Abstract

Complete removal of a glioblastoma multiforme (GBM), a highly malignant brain tumor, is challenging due to its infiltrative characteristics. Therefore, utilizing imaging agents such as fluorophores to increase the contrast between GBM and normal cells can help neurosurgeons to locate residual cancer cells during image guided surgery. In this work, Raman tag based labeling and imaging for GBM cells in vitro is described and evaluated. The cell membrane of a GBM adsorbs a substantial amount of functionalized Raman tags through overexpression of the epidermal growth factor receptor (EGFR) and “broadcasts” stronger pre-defined Raman signals than normal cells. The average ratio between Raman signals from a GBM cell and autofluorescence from a normal cell can be up to 15. In addition, the intensity of these images is stable under laser illuminations without suffering from the severe photo-bleaching that usually occurs in fluorescent imaging. Our results show that labeling and imaging GBM cells via robust Raman tags is a viable alternative method to distinguish them from normal cells. This Raman tag based method can be used solely or integrated into an existing fluorescence system to improve the identification of infiltrative glial tumor cells around the boundary, which will further reduce GBM recurrence. In addition, it can also be applied/extended to other types of cancer to improve the effectiveness of image guided surgery.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Feasibility study of brain tumor delineation using immunolabeled gold nanorods

Kevin Seekell, Spencer Lewis, Christy Wilson, Shuqin Li, Gerald Grant, and Adam Wax
Biomed. Opt. Express 4(11) 2284-2295 (2013)

Raman spectroscopy detects distant invasive brain cancer cells centimeters beyond MRI capability in humans

Michael Jermyn, Joannie Desroches, Jeanne Mercier, Karl St-Arnaud, Marie-Christine Guiot, Frederic Leblond, and Kevin Petrecca
Biomed. Opt. Express 7(12) 5129-5137 (2016)

Polyelectrolyte induced controlled assemblies for the backbone of robust and brilliant Raman tags

Yung-Ching Chang, Li-Ching Huang, Shih-Yi Chuang, Wei-Lun Sun, Tien-Hsin Lin, and Shiuan-Yeh Chen
Opt. Express 25(20) 24767-24779 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. J. McGirt, K. L. Chaichana, M. Gathinji, F. J. Attenello, K. Than, A. Olivi, J. D. Weingart, H. Brem, and A. R. Quiñones-Hinojosa, “Independent association of extent of resection with survival in patients with malignant brain astrocytoma,” J. Neurosurg. 110(1), 156–162 (2009).
    [Crossref] [PubMed]
  2. K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
    [Crossref] [PubMed]
  3. O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K. D. Geiger, G. Schackert, E. Koch, G. Steiner, and M. Kirsch, “Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma,” PLoS One 9(9), e107115 (2014).
    [Crossref] [PubMed]
  4. Q. Peng, K. Berg, J. Moan, M. Kongshaug, and J. M. Nesland, “5-aminolevulinic acid-based photodynamic therapy: Principles and experimental research,” Photochem. Photobiol. 65(2), 235–251 (1997).
    [Crossref] [PubMed]
  5. P. Uehlinger, M. Zellweger, G. Wagnières, L. Juillerat-Jeanneret, H. van den Bergh, and N. Lange, “5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells,” J. Photochem. Photobiol. B 54(1), 72–80 (2000).
    [Crossref] [PubMed]
  6. R. C. Krieg, H. Messmann, J. Rauch, S. Seeger, and R. Knuechel, “Metabolic characterization of tumor cell-specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells,” Photochem. Photobiol. 76(5), 518–525 (2002).
    [Crossref] [PubMed]
  7. M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S. Ogura, and T. Tanaka, “Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy,” Int. Immunopharmacol. 11(3), 358–365 (2011).
    [Crossref] [PubMed]
  8. N. Koizumi, Y. Harada, T. Minamikawa, H. Tanaka, E. Otsuji, and T. Takamatsu, “Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid,” World J. Gastroenterol. 22(3), 1289–1296 (2016).
    [Crossref] [PubMed]
  9. S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
    [Crossref] [PubMed]
  10. W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42(3), 518–525, discussion 525–526 (1998).
    [Crossref] [PubMed]
  11. W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
    [Crossref] [PubMed]
  12. J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
    [Crossref] [PubMed]
  13. T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
    [Crossref] [PubMed]
  14. D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
    [Crossref] [PubMed]
  15. X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
    [Crossref] [PubMed]
  16. M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
    [Crossref] [PubMed]
  17. M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
    [Crossref] [PubMed]
  18. A. S. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric Gold Nanoparticle Assemblies as Tags for SERS-Based Cancer Detection,” Adv. Healthc. Mater. 2(10), 1370–1376 (2013).
    [Crossref] [PubMed]
  19. M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
    [Crossref] [PubMed]
  20. H. Karabeber, R. Huang, P. Iacono, J. M. Samii, K. Pitter, E. C. Holland, and M. F. Kircher, “Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner,” ACS Nano 8(10), 9755–9766 (2014).
    [Crossref] [PubMed]
  21. R. Huang, S. Harmsen, J. M. Samii, H. Karabeber, K. L. Pitter, E. C. Holland, and M. F. Kircher, “High precision imaging of microscopic spread of Glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe,” Theranostics 6(8), 1075–1084 (2016).
    [Crossref] [PubMed]
  22. R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
    [Crossref] [PubMed]
  23. D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
    [Crossref] [PubMed]
  24. L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
    [Crossref] [PubMed]
  25. J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
    [Crossref] [PubMed]
  26. Y. C. Chang, L. C. Huang, S. Y. Chuang, W. L. Sun, T. H. Lin, and S. Y. Chen, “Polyelectrolyte induced controlled assemblies for the backbone of robust and brilliant Raman tags,” Opt. Express 25(20), 24767–24779 (2017).
    [Crossref] [PubMed]
  27. K. Watanabe, O. Tachibana, K. Sata, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas,” Brain Pathol. 6(3), 217 (1996).
    [Crossref] [PubMed]
  28. M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
    [Crossref] [PubMed]
  29. G. T. Hermanson, Bioconjugate techniques (Acad. Press, 2013)
  30. S. Zhan, Y. Yang, Z. Shen, J. Shan, Y. Li, S. Yang, and D. Zhu, “Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles,” J. Hazard. Mater. 274, 115–123 (2014).
    [Crossref] [PubMed]
  31. W. D. Ding, J. Cai, Z. Y. Yu, Q. H. Wang, Z. N. Xu, Z. N. Wang, and C. J. Gao, “Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support,” J. Mater. Chem. A Mater. Energy Sustain. 3(40), 20118–20126 (2015).
    [Crossref]

