Abstract

A white light polarization sensitive optical coherence tomography system has been developed, using a supercontinuum laser as the light source. By detecting backscattered light from 400–700 nm, an axial resolution of 1.0 µm in air was achieved. The system consists of a free-space interferometer and two homemade spectrometers that detect orthogonal polarization states. Following system specifications, images of a healthy murine retina as acquired by this non-contact system are presented, showing high resolution reflectivity images as well as spectroscopic and polarization sensitive contrast. Additional images of the very-low-density-lipoprotein-receptor (VLDLR) knockout mouse model were acquired. The high resolution allows the detection of small lesions in the retina.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography

Stanislava Fialová, Marco Augustin, Martin Glösmann, Tanja Himmel, Sabine Rauscher, Marion Gröger, Michael Pircher, Christoph K. Hitzenberger, and Bernhard Baumann
Biomed. Opt. Express 7(4) 1479-1495 (2016)

Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics

Barry Cense, Weihua Gao, Jeffrey M. Brown, Steven M. Jones, Ravi S. Jonnal, Mircea Mujat, B. Hyle Park, Johannes F. de Boer, and Donald T. Miller
Opt. Express 17(24) 21634-21651 (2009)

Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit

Bernhard Baumann, WooJhon Choi, Benjamin Potsaid, David Huang, Jay S. Duker, and James G. Fujimoto
Opt. Express 20(9) 10229-10241 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Fujimoto and W. Drexler, “Introduction to optical coherence tomography,” in “Optical Coherence Tomography,” (Springer, 2008), pp. 1–45.
  2. K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8, 800–812 (2017).
    [Crossref] [PubMed]
  3. H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Development of a high power supercontinuum source in the 1.7 µ m wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 5, 932–943 (2014).
    [Crossref] [PubMed]
  4. S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8, 323–337 (2017).
    [Crossref] [PubMed]
  5. J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6, 3701–3713 (2015).
    [Crossref] [PubMed]
  6. A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8, 4007–4025 (2017).
    [Crossref] [PubMed]
  7. X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 121707 (2017).
  8. M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89, 524–542 (2012).
    [Crossref] [PubMed]
  9. V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47, 5522–5528 (2006).
    [Crossref]
  10. S. Volland, J. Esteve-Rudd, J. Hoo, C. Yee, and D. S. Williams, “A comparison of some organizational characteristics of the mouse central retina and the human macula,” PLoS ONE 10, e0125631 (2015).
    [Crossref] [PubMed]
  11. P. M. Treuting, R. Wong, D. C. Tu, and I. Phan, “Special senses: Eye,” in “Comparative Anatomy and Histology,” (Elsevier Inc., 2012).
    [Crossref]
  12. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).
    [Crossref] [PubMed]
  13. R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
    [Crossref] [PubMed]
  14. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33, 2967–2969 (2008).
    [Crossref] [PubMed]
  15. G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express 3, 2669–2680 (2012).
    [Crossref] [PubMed]
  16. V. J. Srinivasan, A. C. Chan, and E. Y. Lam, “Doppler OCT and OCT angiography for in vivo imaging of vascular physiology,” in “Selected Topics in Optical Coherence Tomography,” (InTech, 2012).
  17. T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retina Vitreous 1, 5 (2015).
    [Crossref] [PubMed]
  18. J. Zhu, C. W. Merkle, M. T. Bernucci, S. P. Chong, and V. J. Srinivasan, “Can OCT angiography be made a quantitative blood measurement tool?” Appl. Sci. 7, 687 (2017).
    [Crossref]
  19. C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography,” Biomed. Opt. Express 8, 1056–1082 (2017).
    [Crossref] [PubMed]
  20. J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38, 1796–1798 (2013).
    [Crossref] [PubMed]
  21. S. P. Chong, C. W. Merkle, C. Leahy, and V. J. Srinivasan, “Cerebral metabolic rate of oxygen (CMRO 2) assessed by combined Doppler and spectroscopic OCT,” Biomed. Opt. Express 6, 3941–3951 (2015).
    [Crossref] [PubMed]
  22. S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic optical coherence tomography,” Biomed. Opt. Express 6, 1429–1450 (2015).
    [Crossref] [PubMed]
  23. S. Chen, Q. Liu, X. Shu, B. Soetikno, S. Tong, and H. F. Zhang, “Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography,” Biomed. Opt. Express 7, 3377–3389 (2016).
    [Crossref] [PubMed]
  24. W. Liu, S. Wang, B. Soetikno, J. Yi, K. Zhang, S. Chen, R. A. Linsenmeier, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice,” Invest. Ophthalmol. Visual Sci. 58, 981–989 (2017).
    [Crossref]
  25. D. J. Faber, E. G. Mik, M. C. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30, 1015–1017 (2005).
    [Crossref] [PubMed]
  26. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5, 744 (2011).
    [Crossref]
  27. X.-R. Huang, Y. Zhou, R. W. Knighton, W. Kong, and W. J. Feuer, “Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas,” Invest. Ophthalmol. Visual Sci. 53, 5869–5876 (2012).
    [Crossref]
  28. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
    [Crossref]
  29. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography–a review,” Biomed. Opt. Express 8, 1838–1873 (2017).
    [Crossref] [PubMed]
  30. B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3, 1670–1683 (2012).
    [Crossref] [PubMed]
  31. B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology,” Invest. Ophthalmol. Visual Sci. 56, 7462–7472 (2015).
    [Crossref]
  32. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
    [Crossref] [PubMed]
  33. B. Baumann, “Polarization sensitive optical coherence tomography: A review of technology and applications,” Appl. Sci. 7, 474 (2017).
    [Crossref]
  34. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 45, 2606–2612 (2004).
    [Crossref]
  35. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
    [Crossref] [PubMed]
  36. B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, and D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express 17, 21634–21651 (2009).
    [Crossref] [PubMed]
  37. S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3, 2720–2732 (2012).
    [Crossref] [PubMed]
  38. W. Trasischker, S. Zotter, T. Torzicky, B. Baumann, R. Haindl, M. Pircher, and C. K. Hitzenberger, “Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer,” Biomed. Opt. Express 5, 2798–2809 (2014).
    [Crossref] [PubMed]
  39. B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5, 2736–2758 (2014).
    [Crossref] [PubMed]
  40. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49, 2661–2667 (2008).
    [Crossref]
  41. B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061704 (2010).
    [Crossref]
  42. E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151 (2009).
    [Crossref] [PubMed]
  43. C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 51, 2149–2157 (2010).
    [Crossref]
  44. F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 52, 4571–4579 (2011).
    [Crossref]
  45. P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57, 1699–1705 (2016).
    [Crossref]
  46. E. Gotzinger, M. Pircher, B. Baumann, H. Resch, C. Vass, and C. Hitzenberger, “Comparison of retinal nerve fiber layer birefringence and thickness of healthy and glaucoma suspect eyes measured with polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 50, 5823 (2009).
  47. H. A. Quigley, “Glaucoma,” The Lancet 377, 1367–1377 (2011).
    [Crossref]
  48. S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7, 1479–1495 (2016).
    [Crossref] [PubMed]
  49. S. Fialová, M. Augustin, C. Fischak, L. Schmetterer, S. Handschuh, M. Glösmann, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Posterior rat eye during acute intraocular pressure elevation studied using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 8, 298–314 (2017).
    [Crossref] [PubMed]
  50. W. Hu, A. Jiang, J. Liang, H. Meng, B. Chang, H. Gao, and X. Qiao, “Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model’s retinal angiomatous proliferation,” Invest. Ophthalmol. Visual Sci. 49, 407–415 (2008).
    [Crossref]
  51. M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PloS ONE 11, e0164419 (2016).
    [Crossref] [PubMed]
  52. JIIA CoaXPress Working Group, “JIIA NIF-001-2010 CoaXPress standard,” (CoaXPress,2010).
  53. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
    [Crossref] [PubMed]
  54. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
    [Crossref] [PubMed]
  55. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
    [Crossref] [PubMed]
  56. W. Choi, B. Baumann, E. A. Swanson, and J. G. Fujimoto, “Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina,” Opt. Express 20, 25357–25368 (2012).
    [Crossref] [PubMed]
  57. E. Chen, “Refractive indices of the rat retinal layers,” Ophthalmic Res. 25, 65–68 (1993).
    [Crossref] [PubMed]
  58. I. Gertsbakh, Measurement theory for engineers (Springer, 2003).
    [Crossref]
  59. J. R. Heckenlively, N. L. Hawes, M. Friedlander, S. Nusinowitz, R. Hurd, M. Davisson, and B. Chang, “Mouse model of subretinal neovascularization with choroidal anastomosis,” Retina 23, 518–522 (2003).
    [Crossref] [PubMed]
  60. G. H. Jacobs and G. A. Williams, “Contributions of the mouse UV photopigment to the ERG and to vision,” Doc. Ophthalmol. 115, 137–144 (2007).
    [Crossref] [PubMed]
  61. L. Yin, Y. Geng, F. Osakada, R. Sharma, A. H. Cetin, E. M. Callaway, D. R. Williams, and W. H. Merigan, “Imaging light responses of retinal ganglion cells in the living mouse eye,” J. Neurophysiol 109, 2415–2421 (2013).
    [Crossref] [PubMed]
  62. R. S. Smith, S. W. John, P. M. Nishina, and J. P. Sundberg, Systematic evaluation of the mouse eye: anatomy, pathology, and biomethods (CRC press, 2001).
    [Crossref]

