
[Crossref]

Riedl, B.

B. Riedl, C. Angel, J. Prégent, P. Blanchet, and L. Stafford, “Effect of wood surface modification by atmospheric-pressure plasma on waterborne coating adhesion,” BioResources 9, 4908–4923 (2014).
[Crossref]

Roussey, M.

Saarinen, J.

Schianti, J. N.

Schlederer, T.

E. Melnik, R. Bruck, P. Muellner, T. Schlederer, R. Hainberger, and M. Lammerhofer, “Human IgG detection in serum on polymer based Mach-Zehnder interferometric biosensors,” J. of BioPhot. 223(3), 218–223 (2016).
[Crossref]

Schmidt, H.

J. W. Parks and H. Schmidt, “Flexible optofluidic waveguide platform with multidimensional reconfigurability,” Sci. Rep. 6, 33008(2016).
[Crossref]

Selhuber-Unkel, C.

Sepulveda, B.

M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Analytica Chimica Acta 806, 55–73 (2014).
[Crossref]

Sharma, H.

H. Sharma and R. Mutharasan, “Review of biosensors for foodborne pathogens and toxins,” Sensors and Actuators B: Chemical 183, 535–549 (2013).
[Crossref]

Shimitsu, B. T.

F. Walther, A. T. Drobek, A. Alexander, M. Gigler, A. M. Hennemeyer, A. M. Kaiser, B. H. Herberg, B. T. Shimitsu, C. G. E. Morfillc, and R. W. Stark, “Surface hydrophilization of SU-8 by plasma and wet chemical processes,” Surf. Interface Anal. 42, 1735–1744 (2010).
[Crossref]

Sipova, H.

N. S. Lynn, H. Sipova, P. Adam, and J. Homola, “Enhancement of affinity-based biosensors: effect of sensing chamber geometry on sensitivity,” Lab on a Chip 13(7), 1413–1421 (2013).
[Crossref] [PubMed]

Stafford, L.

B. Riedl, C. Angel, J. Prégent, P. Blanchet, and L. Stafford, “Effect of wood surface modification by atmospheric-pressure plasma on waterborne coating adhesion,” BioResources 9, 4908–4923 (2014).
[Crossref]

Stark, R. W.

F. Walther, A. T. Drobek, A. Alexander, M. Gigler, A. M. Hennemeyer, A. M. Kaiser, B. H. Herberg, B. T. Shimitsu, C. G. E. Morfillc, and R. W. Stark, “Surface hydrophilization of SU-8 by plasma and wet chemical processes,” Surf. Interface Anal. 42, 1735–1744 (2010).
[Crossref]

F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A. M. Gigler, and R. W. Stark, “Stability of the hydrophilic behavior of oxygen plasma activated SU-8,” J. Micromech. and Microeng. 17(24), 3 (2007).
[Crossref]

Stenberg, P.

Strudthoff, S.

M. Noeske, J. Degenhardt, S. Strudthoff, and U. Lommatzsch, “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion,” Int. Journal of Adhesion 24, 171 (2004).
[Crossref]

Tamayo, J.

M. Calleja, M. Nordstram, M. Alvarez, J. Tamayo, L. Lechuga, and A. Boisen, “Highly sensitive polymer-based cantilever-sensors for DNA detection,” Ultramicroscopy 105, 215–222 (2005).
[Crossref] [PubMed]

Thungstrom, G.

S. Ashraf, C. G. Mattsson, M. Fondell, A. Lindblad, and G. Thungstrom, “Surface modification of SU-8 for metal/SU-8 adhesion using RF plasma treatment for application in thermopile detectors,” Mat. Res. Exp. 2, 8 (2015).
[Crossref]

Uusitalo, S.

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric-inorganic waveguides,” Appl. Phys. Lett. 98(11), 111113 (2011).
[Crossref]

Walther, F.

F. Walther, A. T. Drobek, A. Alexander, M. Gigler, A. M. Hennemeyer, A. M. Kaiser, B. H. Herberg, B. T. Shimitsu, C. G. E. Morfillc, and R. W. Stark, “Surface hydrophilization of SU-8 by plasma and wet chemical processes,” Surf. Interface Anal. 42, 1735–1744 (2010).
[Crossref]

F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A. M. Gigler, and R. W. Stark, “Stability of the hydrophilic behavior of oxygen plasma activated SU-8,” J. Micromech. and Microeng. 17(24), 3 (2007).
[Crossref]

Wang, M.