2017 (5)

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
[Crossref] [PubMed]

X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
[Crossref] [PubMed]

Y. C. Chang, L. C. Huang, S. Y. Chuang, W. L. Sun, T. H. Lin, and S. Y. Chen, “Polyelectrolyte induced controlled assemblies for the backbone of robust and brilliant Raman tags,” Opt. Express 25(20), 24767–24779 (2017).
[Crossref] [PubMed]

2016 (2)

R. Huang, S. Harmsen, J. M. Samii, H. Karabeber, K. L. Pitter, E. C. Holland, and M. F. Kircher, “High precision imaging of microscopic spread of Glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe,” Theranostics 6(8), 1075–1084 (2016).
[Crossref] [PubMed]

N. Koizumi, Y. Harada, T. Minamikawa, H. Tanaka, E. Otsuji, and T. Takamatsu, “Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid,” World J. Gastroenterol. 22(3), 1289–1296 (2016).
[Crossref] [PubMed]

2015 (4)

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

W. D. Ding, J. Cai, Z. Y. Yu, Q. H. Wang, Z. N. Xu, Z. N. Wang, and C. J. Gao, “Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support,” J. Mater. Chem. A Mater. Energy Sustain. 3(40), 20118–20126 (2015).
[Crossref]

2014 (5)

H. Karabeber, R. Huang, P. Iacono, J. M. Samii, K. Pitter, E. C. Holland, and M. F. Kircher, “Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner,” ACS Nano 8(10), 9755–9766 (2014).
[Crossref] [PubMed]

S. Zhan, Y. Yang, Z. Shen, J. Shan, Y. Li, S. Yang, and D. Zhu, “Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles,” J. Hazard. Mater. 274, 115–123 (2014).
[Crossref] [PubMed]

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K. D. Geiger, G. Schackert, E. Koch, G. Steiner, and M. Kirsch, “Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma,” PLoS One 9(9), e107115 (2014).
[Crossref] [PubMed]

2013 (1)

A. S. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric Gold Nanoparticle Assemblies as Tags for SERS-Based Cancer Detection,” Adv. Healthc. Mater. 2(10), 1370–1376 (2013).
[Crossref] [PubMed]

2012 (1)

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

2011 (2)

M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S. Ogura, and T. Tanaka, “Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy,” Int. Immunopharmacol. 11(3), 358–365 (2011).
[Crossref] [PubMed]

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

2010 (1)

J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
[Crossref] [PubMed]

2009 (1)

M. J. McGirt, K. L. Chaichana, M. Gathinji, F. J. Attenello, K. Than, A. Olivi, J. D. Weingart, H. Brem, and A. R. Quiñones-Hinojosa, “Independent association of extent of resection with survival in patients with malignant brain astrocytoma,” J. Neurosurg. 110(1), 156–162 (2009).
[Crossref] [PubMed]

2007 (1)

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

2006 (1)

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

2002 (1)

R. C. Krieg, H. Messmann, J. Rauch, S. Seeger, and R. Knuechel, “Metabolic characterization of tumor cell-specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells,” Photochem. Photobiol. 76(5), 518–525 (2002).
[Crossref] [PubMed]

2000 (1)

P. Uehlinger, M. Zellweger, G. Wagnières, L. Juillerat-Jeanneret, H. van den Bergh, and N. Lange, “5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells,” J. Photochem. Photobiol. B 54(1), 72–80 (2000).
[Crossref] [PubMed]

1998 (1)

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42(3), 518–525, discussion 525–526 (1998).
[Crossref] [PubMed]

1997 (1)

Q. Peng, K. Berg, J. Moan, M. Kongshaug, and J. M. Nesland, “5-aminolevulinic acid-based photodynamic therapy: Principles and experimental research,” Photochem. Photobiol. 65(2), 235–251 (1997).
[Crossref] [PubMed]

1996 (1)

K. Watanabe, O. Tachibana, K. Sata, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas,” Brain Pathol. 6(3), 217 (1996).
[Crossref] [PubMed]

Abe, F.

M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S. Ogura, and T. Tanaka, “Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy,” Int. Immunopharmacol. 11(3), 358–365 (2011).
[Crossref] [PubMed]

Akhavanfard, S.

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

Aldape, K. D.

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

Attenello, F. J.

M. J. McGirt, K. L. Chaichana, M. Gathinji, F. J. Attenello, K. Than, A. Olivi, J. D. Weingart, H. Brem, and A. R. Quiñones-Hinojosa, “Independent association of extent of resection with survival in patients with malignant brain astrocytoma,” J. Neurosurg. 110(1), 156–162 (2009).
[Crossref] [PubMed]

Bedoni, M.

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

Berg, K.

Q. Peng, K. Berg, J. Moan, M. Kongshaug, and J. M. Nesland, “5-aminolevulinic acid-based photodynamic therapy: Principles and experimental research,” Photochem. Photobiol. 65(2), 235–251 (1997).
[Crossref] [PubMed]

Berlin, A. A.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Bernstein, L.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Betensky, R. A.

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

Blakeley, J.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

Bouras, A.

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

Brat, D. J.

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

Brem, H.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

M. J. McGirt, K. L. Chaichana, M. Gathinji, F. J. Attenello, K. Than, A. Olivi, J. D. Weingart, H. Brem, and A. R. Quiñones-Hinojosa, “Independent association of extent of resection with survival in patients with malignant brain astrocytoma,” J. Neurosurg. 110(1), 156–162 (2009).
[Crossref] [PubMed]

Brennan, C. W.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Bu, W.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Cahill, D. P.

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

Cai, J.

W. D. Ding, J. Cai, Z. Y. Yu, Q. H. Wang, Z. N. Xu, Z. N. Wang, and C. J. Gao, “Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support,” J. Mater. Chem. A Mater. Energy Sustain. 3(40), 20118–20126 (2015).
[Crossref]

Camelo-Piragua, S.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Campos, C.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Cao, M.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Chaichana, K. L.