2017 (10)

K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8, 800–812 (2017).
[Crossref] [PubMed]

S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8, 323–337 (2017).
[Crossref] [PubMed]

A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8, 4007–4025 (2017).
[Crossref] [PubMed]

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 121707 (2017).

J. Zhu, C. W. Merkle, M. T. Bernucci, S. P. Chong, and V. J. Srinivasan, “Can OCT angiography be made a quantitative blood measurement tool?” Appl. Sci. 7, 687 (2017).
[Crossref]

C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography,” Biomed. Opt. Express 8, 1056–1082 (2017).
[Crossref] [PubMed]

W. Liu, S. Wang, B. Soetikno, J. Yi, K. Zhang, S. Chen, R. A. Linsenmeier, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice,” Invest. Ophthalmol. Visual Sci. 58, 981–989 (2017).
[Crossref]

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography–a review,” Biomed. Opt. Express 8, 1838–1873 (2017).
[Crossref] [PubMed]

B. Baumann, “Polarization sensitive optical coherence tomography: A review of technology and applications,” Appl. Sci. 7, 474 (2017).
[Crossref]

S. Fialová, M. Augustin, C. Fischak, L. Schmetterer, S. Handschuh, M. Glösmann, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Posterior rat eye during acute intraocular pressure elevation studied using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 8, 298–314 (2017).
[Crossref] [PubMed]

2016 (4)

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PloS ONE 11, e0164419 (2016).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7, 1479–1495 (2016).
[Crossref] [PubMed]

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57, 1699–1705 (2016).
[Crossref]

S. Chen, Q. Liu, X. Shu, B. Soetikno, S. Tong, and H. F. Zhang, “Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography,” Biomed. Opt. Express 7, 3377–3389 (2016).
[Crossref] [PubMed]

2015 (6)

S. P. Chong, C. W. Merkle, C. Leahy, and V. J. Srinivasan, “Cerebral metabolic rate of oxygen (CMRO 2) assessed by combined Doppler and spectroscopic OCT,” Biomed. Opt. Express 6, 3941–3951 (2015).
[Crossref] [PubMed]

S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic optical coherence tomography,” Biomed. Opt. Express 6, 1429–1450 (2015).
[Crossref] [PubMed]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology,” Invest. Ophthalmol. Visual Sci. 56, 7462–7472 (2015).
[Crossref]

T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retina Vitreous 1, 5 (2015).
[Crossref] [PubMed]

S. Volland, J. Esteve-Rudd, J. Hoo, C. Yee, and D. S. Williams, “A comparison of some organizational characteristics of the mouse central retina and the human macula,” PLoS ONE 10, e0125631 (2015).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6, 3701–3713 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (2)

L. Yin, Y. Geng, F. Osakada, R. Sharma, A. H. Cetin, E. M. Callaway, D. R. Williams, and W. H. Merigan, “Imaging light responses of retinal ganglion cells in the living mouse eye,” J. Neurophysiol 109, 2415–2421 (2013).
[Crossref] [PubMed]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38, 1796–1798 (2013).
[Crossref] [PubMed]

2012 (7)

G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express 3, 2669–2680 (2012).
[Crossref] [PubMed]

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89, 524–542 (2012).
[Crossref] [PubMed]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3, 1670–1683 (2012).
[Crossref] [PubMed]

X.-R. Huang, Y. Zhou, R. W. Knighton, W. Kong, and W. J. Feuer, “Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas,” Invest. Ophthalmol. Visual Sci. 53, 5869–5876 (2012).
[Crossref]

W. Choi, B. Baumann, E. A. Swanson, and J. G. Fujimoto, “Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina,” Opt. Express 20, 25357–25368 (2012).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3, 2720–2732 (2012).
[Crossref] [PubMed]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

2011 (3)

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 52, 4571–4579 (2011).
[Crossref]

H. A. Quigley, “Glaucoma,” The Lancet 377, 1367–1377 (2011).
[Crossref]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5, 744 (2011).
[Crossref]

2010 (2)

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 51, 2149–2157 (2010).
[Crossref]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061704 (2010).
[Crossref]

2009 (3)

2008 (5)

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33, 2967–2969 (2008).
[Crossref] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49, 2661–2667 (2008).
[Crossref]

W. Hu, A. Jiang, J. Liang, H. Meng, B. Chang, H. Gao, and X. Qiao, “Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model’s retinal angiomatous proliferation,” Invest. Ophthalmol. Visual Sci. 49, 407–415 (2008).
[Crossref]

2007 (1)

G. H. Jacobs and G. A. Williams, “Contributions of the mouse UV photopigment to the ERG and to vision,” Doc. Ophthalmol. 115, 137–144 (2007).
[Crossref] [PubMed]

2006 (1)

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47, 5522–5528 (2006).
[Crossref]

2005 (2)

2004 (2)

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 45, 2606–2612 (2004).
[Crossref]

2003 (1)

J. R. Heckenlively, N. L. Hawes, M. Friedlander, S. Nusinowitz, R. Hurd, M. Davisson, and B. Chang, “Mouse model of subretinal neovascularization with choroidal anastomosis,” Retina 23, 518–522 (2003).
[Crossref] [PubMed]

1997 (1)

1993 (1)

E. Chen, “Refractive indices of the rat retinal layers,” Ophthalmic Res. 25, 65–68 (1993).
[Crossref] [PubMed]

1992 (1)

Aalders, M. C.