M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllyla, “Highly sensitive biosensor based on UV- imprinted layered polymeric – inorganic composite waveguides,” Opt. Express 20(18), 973–980 (2012).

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric-inorganic waveguides,” Appl. Phys. Lett. 98(11), 111113 (2011).
[Crossref]

Wolff, A.

C. Cao, S. W. Birtwell, J. Hogberg, A. Wolff, H. Morgan, and D. D. Bang, “Gold nanoparticles-coated SU-8 for sensitive fluorescence-based detections of DNA,” Micro Total Analysis Systems 2(4), 1161–1163 (2011).

Wu, T. Y.

Yang, F.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

Yang, S.

M. Kim, S. Yang, J. H. Boo, and J. Han, “Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics,” Surface and Coatings Technology 174, 839–844 (2003).
[Crossref]

Yen, M. H.

Zhang, C.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, W. X. Zhou, M. B. Chan-Park, and S. R. Conner, “Argon Plasma Modification of SU-8 for Very High Aspect Ratio and Dense Copper Electroforming,” J. Electrochem. Soc. 152, 716–721 (2005).
[Crossref]

Zhou, J.

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

Zhou, W. X.

J. Zhang, W. X. Zhou, M. B. Chan-Park, and S. R. Conner, “Argon Plasma Modification of SU-8 for Very High Aspect Ratio and Dense Copper Electroforming,” J. Electrochem. Soc. 152, 716–721 (2005).
[Crossref]

Zurcher, S.

F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A. M. Gigler, and R. W. Stark, “Stability of the hydrophilic behavior of oxygen plasma activated SU-8,” J. Micromech. and Microeng. 17(24), 3 (2007).
[Crossref]

ACS Nano (1)

X. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, “Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode,” ACS Nano 10(4), 4039–4045 (2016).
[Crossref] [PubMed]

Analytica Chimica Acta (2)

M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Analytica Chimica Acta 806, 55–73 (2014).
[Crossref]

M. J. Banuls, R. Puchades, and A. Maquieira, “Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: A review,” Analytica Chimica Acta 777, 1–16 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric-inorganic waveguides,” Appl. Phys. Lett. 98(11), 111113 (2011).
[Crossref]

Applied Physics Letters (1)

S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Applied Physics Letters 84, 188–190 (2004).
[Crossref]

Biomed. Opt. Express (1)

BioResources (1)

B. Riedl, C. Angel, J. Prégent, P. Blanchet, and L. Stafford, “Effect of wood surface modification by atmospheric-pressure plasma on waterborne coating adhesion,” BioResources 9, 4908–4923 (2014).
[Crossref]

Biosensors and Bioelectronics (2)

M. Nayak, A. Kotian, S. Marathe, and D. Chakravortty, “Detection of microorganisms using biosensors-A smarter way towards detection techniques,” Biosensors and Bioelectronics 25, 661–667 (2009).
[Crossref] [PubMed]

S. Dhanekar and S. Jain, “Porous silicon biosensor: Current status,” Biosensors and Bioelectronics 41, 54–64 (2013).
[Crossref]

Int. Journal of Adhesion (1)

M. Noeske, J. Degenhardt, S. Strudthoff, and U. Lommatzsch, “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion,” Int. Journal of Adhesion 24, 171 (2004).
[Crossref]

J. Electrochem. Soc. (1)

J. Zhang, W. X. Zhou, M. B. Chan-Park, and S. R. Conner, “Argon Plasma Modification of SU-8 for Very High Aspect Ratio and Dense Copper Electroforming,” J. Electrochem. Soc. 152, 716–721 (2005).
[Crossref]

J. Micromech. and Microeng. (1)

F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A. M. Gigler, and R. W. Stark, “Stability of the hydrophilic behavior of oxygen plasma activated SU-8,” J. Micromech. and Microeng. 17(24), 3 (2007).
[Crossref]

J. of BioPhot. (1)

E. Melnik, R. Bruck, P. Muellner, T. Schlederer, R. Hainberger, and M. Lammerhofer, “Human IgG detection in serum on polymer based Mach-Zehnder interferometric biosensors,” J. of BioPhot. 223(3), 218–223 (2016).
[Crossref]

Lab on a Chip (1)