T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
[Crossref] [PubMed]

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

M. J. McGirt, K. L. Chaichana, M. Gathinji, F. J. Attenello, K. Than, A. Olivi, J. D. Weingart, H. Brem, and A. R. Quiñones-Hinojosa, “Independent association of extent of resection with survival in patients with malignant brain astrocytoma,” J. Neurosurg. 110(1), 156–162 (2009).
[Crossref] [PubMed]

Chan, S.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Chang, Y. C.

Chen, F.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Chen, G.

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

Chen, L.

X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
[Crossref] [PubMed]

Chen, R.

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

Chen, S. Y.

Chmura, A. J.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Cho, H. R.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Choi, A.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Choi, H.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Choi, S. H.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Chowdhury, T.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Chuang, S. Y.

Ciceri, F.

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

Cooper, L. A. D.

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

Davidson, C. J.

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

de la Zerda, A.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Dentinger, C.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Desroches, J.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Dho, Y. S.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Ding, W. D.

W. D. Ding, J. Cai, Z. Y. Yu, Q. H. Wang, Z. N. Xu, Z. N. Wang, and C. J. Gao, “Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support,” J. Mater. Chem. A Mater. Energy Sustain. 3(40), 20118–20126 (2015).
[Crossref]

Dunn, W. D.

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

Duong, D.

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

Fabris, L.

A. S. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric Gold Nanoparticle Assemblies as Tags for SERS-Based Cancer Detection,” Adv. Healthc. Mater. 2(10), 1370–1376 (2013).
[Crossref] [PubMed]

Fan, W.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Fawzy, Y.

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

Fazlollahi, L.

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

Feng, S.

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

Fisher-Hubbard, A.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Freudiger, C. W.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Fritsch, C.

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42(3), 518–525, discussion 525–526 (1998).
[Crossref] [PubMed]

Fu, D.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Galli, R.

O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K. D. Geiger, G. Schackert, E. Koch, G. Steiner, and M. Kirsch, “Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma,” PLoS One 9(9), e107115 (2014).
[Crossref] [PubMed]

Gallia, G. L.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

Gambhir, S. S.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Gao, C. J.

W. D. Ding, J. Cai, Z. Y. Yu, Q. H. Wang, Z. N. Xu, Z. N. Wang, and C. J. Gao, “Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support,” J. Mater. Chem. A Mater. Energy Sustain. 3(40), 20118–20126 (2015).
[Crossref]

Gao, X.

X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
[Crossref] [PubMed]

Garrard, M.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Garzon-Muvdi, T.

T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
[Crossref] [PubMed]

Gathinji, M.

M. J. McGirt, K. L. Chaichana, M. Gathinji, F. J. Attenello, K. Than, A. Olivi, J. D. Weingart, H. Brem, and A. R. Quiñones-Hinojosa, “Independent association of extent of resection with survival in patients with malignant brain astrocytoma,” J. Neurosurg. 110(1), 156–162 (2009).
[Crossref] [PubMed]

Geiger, K. D.

O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K. D. Geiger, G. Schackert, E. Koch, G. Steiner, and M. Kirsch, “Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma,” PLoS One 9(9), e107115 (2014).
[Crossref] [PubMed]

Goetz, A. E.

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42(3), 518–525, discussion 525–526 (1998).
[Crossref] [PubMed]

Goetz, C.

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42(3), 518–525, discussion 525–526 (1998).
[Crossref] [PubMed]

Gomez, L.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

Gramatica, F.

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

Guiot, M. C.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Gutman, D.

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

Habte, F.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Hadjipanayis, C. G.

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

Han, F.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Harada, Y.

N. Koizumi, Y. Harada, T. Minamikawa, H. Tanaka, E. Otsuji, and T. Takamatsu, “Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid,” World J. Gastroenterol. 22(3), 1289–1296 (2016).
[Crossref] [PubMed]

Harmsen, S.

R. Huang, S. Harmsen, J. M. Samii, H. Karabeber, K. L. Pitter, E. C. Holland, and M. F. Kircher, “High precision imaging of microscopic spread of Glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe,” Theranostics 6(8), 1075–1084 (2016).
[Crossref] [PubMed]

He, Q.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Hernandez-Hermann, M.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

Heth, J. A.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Holland, E. C.

R. Huang, S. Harmsen, J. M. Samii, H. Karabeber, K. L. Pitter, E. C. Holland, and M. F. Kircher, “High precision imaging of microscopic spread of Glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe,” Theranostics 6(8), 1075–1084 (2016).
[Crossref] [PubMed]

H. Karabeber, R. Huang, P. Iacono, J. M. Samii, K. Pitter, E. C. Holland, and M. F. Kircher, “Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner,” ACS Nano 8(10), 9755–9766 (2014).
[Crossref] [PubMed]

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Huang, L. C.

Huang, R.

R. Huang, S. Harmsen, J. M. Samii, H. Karabeber, K. L. Pitter, E. C. Holland, and M. F. Kircher, “High precision imaging of microscopic spread of Glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe,” Theranostics 6(8), 1075–1084 (2016).
[Crossref] [PubMed]

H. Karabeber, R. Huang, P. Iacono, J. M. Samii, K. Pitter, E. C. Holland, and M. F. Kircher, “Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner,” ACS Nano 8(10), 9755–9766 (2014).
[Crossref] [PubMed]

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Huang, W.

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

Hwang, T.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Iacono, P.

H. Karabeber, R. Huang, P. Iacono, J. M. Samii, K. Pitter, E. C. Holland, and M. F. Kircher, “Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner,” ACS Nano 8(10), 9755–9766 (2014).
[Crossref] [PubMed]

Iafrate, A. J.

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

Ibrahim, A.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

Indrasekara, A. S.

A. S. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric Gold Nanoparticle Assemblies as Tags for SERS-Based Cancer Detection,” Adv. Healthc. Mater. 2(10), 1370–1376 (2013).
[Crossref] [PubMed]

Inoue, K.

M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S. Ogura, and T. Tanaka, “Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy,” Int. Immunopharmacol. 11(3), 358–365 (2011).
[Crossref] [PubMed]

Ishizuka, M.