Ahlers, C.

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 52, 4571–4579 (2011).
[Crossref]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061704 (2010).
[Crossref]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 51, 2149–2157 (2010).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
[Crossref] [PubMed]

Aramaki, M.

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Augustin, M.

S. Fialová, M. Augustin, C. Fischak, L. Schmetterer, S. Handschuh, M. Glösmann, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Posterior rat eye during acute intraocular pressure elevation studied using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 8, 298–314 (2017).
[Crossref] [PubMed]

A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8, 4007–4025 (2017).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7, 1479–1495 (2016).
[Crossref] [PubMed]

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PloS ONE 11, e0164419 (2016).
[Crossref] [PubMed]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology,” Invest. Ophthalmol. Visual Sci. 56, 7462–7472 (2015).
[Crossref]

Backman, V.

Baumann, B.

B. Baumann, “Polarization sensitive optical coherence tomography: A review of technology and applications,” Appl. Sci. 7, 474 (2017).
[Crossref]

S. Fialová, M. Augustin, C. Fischak, L. Schmetterer, S. Handschuh, M. Glösmann, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Posterior rat eye during acute intraocular pressure elevation studied using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 8, 298–314 (2017).
[Crossref] [PubMed]

A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8, 4007–4025 (2017).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7, 1479–1495 (2016).
[Crossref] [PubMed]

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57, 1699–1705 (2016).
[Crossref]

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PloS ONE 11, e0164419 (2016).
[Crossref] [PubMed]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology,” Invest. Ophthalmol. Visual Sci. 56, 7462–7472 (2015).
[Crossref]

W. Trasischker, S. Zotter, T. Torzicky, B. Baumann, R. Haindl, M. Pircher, and C. K. Hitzenberger, “Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer,” Biomed. Opt. Express 5, 2798–2809 (2014).
[Crossref] [PubMed]

W. Choi, B. Baumann, E. A. Swanson, and J. G. Fujimoto, “Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina,” Opt. Express 20, 25357–25368 (2012).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3, 2720–2732 (2012).
[Crossref] [PubMed]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3, 1670–1683 (2012).
[Crossref] [PubMed]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 52, 4571–4579 (2011).
[Crossref]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 51, 2149–2157 (2010).
[Crossref]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061704 (2010).
[Crossref]

E. Gotzinger, M. Pircher, B. Baumann, H. Resch, C. Vass, and C. Hitzenberger, “Comparison of retinal nerve fiber layer birefringence and thickness of healthy and glaucoma suspect eyes measured with polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 50, 5823 (2009).

E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
[Crossref] [PubMed]

Baumann, S. O.

Beckmann, L. J.

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 121707 (2017).

Bernucci, M.

Bernucci, M. T.

J. Zhu, C. W. Merkle, M. T. Bernucci, S. P. Chong, and V. J. Srinivasan, “Can OCT angiography be made a quantitative blood measurement tool?” Appl. Sci. 7, 687 (2017).
[Crossref]

Bizheva, K.

Blatter, C.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Braaf, B.

Brown, J. M.

Bursell, S.-E.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47, 5522–5528 (2006).
[Crossref]

Callaway, E. M.

L. Yin, Y. Geng, F. Osakada, R. Sharma, A. H. Cetin, E. M. Callaway, D. R. Williams, and W. H. Merigan, “Imaging light responses of retinal ganglion cells in the living mouse eye,” J. Neurophysiol 109, 2415–2421 (2013).
[Crossref] [PubMed]

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Carvalho, M.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47, 5522–5528 (2006).
[Crossref]

Cense, B.

B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, and D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express 17, 21634–21651 (2009).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 45, 2606–2612 (2004).
[Crossref]

Cetin, A. H.

L. Yin, Y. Geng, F. Osakada, R. Sharma, A. H. Cetin, E. M. Callaway, D. R. Williams, and W. H. Merigan, “Imaging light responses of retinal ganglion cells in the living mouse eye,” J. Neurophysiol 109, 2415–2421 (2013).
[Crossref] [PubMed]

Chan, A. C.

V. J. Srinivasan, A. C. Chan, and E. Y. Lam, “Doppler OCT and OCT angiography for in vivo imaging of vascular physiology,” in “Selected Topics in Optical Coherence Tomography,” (InTech, 2012).

Chang, B.

W. Hu, A. Jiang, J. Liang, H. Meng, B. Chang, H. Gao, and X. Qiao, “Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model’s retinal angiomatous proliferation,” Invest. Ophthalmol. Visual Sci. 49, 407–415 (2008).
[Crossref]

J. R. Heckenlively, N. L. Hawes, M. Friedlander, S. Nusinowitz, R. Hurd, M. Davisson, and B. Chang, “Mouse model of subretinal neovascularization with choroidal anastomosis,” Retina 23, 518–522 (2003).
[Crossref] [PubMed]

Chen, C.-L.

Chen, E.

E. Chen, “Refractive indices of the rat retinal layers,” Ophthalmic Res. 25, 65–68 (1993).
[Crossref] [PubMed]

Chen, S.

Chen, T. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 45, 2606–2612 (2004).
[Crossref]

Chen, Z.

Choi, W.

Chong, S. P.

Clermont, A.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47, 5522–5528 (2006).
[Crossref]

Dave, D.

Davisson, M.

J. R. Heckenlively, N. L. Hawes, M. Friedlander, S. Nusinowitz, R. Hurd, M. Davisson, and B. Chang, “Mouse model of subretinal neovascularization with choroidal anastomosis,” Retina 23, 518–522 (2003).
[Crossref] [PubMed]

de Boer, J. F.

De Carlo, T. E.

T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retina Vitreous 1, 5 (2015).
[Crossref] [PubMed]

de Groot, M.

Deák, G.

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57, 1699–1705 (2016).
[Crossref]

Dragostinoff, N.

Drexler, W.

J. Fujimoto and W. Drexler, “Introduction to optical coherence tomography,” in “Optical Coherence Tomography,” (Springer, 2008), pp. 1–45.

Duker, J. S.

T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retina Vitreous 1, 5 (2015).
[Crossref] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47, 5522–5528 (2006).
[Crossref]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref] [PubMed]

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Elsner, A. E.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49, 2661–2667 (2008).
[Crossref]

Esteve-Rudd, J.

S. Volland, J. Esteve-Rudd, J. Hoo, C. Yee, and D. S. Williams, “A comparison of some organizational characteristics of the mouse central retina and the human macula,” PLoS ONE 10, e0125631 (2015).
[Crossref] [PubMed]

Eugui, P.

Faber, D. J.

Fawzi, A. A.

Feuer, W. J.

X.-R. Huang, Y. Zhou, R. W. Knighton, W. Kong, and W. J. Feuer, “Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas,” Invest. Ophthalmol. Visual Sci. 53, 5869–5876 (2012).
[Crossref]

Fialová, S.

S. Fialová, M. Augustin, C. Fischak, L. Schmetterer, S. Handschuh, M. Glösmann, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Posterior rat eye during acute intraocular pressure elevation studied using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 8, 298–314 (2017).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7, 1479–1495 (2016).
[Crossref] [PubMed]

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PloS ONE 11, e0164419 (2016).
[Crossref] [PubMed]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology,” Invest. Ophthalmol. Visual Sci. 56, 7462–7472 (2015).
[Crossref]

Fischak, C.