N. S. Lynn, H. Sipova, P. Adam, and J. Homola, “Enhancement of affinity-based biosensors: effect of sensing chamber geometry on sensitivity,” Lab on a Chip 13(7), 1413–1421 (2013).
[Crossref] [PubMed]

Las. Phot. Rev. (1)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Las. Phot. Rev. 6(4), 463 (2012).
[Crossref]

Mat. Res. Exp. (1)

S. Ashraf, C. G. Mattsson, M. Fondell, A. Lindblad, and G. Thungstrom, “Surface modification of SU-8 for metal/SU-8 adhesion using RF plasma treatment for application in thermopile detectors,” Mat. Res. Exp. 2, 8 (2015).
[Crossref]

Micro Total Analysis Systems (1)

C. Cao, S. W. Birtwell, J. Hogberg, A. Wolff, H. Morgan, and D. D. Bang, “Gold nanoparticles-coated SU-8 for sensitive fluorescence-based detections of DNA,” Micro Total Analysis Systems 2(4), 1161–1163 (2011).

Microelectron. Eng. (1)

K. H. Rasmussen, S. S. Keller, F. Jensen, A. M. Jorgensen, and O. Hansen, “SU-8 etching in inductively coupled oxygen plasma,” Microelectron. Eng. 112, 35–40 (2013).
[Crossref]

Nat. Comm. (1)

J. Noh, S. Jeong, and J. Y. Lee, “Ultrafast formation of air-processable and high-quality polymer films on an aqueous substrate,” Nat. Comm. 7, 12374 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Physics Reports (1)

X. Lu, G. Naidis, M. Laroussi, and K. Ostrikov, “Guide dionization waves: theory and experiments,” Physics Reports 540, 123–166 (2014).
[Crossref]

Sci. Rep. (1)

J. W. Parks and H. Schmidt, “Flexible optofluidic waveguide platform with multidimensional reconfigurability,” Sci. Rep. 6, 33008(2016).
[Crossref]

Sensors and Actuators B: Chemical (1)

H. Sharma and R. Mutharasan, “Review of biosensors for foodborne pathogens and toxins,” Sensors and Actuators B: Chemical 183, 535–549 (2013).
[Crossref]

Surf. Interface Anal. (1)

F. Walther, A. T. Drobek, A. Alexander, M. Gigler, A. M. Hennemeyer, A. M. Kaiser, B. H. Herberg, B. T. Shimitsu, C. G. E. Morfillc, and R. W. Stark, “Surface hydrophilization of SU-8 by plasma and wet chemical processes,” Surf. Interface Anal. 42, 1735–1744 (2010).
[Crossref]

Surface and Coatings Technology (1)

M. Kim, S. Yang, J. H. Boo, and J. Han, “Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics,” Surface and Coatings Technology 174, 839–844 (2003).
[Crossref]

Ultramicroscopy (1)

M. Calleja, M. Nordstram, M. Alvarez, J. Tamayo, L. Lechuga, and A. Boisen, “Highly sensitive polymer-based cantilever-sensors for DNA detection,” Ultramicroscopy 105, 215–222 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sample preparation process. (a) Main steps in the fabrication process of the thin SU-8 layer on gold. (b) Spin-coating characterization for spin speeds between 1000 rpm and 9000 rpm.
Fig. 2
Fig. 2 Characterization of the effect of plasma exposure on the surface of the modified SU-8 as function of the time. Measured contact angle for different exposure intervals of DBD plasma treatment and recovery curve for the contact angle after 2 minutes exposure.
Fig. 3
Fig. 3 SU-8 + photoinitiator surface characterization obtained by AFM. (a) Surface roughness of the SU-8 + photoinitiator layer without DBD plasma exposure. (b) Surface after exposure for 2 minutes. (c) Surface after exposure for 10 minutes.
Fig. 4
Fig. 4 Polymer-based surface plasmon resonance. (a) Simulated light behavior in SPR detection system. (b) Comparison between simulated and experimental resonance in SU-8-based SPR detection system.
Fig. 5
Fig. 5 Immobilization of the IgG and Prostate Specific Antigen (PSA) on SU-8 activated surface. (a) Sensorgramm dynamic in response to the association or dissociation of proteins. (b) Same as (a) but for PSA. (c) Response to the interaction antigen-antibody after anti-PSA deposition.