M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S. Ogura, and T. Tanaka, “Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy,” Int. Immunopharmacol. 11(3), 358–365 (2011).
[Crossref] [PubMed]

Jermyn, M.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Ji, M.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Johnson, T. D.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Jokerst, J. V.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Juillerat-Jeanneret, L.

P. Uehlinger, M. Zellweger, G. Wagnières, L. Juillerat-Jeanneret, H. van den Bergh, and N. Lange, “5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells,” J. Photochem. Photobiol. B 54(1), 72–80 (2000).
[Crossref] [PubMed]

Jusue-Torres, I.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

Kaluzova, M.

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

Karabeber, H.

R. Huang, S. Harmsen, J. M. Samii, H. Karabeber, K. L. Pitter, E. C. Holland, and M. F. Kircher, “High precision imaging of microscopic spread of Glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe,” Theranostics 6(8), 1075–1084 (2016).
[Crossref] [PubMed]

H. Karabeber, R. Huang, P. Iacono, J. M. Samii, K. Pitter, E. C. Holland, and M. F. Kircher, “Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner,” ACS Nano 8(10), 9755–9766 (2014).
[Crossref] [PubMed]

Ke, M.

X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
[Crossref] [PubMed]

Kempen, P. J.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Kiefmann, R.

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42(3), 518–525, discussion 525–526 (1998).
[Crossref] [PubMed]

Kim, D. G.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Kim, H.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Kim, H. C.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Kim, J. E.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Kim, J. I.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Kim, J. W.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Kim, S.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Kim, S. K.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Kim, Y. H.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Kircher, M. F.

R. Huang, S. Harmsen, J. M. Samii, H. Karabeber, K. L. Pitter, E. C. Holland, and M. F. Kircher, “High precision imaging of microscopic spread of Glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe,” Theranostics 6(8), 1075–1084 (2016).
[Crossref] [PubMed]

H. Karabeber, R. Huang, P. Iacono, J. M. Samii, K. Pitter, E. C. Holland, and M. F. Kircher, “Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner,” ACS Nano 8(10), 9755–9766 (2014).
[Crossref] [PubMed]

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Kirsch, M.

O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K. D. Geiger, G. Schackert, E. Koch, G. Steiner, and M. Kirsch, “Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma,” PLoS One 9(9), e107115 (2014).
[Crossref] [PubMed]

Kleihues, P.

K. Watanabe, O. Tachibana, K. Sata, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas,” Brain Pathol. 6(3), 217 (1996).
[Crossref] [PubMed]

Kneipp, H.

J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
[Crossref] [PubMed]

Kneipp, J.

J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
[Crossref] [PubMed]

Kneipp, K.

J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
[Crossref] [PubMed]

Knudsen, B.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Knuechel, R.

R. C. Krieg, H. Messmann, J. Rauch, S. Seeger, and R. Knuechel, “Metabolic characterization of tumor cell-specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells,” Photochem. Photobiol. 76(5), 518–525 (2002).
[Crossref] [PubMed]

Koch, E.

O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K. D. Geiger, G. Schackert, E. Koch, G. Steiner, and M. Kirsch, “Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma,” PLoS One 9(9), e107115 (2014).
[Crossref] [PubMed]

Kohda, T.

M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S. Ogura, and T. Tanaka, “Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy,” Int. Immunopharmacol. 11(3), 358–365 (2011).
[Crossref] [PubMed]

Koizumi, N.

N. Koizumi, Y. Harada, T. Minamikawa, H. Tanaka, E. Otsuji, and T. Takamatsu, “Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid,” World J. Gastroenterol. 22(3), 1289–1296 (2016).
[Crossref] [PubMed]

Komatsu, N.

M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S. Ogura, and T. Tanaka, “Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy,” Int. Immunopharmacol. 11(3), 358–365 (2011).
[Crossref] [PubMed]

Kong, J.

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

Kongshaug, M.

Q. Peng, K. Berg, J. Moan, M. Kongshaug, and J. M. Nesland, “5-aminolevulinic acid-based photodynamic therapy: Principles and experimental research,” Photochem. Photobiol. 65(2), 235–251 (1997).
[Crossref] [PubMed]

Krieg, R. C.

R. C. Krieg, H. Messmann, J. Rauch, S. Seeger, and R. Knuechel, “Metabolic characterization of tumor cell-specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells,” Photochem. Photobiol. 76(5), 518–525 (2002).
[Crossref] [PubMed]

Kut, C.

T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
[Crossref] [PubMed]

Lange, N.

P. Uehlinger, M. Zellweger, G. Wagnières, L. Juillerat-Jeanneret, H. van den Bergh, and N. Lange, “5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells,” J. Photochem. Photobiol. B 54(1), 72–80 (2000).
[Crossref] [PubMed]

Le, L. P.

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

Leblond, F.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Lee, S. H.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Leipnitz, E.

O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K. D. Geiger, G. Schackert, E. Koch, G. Steiner, and M. Kirsch, “Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma,” PLoS One 9(9), e107115 (2014).
[Crossref] [PubMed]

Lenferink, A. T.

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

Lewis, S.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Li, C.

X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
[Crossref] [PubMed]

Li, S.

X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
[Crossref] [PubMed]

Li, X.

T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
[Crossref] [PubMed]

Li, Y.

S. Zhan, Y. Yang, Z. Shen, J. Shan, Y. Li, S. Yang, and D. Zhu, “Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles,” J. Hazard. Mater. 274, 115–123 (2014).
[Crossref] [PubMed]

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

Lim, M.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

Lin, D.

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

Lin, T. H.

Liu, J.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Liu, Z.

X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
[Crossref] [PubMed]

Louis, D. N.

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

Lu, Y.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Lutz, B.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Maher, C. O.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Mao, Y.

X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
[Crossref] [PubMed]

McCrary, M. R.

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

McGirt, M. J.

M. J. McGirt, K. L. Chaichana, M. Gathinji, F. J. Attenello, K. Than, A. Olivi, J. D. Weingart, H. Brem, and A. R. Quiñones-Hinojosa, “Independent association of extent of resection with survival in patients with malignant brain astrocytoma,” J. Neurosurg. 110(1), 156–162 (2009).
[Crossref] [PubMed]

Mehn, D.