Friedlander, M.

J. R. Heckenlively, N. L. Hawes, M. Friedlander, S. Nusinowitz, R. Hurd, M. Davisson, and B. Chang, “Mouse model of subretinal neovascularization with choroidal anastomosis,” Retina 23, 518–522 (2003).
[Crossref] [PubMed]

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Fujimoto, J.

J. Fujimoto and W. Drexler, “Introduction to optical coherence tomography,” in “Optical Coherence Tomography,” (Springer, 2008), pp. 1–45.

Fujimoto, J. G.

Gao, H.

W. Hu, A. Jiang, J. Liang, H. Meng, B. Chang, H. Gao, and X. Qiao, “Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model’s retinal angiomatous proliferation,” Invest. Ophthalmol. Visual Sci. 49, 407–415 (2008).
[Crossref]

Gao, W.

Geitzenauer, W.

Geng, Y.

L. Yin, Y. Geng, F. Osakada, R. Sharma, A. H. Cetin, E. M. Callaway, D. R. Williams, and W. H. Merigan, “Imaging light responses of retinal ganglion cells in the living mouse eye,” J. Neurophysiol 109, 2415–2421 (2013).
[Crossref] [PubMed]

Gertsbakh, I.

I. Gertsbakh, Measurement theory for engineers (Springer, 2003).
[Crossref]

Gesperger, J.

Glösmann, M.

S. Fialová, M. Augustin, C. Fischak, L. Schmetterer, S. Handschuh, M. Glösmann, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Posterior rat eye during acute intraocular pressure elevation studied using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 8, 298–314 (2017).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7, 1479–1495 (2016).
[Crossref] [PubMed]

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PloS ONE 11, e0164419 (2016).
[Crossref] [PubMed]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology,” Invest. Ophthalmol. Visual Sci. 56, 7462–7472 (2015).
[Crossref]

Golbaz, I.

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 51, 2149–2157 (2010).
[Crossref]

Gotzinger, E.

E. Gotzinger, M. Pircher, B. Baumann, H. Resch, C. Vass, and C. Hitzenberger, “Comparison of retinal nerve fiber layer birefringence and thickness of healthy and glaucoma suspect eyes measured with polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 50, 5823 (2009).

Götzinger, E.

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3, 1670–1683 (2012).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3, 2720–2732 (2012).
[Crossref] [PubMed]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 52, 4571–4579 (2011).
[Crossref]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 51, 2149–2157 (2010).
[Crossref]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061704 (2010).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151 (2009).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33, 2967–2969 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[Crossref] [PubMed]

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5, 744 (2011).
[Crossref]

Gröger, M.

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7, 1479–1495 (2016).
[Crossref] [PubMed]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology,” Invest. Ophthalmol. Visual Sci. 56, 7462–7472 (2015).
[Crossref]

Haindl, R.

Hajialamdari, M.

Handschuh, S.

Harper, D. J.

A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8, 4007–4025 (2017).
[Crossref] [PubMed]

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PloS ONE 11, e0164419 (2016).
[Crossref] [PubMed]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Hawes, N. L.

J. R. Heckenlively, N. L. Hawes, M. Friedlander, S. Nusinowitz, R. Hurd, M. Davisson, and B. Chang, “Mouse model of subretinal neovascularization with choroidal anastomosis,” Retina 23, 518–522 (2003).
[Crossref] [PubMed]

Heckenlively, J. R.

J. R. Heckenlively, N. L. Hawes, M. Friedlander, S. Nusinowitz, R. Hurd, M. Davisson, and B. Chang, “Mouse model of subretinal neovascularization with choroidal anastomosis,” Retina 23, 518–522 (2003).
[Crossref] [PubMed]

Hee, M. R.

Hileeto, D.

Himmel, T.

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7, 1479–1495 (2016).
[Crossref] [PubMed]

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PloS ONE 11, e0164419 (2016).
[Crossref] [PubMed]

Hirose, F.

Hitzenberger, C.

E. Gotzinger, M. Pircher, B. Baumann, H. Resch, C. Vass, and C. Hitzenberger, “Comparison of retinal nerve fiber layer birefringence and thickness of healthy and glaucoma suspect eyes measured with polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 50, 5823 (2009).

Hitzenberger, C. K.

S. Fialová, M. Augustin, C. Fischak, L. Schmetterer, S. Handschuh, M. Glösmann, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Posterior rat eye during acute intraocular pressure elevation studied using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 8, 298–314 (2017).
[Crossref] [PubMed]

A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8, 4007–4025 (2017).
[Crossref] [PubMed]

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography–a review,” Biomed. Opt. Express 8, 1838–1873 (2017).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7, 1479–1495 (2016).
[Crossref] [PubMed]

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57, 1699–1705 (2016).
[Crossref]

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PloS ONE 11, e0164419 (2016).
[Crossref] [PubMed]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology,” Invest. Ophthalmol. Visual Sci. 56, 7462–7472 (2015).
[Crossref]

W. Trasischker, S. Zotter, T. Torzicky, B. Baumann, R. Haindl, M. Pircher, and C. K. Hitzenberger, “Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer,” Biomed. Opt. Express 5, 2798–2809 (2014).
[Crossref] [PubMed]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3, 1670–1683 (2012).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3, 2720–2732 (2012).
[Crossref] [PubMed]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 52, 4571–4579 (2011).
[Crossref]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061704 (2010).
[Crossref]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 51, 2149–2157 (2010).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151 (2009).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33, 2967–2969 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[Crossref] [PubMed]

Hoo, J.

S. Volland, J. Esteve-Rudd, J. Hoo, C. Yee, and D. S. Williams, “A comparison of some organizational characteristics of the mouse central retina and the human macula,” PLoS ONE 10, e0125631 (2015).
[Crossref] [PubMed]

Hu, W.

W. Hu, A. Jiang, J. Liang, H. Meng, B. Chang, H. Gao, and X. Qiao, “Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model’s retinal angiomatous proliferation,” Invest. Ophthalmol. Visual Sci. 49, 407–415 (2008).
[Crossref]

Huang, D.

Huang, X.-R.

X.-R. Huang, Y. Zhou, R. W. Knighton, W. Kong, and W. J. Feuer, “Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas,” Invest. Ophthalmol. Visual Sci. 53, 5869–5876 (2012).
[Crossref]

Hurd, R.

J. R. Heckenlively, N. L. Hawes, M. Friedlander, S. Nusinowitz, R. Hurd, M. Davisson, and B. Chang, “Mouse model of subretinal neovascularization with choroidal anastomosis,” Retina 23, 518–522 (2003).
[Crossref] [PubMed]

Ishida, S.

Iwasaki, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49, 2661–2667 (2008).
[Crossref]

Jacobs, G. H.

G. H. Jacobs and G. A. Williams, “Contributions of the mouse UV photopigment to the ERG and to vision,” Doc. Ophthalmol. 115, 137–144 (2007).
[Crossref] [PubMed]

Jiang, A.

W. Hu, A. Jiang, J. Liang, H. Meng, B. Chang, H. Gao, and X. Qiao, “Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model’s retinal angiomatous proliferation,” Invest. Ophthalmol. Visual Sci. 49, 407–415 (2008).
[Crossref]

John, S. W.