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

Meinel, T.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Mellinghoff, I. K.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Mercier, J.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Messmann, H.

R. C. Krieg, H. Messmann, J. Rauch, S. Seeger, and R. Knuechel, “Metabolic characterization of tumor cell-specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells,” Photochem. Photobiol. 76(5), 518–525 (2002).
[Crossref] [PubMed]

Minamikawa, T.

N. Koizumi, Y. Harada, T. Minamikawa, H. Tanaka, E. Otsuji, and T. Takamatsu, “Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid,” World J. Gastroenterol. 22(3), 1289–1296 (2016).
[Crossref] [PubMed]

Mittra, E.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Moan, J.

Q. Peng, K. Berg, J. Moan, M. Kongshaug, and J. M. Nesland, “5-aminolevulinic acid-based photodynamic therapy: Principles and experimental research,” Photochem. Photobiol. 65(2), 235–251 (1997).
[Crossref] [PubMed]

Moghe, P. V.

A. S. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric Gold Nanoparticle Assemblies as Tags for SERS-Based Cancer Detection,” Adv. Healthc. Mater. 2(10), 1370–1376 (2013).
[Crossref] [PubMed]

Mok, K.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Morasso, C.

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

Naczynski, D. J.

A. S. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric Gold Nanoparticle Assemblies as Tags for SERS-Based Cancer Detection,” Adv. Healthc. Mater. 2(10), 1370–1376 (2013).
[Crossref] [PubMed]

Nakajima, M.

M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S. Ogura, and T. Tanaka, “Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy,” Int. Immunopharmacol. 11(3), 358–365 (2011).
[Crossref] [PubMed]

Navarro-Ramirez, R.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

Nesland, J. M.

Q. Peng, K. Berg, J. Moan, M. Kongshaug, and J. M. Nesland, “5-aminolevulinic acid-based photodynamic therapy: Principles and experimental research,” Photochem. Photobiol. 65(2), 235–251 (1997).
[Crossref] [PubMed]

Nguyen, L.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Ni, D.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Nitta, M.

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

Ogura, S.

M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S. Ogura, and T. Tanaka, “Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy,” Int. Immunopharmacol. 11(3), 358–365 (2011).
[Crossref] [PubMed]

Ohgaki, H.

K. Watanabe, O. Tachibana, K. Sata, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas,” Brain Pathol. 6(3), 217 (1996).
[Crossref] [PubMed]

Olivi, A.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

M. J. McGirt, K. L. Chaichana, M. Gathinji, F. J. Attenello, K. Than, A. Olivi, J. D. Weingart, H. Brem, and A. R. Quiñones-Hinojosa, “Independent association of extent of resection with survival in patients with malignant brain astrocytoma,” J. Neurosurg. 110(1), 156–162 (2009).
[Crossref] [PubMed]

Orringer, D. A.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Otsuji, E.

N. Koizumi, Y. Harada, T. Minamikawa, H. Tanaka, E. Otsuji, and T. Takamatsu, “Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid,” World J. Gastroenterol. 22(3), 1289–1296 (2016).
[Crossref] [PubMed]

Otto, C.

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

Paladini, B. J.

A. S. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric Gold Nanoparticle Assemblies as Tags for SERS-Based Cancer Detection,” Adv. Healthc. Mater. 2(10), 1370–1376 (2013).
[Crossref] [PubMed]

Pan, J.

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

Park, C. K.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Park, S.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Park, S. H.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Pascual-Gallego, M.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

Peng, Q.

Q. Peng, K. Berg, J. Moan, M. Kongshaug, and J. M. Nesland, “5-aminolevulinic acid-based photodynamic therapy: Principles and experimental research,” Photochem. Photobiol. 65(2), 235–251 (1997).
[Crossref] [PubMed]

Peng, W.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Petrecca, K.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Picciolini, S.

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

Pichette, J.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Pichlmeier, U.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Pitter, K.

H. Karabeber, R. Huang, P. Iacono, J. M. Samii, K. Pitter, E. C. Holland, and M. F. Kircher, “Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner,” ACS Nano 8(10), 9755–9766 (2014).
[Crossref] [PubMed]

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Pitter, K. L.

R. Huang, S. Harmsen, J. M. Samii, H. Karabeber, K. L. Pitter, E. C. Holland, and M. F. Kircher, “High precision imaging of microscopic spread of Glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe,” Theranostics 6(8), 1075–1084 (2016).
[Crossref] [PubMed]

Qin, H.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Qiu, S.

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

Quinones-Hinojosa, A.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

Quiñones-Hinojosa, A. R.

M. J. McGirt, K. L. Chaichana, M. Gathinji, F. J. Attenello, K. Than, A. Olivi, J. D. Weingart, H. Brem, and A. R. Quiñones-Hinojosa, “Independent association of extent of resection with survival in patients with malignant brain astrocytoma,” J. Neurosurg. 110(1), 156–162 (2009).
[Crossref] [PubMed]

Ramkissoon, S. H.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Rauch, J.

R. C. Krieg, H. Messmann, J. Rauch, S. Seeger, and R. Knuechel, “Metabolic characterization of tumor cell-specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells,” Photochem. Photobiol. 76(5), 518–525 (2002).
[Crossref] [PubMed]

Raza, S. M.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

Reulen, H. J.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42(3), 518–525, discussion 525–526 (1998).
[Crossref] [PubMed]

Ronchi, P.

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

Ross, J. L.

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

Sagher, O.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Saint-Arnaud, K.

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

Samii, J. M.

R. Huang, S. Harmsen, J. M. Samii, H. Karabeber, K. L. Pitter, E. C. Holland, and M. F. Kircher, “High precision imaging of microscopic spread of Glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe,” Theranostics 6(8), 1075–1084 (2016).
[Crossref] [PubMed]

H. Karabeber, R. Huang, P. Iacono, J. M. Samii, K. Pitter, E. C. Holland, and M. F. Kircher, “Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner,” ACS Nano 8(10), 9755–9766 (2014).
[Crossref] [PubMed]

Sanai, N.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Sano, Y.

M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S. Ogura, and T. Tanaka, “Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy,” Int. Immunopharmacol. 11(3), 358–365 (2011).
[Crossref] [PubMed]

Sata, K.

K. Watanabe, O. Tachibana, K. Sata, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas,” Brain Pathol. 6(3), 217 (1996).
[Crossref] [PubMed]

Schackert, G.

O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K. D. Geiger, G. Schackert, E. Koch, G. Steiner, and M. Kirsch, “Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma,” PLoS One 9(9), e107115 (2014).
[Crossref] [PubMed]

Seeger, S.

R. C. Krieg, H. Messmann, J. Rauch, S. Seeger, and R. Knuechel, “Metabolic characterization of tumor cell-specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells,” Photochem. Photobiol. 76(5), 518–525 (2002).
[Crossref] [PubMed]

Seo, Y.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Shan, J.

S. Zhan, Y. Yang, Z. Shen, J. Shan, Y. Li, S. Yang, and D. Zhu, “Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles,” J. Hazard. Mater. 274, 115–123 (2014).
[Crossref] [PubMed]

Shen, Z.

S. Zhan, Y. Yang, Z. Shen, J. Shan, Y. Li, S. Yang, and D. Zhu, “Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles,” J. Hazard. Mater. 274, 115–123 (2014).
[Crossref] [PubMed]

Shi, J.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Shin, J. Y.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Short, M.

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

Sinclair, R.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Snuderl, M.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

Starovoytov, V.

A. S. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric Gold Nanoparticle Assemblies as Tags for SERS-Based Cancer Detection,” Adv. Healthc. Mater. 2(10), 1370–1376 (2013).
[Crossref] [PubMed]

Steiner, G.

O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K. D. Geiger, G. Schackert, E. Koch, G. Steiner, and M. Kirsch, “Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma,” PLoS One 9(9), e107115 (2014).
[Crossref] [PubMed]

Stepp, H.

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42(3), 518–525, discussion 525–526 (1998).
[Crossref] [PubMed]

Stocker, S.

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42(3), 518–525, discussion 525–526 (1998).
[Crossref] [PubMed]

Stummer, W.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42(3), 518–525, discussion 525–526 (1998).
[Crossref] [PubMed]

Su, X.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Sun, L.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Sun, W. L.

Sung, K. B.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Tachibana, O.

K. Watanabe, O. Tachibana, K. Sata, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas,” Brain Pathol. 6(3), 217 (1996).
[Crossref] [PubMed]

Takahashi, K.

M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S. Ogura, and T. Tanaka, “Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy,” Int. Immunopharmacol. 11(3), 358–365 (2011).
[Crossref] [PubMed]

Takamatsu, T.

N. Koizumi, Y. Harada, T. Minamikawa, H. Tanaka, E. Otsuji, and T. Takamatsu, “Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid,” World J. Gastroenterol. 22(3), 1289–1296 (2016).
[Crossref] [PubMed]

Tamosaityte, S.

O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K. D. Geiger, G. Schackert, E. Koch, G. Steiner, and M. Kirsch, “Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma,” PLoS One 9(9), e107115 (2014).
[Crossref] [PubMed]

Tanaka, H.

N. Koizumi, Y. Harada, T. Minamikawa, H. Tanaka, E. Otsuji, and T. Takamatsu, “Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid,” World J. Gastroenterol. 22(3), 1289–1296 (2016).
[Crossref] [PubMed]

Tanaka, T.

M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S. Ogura, and T. Tanaka, “Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy,” Int. Immunopharmacol. 11(3), 358–365 (2011).
[Crossref] [PubMed]

Terstappen, L. W.

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

Than, K.

M. J. McGirt, K. L. Chaichana, M. Gathinji, F. J. Attenello, K. Than, A. Olivi, J. D. Weingart, H. Brem, and A. R. Quiñones-Hinojosa, “Independent association of extent of resection with survival in patients with malignant brain astrocytoma,” J. Neurosurg. 110(1), 156–162 (2009).
[Crossref] [PubMed]

Tresoldi, C.

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

Tucker-Burden, C.

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

Uckermann, O.

O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K. D. Geiger, G. Schackert, E. Koch, G. Steiner, and M. Kirsch, “Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma,” PLoS One 9(9), e107115 (2014).
[Crossref] [PubMed]

Uehlinger, P.

P. Uehlinger, M. Zellweger, G. Wagnières, L. Juillerat-Jeanneret, H. van den Bergh, and N. Lange, “5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells,” J. Photochem. Photobiol. B 54(1), 72–80 (2000).
[Crossref] [PubMed]

van den Bergh, H.

P. Uehlinger, M. Zellweger, G. Wagnières, L. Juillerat-Jeanneret, H. van den Bergh, and N. Lange, “5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells,” J. Photochem. Photobiol. B 54(1), 72–80 (2000).
[Crossref] [PubMed]

Vanna, R.

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

Venneti, S.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Wagner, S.

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42(3), 518–525, discussion 525–526 (1998).
[Crossref] [PubMed]

Wagnières, G.

P. Uehlinger, M. Zellweger, G. Wagnières, L. Juillerat-Jeanneret, H. van den Bergh, and N. Lange, “5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells,” J. Photochem. Photobiol. B 54(1), 72–80 (2000).
[Crossref] [PubMed]

Wang, A. C.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Wang, Q. H.

W. D. Ding, J. Cai, Z. Y. Yu, Q. H. Wang, Z. N. Xu, Z. N. Wang, and C. J. Gao, “Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support,” J. Mater. Chem. A Mater. Energy Sustain. 3(40), 20118–20126 (2015).
[Crossref]

Wang, Z. N.

W. D. Ding, J. Cai, Z. Y. Yu, Q. H. Wang, Z. N. Xu, Z. N. Wang, and C. J. Gao, “Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support,” J. Mater. Chem. A Mater. Energy Sustain. 3(40), 20118–20126 (2015).
[Crossref]

Watanabe, K.

K. Watanabe, O. Tachibana, K. Sata, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas,” Brain Pathol. 6(3), 217 (1996).
[Crossref] [PubMed]

Weingart, J. D.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

M. J. McGirt, K. L. Chaichana, M. Gathinji, F. J. Attenello, K. Than, A. Olivi, J. D. Weingart, H. Brem, and A. R. Quiñones-Hinojosa, “Independent association of extent of resection with survival in patients with malignant brain astrocytoma,” J. Neurosurg. 110(1), 156–162 (2009).
[Crossref] [PubMed]

Wiestler, O. D.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Williams, M.