R. S. Smith, S. W. John, P. M. Nishina, and J. P. Sundberg, Systematic evaluation of the mouse eye: anatomy, pathology, and biomethods (CRC press, 2001).
[Crossref]

Jones, S. M.

Jonnal, R. S.

Kaluzny, B.

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89, 524–542 (2012).
[Crossref] [PubMed]

Kataura, H.

Kawagoe, H.

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Knighton, R. W.

X.-R. Huang, Y. Zhou, R. W. Knighton, W. Kong, and W. J. Feuer, “Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas,” Invest. Ophthalmol. Visual Sci. 53, 5869–5876 (2012).
[Crossref]

Ko, T. H.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47, 5522–5528 (2006).
[Crossref]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref] [PubMed]

Konegger, T.

Kong, W.

X.-R. Huang, Y. Zhou, R. W. Knighton, W. Kong, and W. J. Feuer, “Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas,” Invest. Ophthalmol. Visual Sci. 53, 5869–5876 (2012).
[Crossref]

Kowalczyk, A.

Kralj, O.

Lam, E. Y.

V. J. Srinivasan, A. C. Chan, and E. Y. Lam, “Doppler OCT and OCT angiography for in vivo imaging of vascular physiology,” in “Selected Topics in Optical Coherence Tomography,” (InTech, 2012).

Leahy, C.

Leitgeb, R. A.

Lem, J.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47, 5522–5528 (2006).
[Crossref]

Lengheimer, T.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PloS ONE 11, e0164419 (2016).
[Crossref] [PubMed]

Liang, J.

W. Hu, A. Jiang, J. Liang, H. Meng, B. Chang, H. Gao, and X. Qiao, “Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model’s retinal angiomatous proliferation,” Invest. Ophthalmol. Visual Sci. 49, 407–415 (2008).
[Crossref]

Lichtenegger, A.

Lin, A. J.

Linsenmeier, R. A.

W. Liu, S. Wang, B. Soetikno, J. Yi, K. Zhang, S. Chen, R. A. Linsenmeier, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice,” Invest. Ophthalmol. Visual Sci. 58, 981–989 (2017).
[Crossref]

Litschauer, M.

Liu, G.

Liu, Q.

Liu, W.

W. Liu, S. Wang, B. Soetikno, J. Yi, K. Zhang, S. Chen, R. A. Linsenmeier, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice,” Invest. Ophthalmol. Visual Sci. 58, 981–989 (2017).
[Crossref]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38, 1796–1798 (2013).
[Crossref] [PubMed]

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

MacLelan, B.

Makita, S.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49, 2661–2667 (2008).
[Crossref]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[Crossref] [PubMed]

Meng, H.

W. Hu, A. Jiang, J. Liang, H. Meng, B. Chang, H. Gao, and X. Qiao, “Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model’s retinal angiomatous proliferation,” Invest. Ophthalmol. Visual Sci. 49, 407–415 (2008).
[Crossref]

Merigan, W. H.

L. Yin, Y. Geng, F. Osakada, R. Sharma, A. H. Cetin, E. M. Callaway, D. R. Williams, and W. H. Merigan, “Imaging light responses of retinal ganglion cells in the living mouse eye,” J. Neurophysiol 109, 2415–2421 (2013).
[Crossref] [PubMed]

Merkle, C. W.

Michels, S.

Mik, E. G.

Miller, D. T.

Milner, T. E.

Miura, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[Crossref] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49, 2661–2667 (2008).
[Crossref]

Muck, M.

Mujat, M.

Nelson, J. S.

Nishina, P. M.

R. S. Smith, S. W. John, P. M. Nishina, and J. P. Sundberg, Systematic evaluation of the mouse eye: anatomy, pathology, and biomethods (CRC press, 2001).
[Crossref]

Nishizawa, N.

Nusinowitz, S.

J. R. Heckenlively, N. L. Hawes, M. Friedlander, S. Nusinowitz, R. Hurd, M. Davisson, and B. Chang, “Mouse model of subretinal neovascularization with choroidal anastomosis,” Retina 23, 518–522 (2003).
[Crossref] [PubMed]

Omoda, E.

Osakada, F.

L. Yin, Y. Geng, F. Osakada, R. Sharma, A. H. Cetin, E. M. Callaway, D. R. Williams, and W. H. Merigan, “Imaging light responses of retinal ganglion cells in the living mouse eye,” J. Neurophysiol 109, 2415–2421 (2013).
[Crossref] [PubMed]

Park, B. H.

B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, and D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express 17, 21634–21651 (2009).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 45, 2606–2612 (2004).
[Crossref]

Phan, I.

P. M. Treuting, R. Wong, D. C. Tu, and I. Phan, “Special senses: Eye,” in “Comparative Anatomy and Histology,” (Elsevier Inc., 2012).
[Crossref]

Pierce, M. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 45, 2606–2612 (2004).
[Crossref]

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Pircher, M.

S. Fialová, M. Augustin, C. Fischak, L. Schmetterer, S. Handschuh, M. Glösmann, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Posterior rat eye during acute intraocular pressure elevation studied using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 8, 298–314 (2017).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7, 1479–1495 (2016).
[Crossref] [PubMed]

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PloS ONE 11, e0164419 (2016).
[Crossref] [PubMed]

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57, 1699–1705 (2016).
[Crossref]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology,” Invest. Ophthalmol. Visual Sci. 56, 7462–7472 (2015).
[Crossref]

W. Trasischker, S. Zotter, T. Torzicky, B. Baumann, R. Haindl, M. Pircher, and C. K. Hitzenberger, “Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer,” Biomed. Opt. Express 5, 2798–2809 (2014).
[Crossref] [PubMed]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3, 1670–1683 (2012).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3, 2720–2732 (2012).
[Crossref] [PubMed]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 52, 4571–4579 (2011).
[Crossref]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061704 (2010).
[Crossref]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 51, 2149–2157 (2010).
[Crossref]

E. Gotzinger, M. Pircher, B. Baumann, H. Resch, C. Vass, and C. Hitzenberger, “Comparison of retinal nerve fiber layer birefringence and thickness of healthy and glaucoma suspect eyes measured with polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 50, 5823 (2009).

E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151 (2009).
[Crossref] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33, 2967–2969 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[Crossref] [PubMed]

Plasenzotti, R.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PloS ONE 11, e0164419 (2016).
[Crossref] [PubMed]

Prager, F.

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 51, 2149–2157 (2010).
[Crossref]

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Qiao, X.

W. Hu, A. Jiang, J. Liang, H. Meng, B. Chang, H. Gao, and X. Qiao, “Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model’s retinal angiomatous proliferation,” Invest. Ophthalmol. Visual Sci. 49, 407–415 (2008).
[Crossref]

Quigley, H. A.

H. A. Quigley, “Glaucoma,” The Lancet 377, 1367–1377 (2011).
[Crossref]

Radhakrishnan, H.

Rauscher, S.

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7, 1479–1495 (2016).
[Crossref] [PubMed]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology,” Invest. Ophthalmol. Visual Sci. 56, 7462–7472 (2015).
[Crossref]

Resch, H.

E. Gotzinger, M. Pircher, B. Baumann, H. Resch, C. Vass, and C. Hitzenberger, “Comparison of retinal nerve fiber layer birefringence and thickness of healthy and glaucoma suspect eyes measured with polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 50, 5823 (2009).

Ritter, M.