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

Wittig, B.

J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
[Crossref] [PubMed]

Xiao, Q.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Xie, X. S.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Xing, H.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Xu, W. J.

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

Xu, Z.

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

Xu, Z. N.

W. D. Ding, J. Cai, Z. Y. Yu, Q. H. Wang, Z. N. Xu, Z. N. Wang, and C. J. Gao, “Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support,” J. Mater. Chem. A Mater. Energy Sustain. 3(40), 20118–20126 (2015).
[Crossref]

Yamakawa, M.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Yang, S.

S. Zhan, Y. Yang, Z. Shen, J. Shan, Y. Li, S. Yang, and D. Zhu, “Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles,” J. Hazard. Mater. 274, 115–123 (2014).
[Crossref] [PubMed]

Yang, Y.

S. Zhan, Y. Yang, Z. Shen, J. Shan, Y. Li, S. Yang, and D. Zhu, “Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles,” J. Hazard. Mater. 274, 115–123 (2014).
[Crossref] [PubMed]

Yao, Z.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Ye, X.

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

Yonekawa, Y.

K. Watanabe, O. Tachibana, K. Sata, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas,” Brain Pathol. 6(3), 217 (1996).
[Crossref] [PubMed]

Yu, Z. Y.

W. D. Ding, J. Cai, Z. Y. Yu, Q. H. Wang, Z. N. Xu, Z. N. Wang, and C. J. Gao, “Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support,” J. Mater. Chem. A Mater. Energy Sustain. 3(40), 20118–20126 (2015).
[Crossref]

Yue, Q.

X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
[Crossref] [PubMed]

Zanella, F.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Zavaleta, C. L.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Zellweger, M.

P. Uehlinger, M. Zellweger, G. Wagnières, L. Juillerat-Jeanneret, H. van den Bergh, and N. Lange, “5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells,” J. Photochem. Photobiol. B 54(1), 72–80 (2000).
[Crossref] [PubMed]

Zeng, H.

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

Zhan, S.

S. Zhan, Y. Yang, Z. Shen, J. Shan, Y. Li, S. Yang, and D. Zhu, “Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles,” J. Hazard. Mater. 274, 115–123 (2014).
[Crossref] [PubMed]

Zhang, J.

X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
[Crossref] [PubMed]

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Zhang, R.

X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
[Crossref] [PubMed]

Zhang, S.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Zhao, J.

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

Zhelyazkova, B. H.

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

Zhou, L.

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

Zhou, X.

X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
[Crossref] [PubMed]

Zhu, D.

S. Zhan, Y. Yang, Z. Shen, J. Shan, Y. Li, S. Yang, and D. Zhu, “Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles,” J. Hazard. Mater. 274, 115–123 (2014).
[Crossref] [PubMed]

Zhu, J.

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

ACS Nano (2)

D. Ni, J. Zhang, W. Bu, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, “Dual-Targeting Upconversion Nanoprobes across the Blood-Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma,” ACS Nano 8(2), 1231–1242 (2014).
[Crossref] [PubMed]

H. Karabeber, R. Huang, P. Iacono, J. M. Samii, K. Pitter, E. C. Holland, and M. F. Kircher, “Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner,” ACS Nano 8(10), 9755–9766 (2014).
[Crossref] [PubMed]

Adv. Healthc. Mater. (1)

A. S. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric Gold Nanoparticle Assemblies as Tags for SERS-Based Cancer Detection,” Adv. Healthc. Mater. 2(10), 1370–1376 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

X. Gao, Q. Yue, Z. Liu, M. Ke, X. Zhou, S. Li, J. Zhang, R. Zhang, L. Chen, Y. Mao, and C. Li, “Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals,” Adv. Mater. 29(21), 1603917 (2017).
[Crossref] [PubMed]

Analyst (Lond.) (1)

R. Vanna, P. Ronchi, A. T. Lenferink, C. Tresoldi, C. Morasso, D. Mehn, M. Bedoni, S. Picciolini, L. W. Terstappen, F. Ciceri, C. Otto, and F. Gramatica, “Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy,” Analyst (Lond.) 140(4), 1054–1064 (2015).
[Crossref] [PubMed]

Brain Pathol. (1)

K. Watanabe, O. Tachibana, K. Sata, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas,” Brain Pathol. 6(3), 217 (1996).
[Crossref] [PubMed]

Cancer Cell (1)

M. Snuderl, L. Fazlollahi, L. P. Le, M. Nitta, B. H. Zhelyazkova, C. J. Davidson, S. Akhavanfard, D. P. Cahill, K. D. Aldape, R. A. Betensky, D. N. Louis, and A. J. Iafrate, “Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma,” Cancer Cell 20(6), 810–817 (2011).
[Crossref] [PubMed]

Future Oncol. (1)

T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
[Crossref] [PubMed]

Int. Immunopharmacol. (1)

M. Ishizuka, F. Abe, Y. Sano, K. Takahashi, K. Inoue, M. Nakajima, T. Kohda, N. Komatsu, S. Ogura, and T. Tanaka, “Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy,” Int. Immunopharmacol. 11(3), 358–365 (2011).
[Crossref] [PubMed]

J. Hazard. Mater. (1)

S. Zhan, Y. Yang, Z. Shen, J. Shan, Y. Li, S. Yang, and D. Zhu, “Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles,” J. Hazard. Mater. 274, 115–123 (2014).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (1)

W. D. Ding, J. Cai, Z. Y. Yu, Q. H. Wang, Z. N. Xu, Z. N. Wang, and C. J. Gao, “Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support,” J. Mater. Chem. A Mater. Energy Sustain. 3(40), 20118–20126 (2015).
[Crossref]

J. Neurosurg. (1)

M. J. McGirt, K. L. Chaichana, M. Gathinji, F. J. Attenello, K. Than, A. Olivi, J. D. Weingart, H. Brem, and A. R. Quiñones-Hinojosa, “Independent association of extent of resection with survival in patients with malignant brain astrocytoma,” J. Neurosurg. 110(1), 156–162 (2009).
[Crossref] [PubMed]

J. Photochem. Photobiol. B (1)

P. Uehlinger, M. Zellweger, G. Wagnières, L. Juillerat-Jeanneret, H. van den Bergh, and N. Lange, “5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells,” J. Photochem. Photobiol. B 54(1), 72–80 (2000).
[Crossref] [PubMed]

Lancet Oncol. (1)

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Nano Lett. (1)

L. Sun, K. B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine (Lond.) 6(2), 214–226 (2010).
[Crossref] [PubMed]

Nat. Med. (1)

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Neuro-oncol. (1)

K. L. Chaichana, I. Jusue-Torres, R. Navarro-Ramirez, S. M. Raza, M. Pascual-Gallego, A. Ibrahim, M. Hernandez-Hermann, L. Gomez, X. Ye, J. D. Weingart, A. Olivi, J. Blakeley, G. L. Gallia, M. Lim, H. Brem, and A. Quinones-Hinojosa, “Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma,” Neuro-oncol. 16(1), 113–122 (2014).
[Crossref] [PubMed]

Neurosurgery (1)

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42(3), 518–525, discussion 525–526 (1998).
[Crossref] [PubMed]

Opt. Express (1)

Photochem. Photobiol. (2)

R. C. Krieg, H. Messmann, J. Rauch, S. Seeger, and R. Knuechel, “Metabolic characterization of tumor cell-specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells,” Photochem. Photobiol. 76(5), 518–525 (2002).
[Crossref] [PubMed]

Q. Peng, K. Berg, J. Moan, M. Kongshaug, and J. M. Nesland, “5-aminolevulinic acid-based photodynamic therapy: Principles and experimental research,” Photochem. Photobiol. 65(2), 235–251 (1997).
[Crossref] [PubMed]

PLoS One (1)

O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K. D. Geiger, G. Schackert, E. Koch, G. Steiner, and M. Kirsch, “Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma,” PLoS One 9(9), e107115 (2014).
[Crossref] [PubMed]

Sci. Rep. (2)

S. Kim, J. E. Kim, Y. H. Kim, T. Hwang, S. K. Kim, W. J. Xu, J. Y. Shin, J. I. Kim, H. Choi, H. C. Kim, H. R. Cho, A. Choi, T. Chowdhury, Y. Seo, Y. S. Dho, J. W. Kim, D. G. Kim, S. H. Park, H. Kim, S. H. Choi, S. Park, S. H. Lee, and C. K. Park, “Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma,” Sci. Rep. 7(1), 12221 (2017).
[Crossref] [PubMed]

J. L. Ross, L. A. D. Cooper, J. Kong, D. Gutman, M. Williams, C. Tucker-Burden, M. R. McCrary, A. Bouras, M. Kaluzova, W. D. Dunn, D. Duong, C. G. Hadjipanayis, and D. J. Brat, “5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins,” Sci. Rep. 7(1), 15593 (2017).
[Crossref] [PubMed]

Sci. Transl. Med. (2)

M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M. C. Guiot, K. Petrecca, and F. Leblond, “Intraoperative brain cancer detection with Raman spectroscopy in humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).
[Crossref] [PubMed]

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7(309), 309ra163 (2015).
[Crossref] [PubMed]

Theranostics (1)

R. Huang, S. Harmsen, J. M. Samii, H. Karabeber, K. L. Pitter, E. C. Holland, and M. F. Kircher, “High precision imaging of microscopic spread of Glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe,” Theranostics 6(8), 1075–1084 (2016).
[Crossref] [PubMed]

World J. Gastroenterol. (1)

N. Koizumi, Y. Harada, T. Minamikawa, H. Tanaka, E. Otsuji, and T. Takamatsu, “Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid,” World J. Gastroenterol. 22(3), 1289–1296 (2016).
[Crossref] [PubMed]

Other (2)

D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, S. Feng, G. Chen, Y. Li, M. Short, J. Zhao, Y. Fawzy, and H. Zeng, “Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” J. Biophotonicse201700251 (2018), doi:.
[Crossref] [PubMed]

G. T. Hermanson, Bioconjugate techniques (Acad. Press, 2013)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (A) TEM image of the Raman tags. (Inset) Extinction spectrum of the plasmonic core-satellite assemblies (B) Raman image of tags on ITO-coated quartz substrates. Raman spectrum of intrinsic (C) and Cy5-embedded (D) Raman tags. The spectrum in (D) is taken from the spot encircled by the red dashed line in (B).
Fig. 2
Fig. 2 TEM images (negative staining) of Raman tags coated with (A) and without (B) anti-EGFR. Some of the anti-EGFR are highlighted by the red arrows. (C) Surface chemical structures, zeta potential and (D) the corresponding FTIR spectra of the intrinsic Raman tags after each functionalization step.
Fig. 3
Fig. 3 SEM images of the fixed GBM (A) and normal (B) cells after being incubated with Raman tags coated with anti-EGFR. (C) and (D) are the controls using Raman tags without anti-EGFR, respectively. The zoom-in images are shown in the second row. Some of the Raman tags are highlighted by red arrows.
Fig. 4
Fig. 4 SEM images of the living GBM (A) and normal (B) cells after being incubated with Raman tags coated with anti-EGFR. (C) and (D) are the respectively controls using Raman tags without anti-EGFR. The zoom-in images are shown in the second row. Some of the Raman tags are highlighted by red arrows.
Fig. 5
Fig. 5 (A) SEM image, broadband Raman image, and corresponding spectrum of a GBM cell labeled by intrinsic Raman tags. Please note that the resolution of the spectrum is degraded (compared to Fig. 1(C)) due to the increased size of the slit at the entrance of the spectrometer for collecting the whole cell’s signals in one acquisition. However, the main spectral features around 1300 cm−1 and 1587 cm−1 can still be recognized. (B) SEM image, broadband autofluorescence image, and corresponding spectrum of a normal cell labeled by intrinsic Raman tags.
Fig. 6
Fig. 6 (A) Bright field image, (B) single band Raman (1190 cm−1) image, and (C) overlay image of GBM cells labeled by Cy5-embedded Raman tags.
Fig. 7
Fig. 7 Raman intensity of GBM cells labeled with intrinsic Raman tags (green) and Cy5 embedded Raman tag (red) and fluorescence intensity of free Cy5 (blue) within the 20 min laser illumination.

Metrics