Roberts, P.

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57, 1699–1705 (2016).
[Crossref]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3, 2720–2732 (2012).
[Crossref] [PubMed]

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5, 744 (2011).
[Crossref]

Romano, A.

T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retina Vitreous 1, 5 (2015).
[Crossref] [PubMed]

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Sacu, S.

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57, 1699–1705 (2016).
[Crossref]

Sakakibara, Y.

Sattmann, H.

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3, 1670–1683 (2012).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061704 (2010).
[Crossref]

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Schirmer, J.

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology,” Invest. Ophthalmol. Visual Sci. 56, 7462–7472 (2015).
[Crossref]

Schlanitz, F.

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3, 1670–1683 (2012).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061704 (2010).
[Crossref]

Schlanitz, F. G.

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 52, 4571–4579 (2011).
[Crossref]

Schmetterer, L.

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57, 1699–1705 (2016).
[Crossref]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3, 1670–1683 (2012).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3, 2720–2732 (2012).
[Crossref] [PubMed]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 52, 4571–4579 (2011).
[Crossref]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 51, 2149–2157 (2010).
[Crossref]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061704 (2010).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
[Crossref] [PubMed]

Schuman, J. S.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47, 5522–5528 (2006).
[Crossref]

Schütze, C.

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3, 1670–1683 (2012).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3, 2720–2732 (2012).
[Crossref] [PubMed]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 52, 4571–4579 (2011).
[Crossref]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061704 (2010).
[Crossref]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 51, 2149–2157 (2010).
[Crossref]

Sharma, R.

L. Yin, Y. Geng, F. Osakada, R. Sharma, A. H. Cetin, E. M. Callaway, D. R. Williams, and W. H. Merigan, “Imaging light responses of retinal ganglion cells in the living mouse eye,” J. Neurophysiol 109, 2415–2421 (2013).
[Crossref] [PubMed]

Sheibani, N.

W. Liu, S. Wang, B. Soetikno, J. Yi, K. Zhang, S. Chen, R. A. Linsenmeier, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice,” Invest. Ophthalmol. Visual Sci. 58, 981–989 (2017).
[Crossref]

Shu, X.

Smith, R. S.

R. S. Smith, S. W. John, P. M. Nishina, and J. P. Sundberg, Systematic evaluation of the mouse eye: anatomy, pathology, and biomethods (CRC press, 2001).
[Crossref]

Soetikno, B.

W. Liu, S. Wang, B. Soetikno, J. Yi, K. Zhang, S. Chen, R. A. Linsenmeier, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice,” Invest. Ophthalmol. Visual Sci. 58, 981–989 (2017).
[Crossref]

S. Chen, Q. Liu, X. Shu, B. Soetikno, S. Tong, and H. F. Zhang, “Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography,” Biomed. Opt. Express 7, 3377–3389 (2016).
[Crossref] [PubMed]

Song, Q. H.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47, 5522–5528 (2006).
[Crossref]

Sorbara, L.

Sorenson, C. M.

W. Liu, S. Wang, B. Soetikno, J. Yi, K. Zhang, S. Chen, R. A. Linsenmeier, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice,” Invest. Ophthalmol. Visual Sci. 58, 981–989 (2017).
[Crossref]

Spalek, T.

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 52, 4571–4579 (2011).
[Crossref]

Srinivasan, V. J.

J. Zhu, C. W. Merkle, M. T. Bernucci, S. P. Chong, and V. J. Srinivasan, “Can OCT angiography be made a quantitative blood measurement tool?” Appl. Sci. 7, 687 (2017).
[Crossref]

S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8, 323–337 (2017).
[Crossref] [PubMed]

S. P. Chong, C. W. Merkle, C. Leahy, and V. J. Srinivasan, “Cerebral metabolic rate of oxygen (CMRO 2) assessed by combined Doppler and spectroscopic OCT,” Biomed. Opt. Express 6, 3941–3951 (2015).
[Crossref] [PubMed]

S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic optical coherence tomography,” Biomed. Opt. Express 6, 1429–1450 (2015).
[Crossref] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47, 5522–5528 (2006).
[Crossref]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref] [PubMed]

V. J. Srinivasan, A. C. Chan, and E. Y. Lam, “Doppler OCT and OCT angiography for in vivo imaging of vascular physiology,” in “Selected Topics in Optical Coherence Tomography,” (InTech, 2012).

Sugita, M.

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57, 1699–1705 (2016).
[Crossref]

Sundberg, J. P.

R. S. Smith, S. W. John, P. M. Nishina, and J. P. Sundberg, Systematic evaluation of the mouse eye: anatomy, pathology, and biomethods (CRC press, 2001).
[Crossref]

Swanson, E. A.

Tan, B.

Tinevez, J.-Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Tong, S.

Torzicky, T.

Trasischker, W.

Treuting, P. M.

P. M. Treuting, R. Wong, D. C. Tu, and I. Phan, “Special senses: Eye,” in “Comparative Anatomy and Histology,” (Elsevier Inc., 2012).
[Crossref]

Tromberg, B. J.

Tu, D. C.

P. M. Treuting, R. Wong, D. C. Tu, and I. Phan, “Special senses: Eye,” in “Comparative Anatomy and Histology,” (Elsevier Inc., 2012).
[Crossref]

van Leeuwen, T. G.

Vass, C.

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3, 2720–2732 (2012).
[Crossref] [PubMed]

E. Gotzinger, M. Pircher, B. Baumann, H. Resch, C. Vass, and C. Hitzenberger, “Comparison of retinal nerve fiber layer birefringence and thickness of healthy and glaucoma suspect eyes measured with polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 50, 5823 (2009).

Vermeer, K. A.

Vienola, K. V.

Volland, S.

S. Volland, J. Esteve-Rudd, J. Hoo, C. Yee, and D. S. Williams, “A comparison of some organizational characteristics of the mouse central retina and the human macula,” PLoS ONE 10, e0125631 (2015).
[Crossref] [PubMed]

Waheed, N. K.

T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retina Vitreous 1, 5 (2015).
[Crossref] [PubMed]

Wang, R. K.

Wang, S.

W. Liu, S. Wang, B. Soetikno, J. Yi, K. Zhang, S. Chen, R. A. Linsenmeier, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice,” Invest. Ophthalmol. Visual Sci. 58, 981–989 (2017).
[Crossref]

Wax, A.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5, 744 (2011).
[Crossref]

Wei, Q.

Werkmeister, R. M.

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Williams, D. R.

L. Yin, Y. Geng, F. Osakada, R. Sharma, A. H. Cetin, E. M. Callaway, D. R. Williams, and W. H. Merigan, “Imaging light responses of retinal ganglion cells in the living mouse eye,” J. Neurophysiol 109, 2415–2421 (2013).
[Crossref] [PubMed]

Williams, D. S.

S. Volland, J. Esteve-Rudd, J. Hoo, C. Yee, and D. S. Williams, “A comparison of some organizational characteristics of the mouse central retina and the human macula,” PLoS ONE 10, e0125631 (2015).
[Crossref] [PubMed]

Williams, G. A.

G. H. Jacobs and G. A. Williams, “Contributions of the mouse UV photopigment to the ERG and to vision,” Doc. Ophthalmol. 115, 137–144 (2007).
[Crossref] [PubMed]

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5, 744 (2011).
[Crossref]

Woehrer, A.

Wojtkowski, M.

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89, 524–542 (2012).
[Crossref] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47, 5522–5528 (2006).
[Crossref]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref] [PubMed]

Wong, R.

P. M. Treuting, R. Wong, D. C. Tu, and I. Phan, “Special senses: Eye,” in “Comparative Anatomy and Histology,” (Elsevier Inc., 2012).
[Crossref]

Yamanari, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[Crossref] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49, 2661–2667 (2008).
[Crossref]

Yasuno, Y.

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography–a review,” Biomed. Opt. Express 8, 1838–1873 (2017).
[Crossref] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[Crossref] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49, 2661–2667 (2008).
[Crossref]

Yatagai, T.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[Crossref] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49, 2661–2667 (2008).
[Crossref]

Yee, C.

S. Volland, J. Esteve-Rudd, J. Hoo, C. Yee, and D. S. Williams, “A comparison of some organizational characteristics of the mouse central retina and the human macula,” PLoS ONE 10, e0125631 (2015).
[Crossref] [PubMed]

Yi, J.

Yin, L.

L. Yin, Y. Geng, F. Osakada, R. Sharma, A. H. Cetin, E. M. Callaway, D. R. Williams, and W. H. Merigan, “Imaging light responses of retinal ganglion cells in the living mouse eye,” J. Neurophysiol 109, 2415–2421 (2013).
[Crossref] [PubMed]

Yoshida, H.

Zawadzki, R. J.

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89, 524–542 (2012).
[Crossref] [PubMed]

Zhang, H. F.

Zhang, K.

W. Liu, S. Wang, B. Soetikno, J. Yi, K. Zhang, S. Chen, R. A. Linsenmeier, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice,” Invest. Ophthalmol. Visual Sci. 58, 981–989 (2017).
[Crossref]

Zhou, Y.

X.-R. Huang, Y. Zhou, R. W. Knighton, W. Kong, and W. J. Feuer, “Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas,” Invest. Ophthalmol. Visual Sci. 53, 5869–5876 (2012).
[Crossref]

Zhu, J.

J. Zhu, C. W. Merkle, M. T. Bernucci, S. P. Chong, and V. J. Srinivasan, “Can OCT angiography be made a quantitative blood measurement tool?” Appl. Sci. 7, 687 (2017).
[Crossref]

Zotter, S.

Appl. Sci. (2)

J. Zhu, C. W. Merkle, M. T. Bernucci, S. P. Chong, and V. J. Srinivasan, “Can OCT angiography be made a quantitative blood measurement tool?” Appl. Sci. 7, 687 (2017).
[Crossref]

B. Baumann, “Polarization sensitive optical coherence tomography: A review of technology and applications,” Appl. Sci. 7, 474 (2017).
[Crossref]

Biomed. Opt. Express (17)

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3, 2720–2732 (2012).
[Crossref] [PubMed]

W. Trasischker, S. Zotter, T. Torzicky, B. Baumann, R. Haindl, M. Pircher, and C. K. Hitzenberger, “Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer,” Biomed. Opt. Express 5, 2798–2809 (2014).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5, 2736–2758 (2014).
[Crossref] [PubMed]

C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography,” Biomed. Opt. Express 8, 1056–1082 (2017).
[Crossref] [PubMed]

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography–a review,” Biomed. Opt. Express 8, 1838–1873 (2017).
[Crossref] [PubMed]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3, 1670–1683 (2012).
[Crossref] [PubMed]

K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8, 800–812 (2017).
[Crossref] [PubMed]

H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Development of a high power supercontinuum source in the 1.7 µ m wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 5, 932–943 (2014).
[Crossref] [PubMed]

S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8, 323–337 (2017).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6, 3701–3713 (2015).
[Crossref] [PubMed]

A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8, 4007–4025 (2017).
[Crossref] [PubMed]

G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express 3, 2669–2680 (2012).
[Crossref] [PubMed]

S. P. Chong, C. W. Merkle, C. Leahy, and V. J. Srinivasan, “Cerebral metabolic rate of oxygen (CMRO 2) assessed by combined Doppler and spectroscopic OCT,” Biomed. Opt. Express 6, 3941–3951 (2015).
[Crossref] [PubMed]

S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic optical coherence tomography,” Biomed. Opt. Express 6, 1429–1450 (2015).
[Crossref] [PubMed]

S. Chen, Q. Liu, X. Shu, B. Soetikno, S. Tong, and H. F. Zhang, “Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography,” Biomed. Opt. Express 7, 3377–3389 (2016).
[Crossref] [PubMed]

S. Fialová, M. Augustin, M. Glösmann, T. Himmel, S. Rauscher, M. Gröger, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography,” Biomed. Opt. Express 7, 1479–1495 (2016).
[Crossref] [PubMed]

S. Fialová, M. Augustin, C. Fischak, L. Schmetterer, S. Handschuh, M. Glösmann, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Posterior rat eye during acute intraocular pressure elevation studied using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 8, 298–314 (2017).
[Crossref] [PubMed]

Doc. Ophthalmol. (1)

G. H. Jacobs and G. A. Williams, “Contributions of the mouse UV photopigment to the ERG and to vision,” Doc. Ophthalmol. 115, 137–144 (2007).
[Crossref] [PubMed]

Int. J. Retina Vitreous (1)

T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retina Vitreous 1, 5 (2015).
[Crossref] [PubMed]

Invest. Ophthalmol. Visual Sci. (11)

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology,” Invest. Ophthalmol. Visual Sci. 56, 7462–7472 (2015).
[Crossref]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49, 2661–2667 (2008).
[Crossref]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 45, 2606–2612 (2004).
[Crossref]

W. Liu, S. Wang, B. Soetikno, J. Yi, K. Zhang, S. Chen, R. A. Linsenmeier, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice,” Invest. Ophthalmol. Visual Sci. 58, 981–989 (2017).
[Crossref]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47, 5522–5528 (2006).
[Crossref]

W. Hu, A. Jiang, J. Liang, H. Meng, B. Chang, H. Gao, and X. Qiao, “Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model’s retinal angiomatous proliferation,” Invest. Ophthalmol. Visual Sci. 49, 407–415 (2008).
[Crossref]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 51, 2149–2157 (2010).
[Crossref]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 52, 4571–4579 (2011).
[Crossref]

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57, 1699–1705 (2016).
[Crossref]

E. Gotzinger, M. Pircher, B. Baumann, H. Resch, C. Vass, and C. Hitzenberger, “Comparison of retinal nerve fiber layer birefringence and thickness of healthy and glaucoma suspect eyes measured with polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 50, 5823 (2009).

X.-R. Huang, Y. Zhou, R. W. Knighton, W. Kong, and W. J. Feuer, “Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas,” Invest. Ophthalmol. Visual Sci. 53, 5869–5876 (2012).
[Crossref]

J. Biomed. Opt. (3)

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 121707 (2017).

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061704 (2010).
[Crossref]

J. Neurophysiol (1)

L. Yin, Y. Geng, F. Osakada, R. Sharma, A. H. Cetin, E. M. Callaway, D. R. Williams, and W. H. Merigan, “Imaging light responses of retinal ganglion cells in the living mouse eye,” J. Neurophysiol 109, 2415–2421 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Methods (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676–682 (2012).
[Crossref] [PubMed]

Nat. Photon. (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photon. 5, 744 (2011).
[Crossref]

Ophthalmic Res. (1)

E. Chen, “Refractive indices of the rat retinal layers,” Ophthalmic Res. 25, 65–68 (1993).
[Crossref] [PubMed]

Opt. Express (6)

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[Crossref] [PubMed]

W. Choi, B. Baumann, E. A. Swanson, and J. G. Fujimoto, “Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina,” Opt. Express 20, 25357–25368 (2012).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16, 16410–16422 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151 (2009).
[Crossref] [PubMed]

B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, and D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express 17, 21634–21651 (2009).
[Crossref] [PubMed]

Opt. Lett. (4)

Optom. Vis. Sci. (1)

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci. 89, 524–542 (2012).
[Crossref] [PubMed]

PLoS ONE (1)

S. Volland, J. Esteve-Rudd, J. Hoo, C. Yee, and D. S. Williams, “A comparison of some organizational characteristics of the mouse central retina and the human macula,” PLoS ONE 10, e0125631 (2015).
[Crossref] [PubMed]

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PloS ONE 11, e0164419 (2016).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Retina (1)

J. R. Heckenlively, N. L. Hawes, M. Friedlander, S. Nusinowitz, R. Hurd, M. Davisson, and B. Chang, “Mouse model of subretinal neovascularization with choroidal anastomosis,” Retina 23, 518–522 (2003).
[Crossref] [PubMed]

The Lancet (1)

H. A. Quigley, “Glaucoma,” The Lancet 377, 1367–1377 (2011).
[Crossref]

Other (6)

JIIA CoaXPress Working Group, “JIIA NIF-001-2010 CoaXPress standard,” (CoaXPress,2010).

I. Gertsbakh, Measurement theory for engineers (Springer, 2003).
[Crossref]

R. S. Smith, S. W. John, P. M. Nishina, and J. P. Sundberg, Systematic evaluation of the mouse eye: anatomy, pathology, and biomethods (CRC press, 2001).
[Crossref]

P. M. Treuting, R. Wong, D. C. Tu, and I. Phan, “Special senses: Eye,” in “Comparative Anatomy and Histology,” (Elsevier Inc., 2012).
[Crossref]

J. Fujimoto and W. Drexler, “Introduction to optical coherence tomography,” in “Optical Coherence Tomography,” (Springer, 2008), pp. 1–45.

V. J. Srinivasan, A. C. Chan, and E. Y. Lam, “Doppler OCT and OCT angiography for in vivo imaging of vascular physiology,” in “Selected Topics in Optical Coherence Tomography,” (InTech, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Diagram of the white light PS-OCT system. Polarization optics are drawn in red. FC Fiber Collimator. DM Dichroic Mirror. BPF Bandpass Filter. WC Water Cuvette. ND Neutral Density Filter. POL Polarizer. BS Beam Splitter. QWP Quarter Wave Plate. DC1 Dispersion Compensation Water Cuvette. DC2–4 Dispersion Compensation Prisms. RM Reference Mirror. L Lens. PBS Polarizing Beam Splitter. DG Diffraction Grating. CMOS Line Scan Camera. C Computer. (b) Wavelength range detected by the two spectrometers (reference spectra).
Fig. 2
Fig. 2 (a–b) Axial resolution measurement in (a) the horizontally polarized channel and (b) the vertically polarized channel. Red lines indicate the full width at half maximum (FWHM) of the signal intensity which is equal to 1.0 µm in air for both channels. (c–d) Sensitivity roll-off as a function of depth (in air) for (c) the horizontally polarized channel (roll-off decay ≈ 14 dB/mm) and (d) the vertically polarized channel (roll-off decay ≈ 15 dB/mm).
Fig. 3
Fig. 3 (a) Phase retardation at different depth positions. (b) Phase retardation at different waveplate orientations. The retardation stays within ± 4° for a 180° rotation of the waveplate. (c) A wavelength dependence on retardation is observed with a smaller phase retardation at longer wavelengths. The error associated with the measurement is greater at the edges of the spectrum. All graphs display mean retardation ± propagated standard deviation.
Fig. 4
Fig. 4 (a) Reflectivity image acquired by the white light PS-OCT system. (b) Corresponding phase retardation image. Most of the healthy murine retina is polarization preserving. (c) Zoomed in region indicated by the orange box in (a). The depolarizing RPE is difficult to distinguish from its surrounding layers. (d) Zoomed in region indicated by the purple box in (b). High resolution PS-OCT highlights the depolarizing RPE. (e) An en-face projection of a region of a healthy mouse retina including the optic nerve head (ONH). (f) A section of a mouse retina as measured with white light OCT, and a histology image of a similar area from a different mouse. Depth positions are marked and retinal layers are labeled. RNFL Retinal nerve fiber layer. GCL Ganglion cell layer. IPL Inner plexiform layer. INL Inner nuclear layer. OPL Outer plexiform layer. ONL Outer nuclear layer. ELM External limiting membrane IS Inner segments. IS/OS Inner segment/outer segment junction. OS Outer segments. RPE Retinal pigment epithelium. BM Bruch’s membrane. CH Choroid. All scale bars correspond to 50 µm unless otherwise stated. Color maps for reflectivity (grayscale) and retardation (colored) can be found on the bottom right. Pixels which appear gray in the retardation images indicate that the retardation value was not calculated as the SNR was not high enough.
Fig. 5
Fig. 5 (a) A cartoon representation of spectral filtering in wavelength space. The original spectrum is multiplied by three Gaussian windows centered at blue (λ1 = 460 nm), green (λ2 = 550 nm) and red (λ3 = 640 nm) wavelengths. (b–d) Red (b), green (c) and blue (d) B-scan images after spectral filtering. (e) “True color” RGB image produced by the normalized and smoothed addition of the red, green and blue channels. White arrow indicates blood vessel. (f) Spectroscopic en-face projection over the whole retina including the optic nerve head. Vessels are immediately highlighted by color contrast. All scale bars correspond to 50 µm.
Fig. 6
Fig. 6 (a) Reflectivity B-scan of the VLDLR knockout mouse model as acquired by white light OCT (4× average of consecutive B-scans). The orange box indicates the presence of a retinal lesion. (b) The corresponding phase retardation image. The PS contrast indicates the position of the lesion, but in this case there is no indication of depolarizing melanin in the photoreceptor layer. (c) The true color spectroscopic RGB image. There appears to be some color contrast within the lesion. (d) En-face projection across an area of the retina superior to the optic nerve head. There is no indication of retinal lesions. (e) En-face projection from the top of the RPE (grayscale) with a heat map of height above the RPE layer where additional abnormal signal is seen. This highlights the lesion area. (f) Representative histology image of the retina of the VLDLR knockout mouse model. Yellow arrow indicates a miniscule and eosinophilic thickening between the RPE and choroid, which potentially features a lesion. High resolution imaging would be required to study the progression of this in vivo. Green asterisks indicate artefactual detachment. (g) A larger lesion (indicated by yellow arrow) which shows melanin has been displaced to the outer nuclear layer, and the whole layer structure is disrupted. All scale bars correspond to 50 µm. Insets in (a-c) show a depth of 100 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ ¯ ( k , λ i , i = 1 , 2 , 3 ) = a 1 ( λ i ) × ( k k 0 ) a 2 ( λ i ) × ( k k 0 ) 2 a 3 ( λ i ) × ( k k 0 ) 3
δ = arctan ( A V A H )

Metrics