Abstract

We present a novel circumferential-scan endoscopic optical coherence tomography (OCT) probe by using a circular array of six electrothermal microelectromechanical (MEMS) mirrors and six C-lenses. The MEMS mirrors have a 0.5 mm × 0.5 mm mirror plate and a chip size of 1.5 mm × 1.3 mm. Each MEMS mirror can scan up to 45° at a voltage of less than 12 V. Six of those mirrors have been successfully packaged to a probe head; full circumferential scans have been demonstrated. Furthermore, each scan unit is composed of a MEMS mirror and a C-lens and the six scan units can be designed with different focal lengths to adapt for lesions with uneven surfaces. Configured with a swept source OCT system, this MEMS array-based circumferential scanning probe has been applied to image a swine’s small intestine wrapped on a 20 mm-diameter glass tube. The OCT imaging result shows that this new MEMS endoscopic OCT has promising applications in large tubular organs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

12 April 2018: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Optical coherence tomography endoscopic probe based on a tilted MEMS mirror

Can Duan, Quentin Tanguy, Antonio Pozzi, and Huikai Xie
Biomed. Opt. Express 7(9) 3345-3354 (2016)

3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror

Jingjing Sun, Shuguang Guo, Lei Wu, Lin Liu, Se-Woon Choe, Brian S. Sorg, and Huikai Xie
Opt. Express 18(12) 12065-12075 (2010)

Miniaturized magnetic-driven scanning probe for endoscopic optical coherence tomography

Ziwei Pang and Jigang Wu
Biomed. Opt. Express 6(6) 2231-2236 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical applications [Invited],” Biomed. Opt. Express 8(5), 2405–2444 (2017).
    [Crossref] [PubMed]
  2. Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001).
    [Crossref] [PubMed]
  3. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22(21), 1618–1620 (1997).
    [Crossref] [PubMed]
  4. L. Liu, L. Wu, J. Sun, E. Lin, and H. Xie, “Miniature endoscopic optical coherence tomography probe employing a two-axis microelectromechanical scanning mirror with through-silicon vias,” J. Biomed. Opt. 16(2), 026006 (2011).
    [Crossref] [PubMed]
  5. W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
    [Crossref]
  6. J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
    [Crossref] [PubMed]
  7. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express 15(26), 18130–18140 (2007).
    [Crossref] [PubMed]
  8. D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
    [Crossref] [PubMed]
  9. C. Duan, Q. Tanguy, A. Pozzi, and H. Xie, “Optical coherence tomography endoscopic probe based on a tilted MEMS mirror,” Biomed. Opt. Express 7(9), 3345–3354 (2016).
    [Crossref] [PubMed]
  10. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
    [Crossref] [PubMed]
  11. Nine Point Company http://www.ninepointmedical.com/nvisionvle-imaging-system
  12. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25(20), 1520–1522 (2000).
    [Crossref] [PubMed]
  13. B. E. Bouma and G. J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt. Lett. 24(8), 531–533 (1999).
    [Crossref] [PubMed]
  14. V. X. D. Yang, Y. X. Mao, N. Munce, B. Standish, W. Kucharczyk, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, “Interstitial Doppler optical coherence tomography,” Opt. Lett. 30(14), 1791–1793 (2005).
    [Crossref] [PubMed]
  15. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, C. Petersen, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(19), 2261–2263 (2004).
    [Crossref] [PubMed]
  16. J. Li, M. de Groot, F. Helderman, J. Mo, J. M. A. Daniels, K. Grünberg, T. G. Sutedja, and J. F. de Boer, “High speed miniature motorized endoscopic probe for optical frequency domain imaging,” Opt. Express 20(22), 24132–24138 (2012).
    [Crossref] [PubMed]
  17. N. Zhang, T.-H. Tsai, O. O. Ahsen, K. Liang, H.-C. Lee, P. Xue, X. Li, and J. G. Fujimoto, “Compact piezoelectric transducer fiber scanning probe for optical coherence tomography,” Opt. Lett. 39(2), 186–188 (2014).
    [Crossref] [PubMed]
  18. T.-H. Tsai, H.-C. Lee, O. O. Ahsen, K. Liang, M. G. Giacomelli, B. M. Potsaid, Y. K. Tao, V. Jayaraman, M. Figueiredo, Q. Huang, A. E. Cable, J. Fujimoto, and H. Mashimo, “Ultrahigh speed endoscopic optical coherence tomography for gastroenterology,” Biomed. Opt. Express 5(12), 4387–4404 (2014).
    [Crossref] [PubMed]
  19. T. S. Kirtane and M. S. Wagh, “Endoscopic Optical Coherence Tomography (OCT): Advances in Gastrointestinal Imaging,” Gastroenterol. Res. Pract. 2014, 376367 (2014).
    [Crossref] [PubMed]
  20. W. Jing, D. Jia, F. Tang, H. Zhang, Y. Zhang, G. Zhou, J. Yu, F. Kong, and K. Liu, “Design and implementation of a broadband optical rotary joint using C-lenses,” Opt. Express 12(17), 4088–4093 (2004).
    [Crossref] [PubMed]
  21. CASIX CO, LTD, “Collimators: C-lens”, http://www.casix.com/products/fiber-optics-subs/collimators.shtml
  22. S. Wang, Y. Ruan, D. Yin, and Z. Yang, “The calculation and analyzing of the RL of C-lens collimator,” Optoelectronic Technology and Information 16(1), 24–28 (2003).
  23. L. Wu and H. Xie, “Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging. J. of Micro/Nanolithography,” MEMS, and MOEMS 8(1), 013030 (2009).
    [Crossref]
  24. S. R. Samuelson, L. Wu, J. J. Sun, S. W. Choe, B. S. Sorg, and H. K. Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
    [Crossref]
  25. D. Wang, P. Liang, S. Samuelson, H. Jia, J. Ma, and H. Xie, “Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors,” Biomed. Opt. Express 4(10), 2066–2077 (2013).
    [Crossref] [PubMed]
  26. S. R. Samuelson and H. Xie, “A Large Piston Displacement MEMS Mirror With Electrothermal Ladder Actuator Arrays for Ultra-Low Tilt Applications,” J. Microelectromech. Syst. 23(1), 39–49 (2014).
    [Crossref]
  27. T. Wang, A. F. W. van der Steen, and G. van Soest, “Numerical analysis of astigmatism correction in gradient refractive index lens based optical coherence tomography catheters,” Appl. Opt. 51(21), 5244–5252 (2012).
    [Crossref] [PubMed]
  28. J. Xi, L. Huo, Y. Wu, M. J. Cobb, J. H. Hwang, and X. Li, “High-resolution OCT balloon imaging catheter with astigmatism correction,” Opt. Lett. 34(13), 1943–1945 (2009).
    [Crossref] [PubMed]
  29. C. Duan, J. Sun, S. Samuelson, and H. Xie, “Probe alignment and design issues of microelectromechanical system based optical coherence tomography endoscopic imaging,” Appl. Opt. 52(26), 6589–6598 (2013).
    [Crossref] [PubMed]

2017 (1)

2016 (1)

2014 (4)

2013 (3)

2012 (3)

2011 (1)

L. Liu, L. Wu, J. Sun, E. Lin, and H. Xie, “Miniature endoscopic optical coherence tomography probe employing a two-axis microelectromechanical scanning mirror with through-silicon vias,” J. Biomed. Opt. 16(2), 026006 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

J. Xi, L. Huo, Y. Wu, M. J. Cobb, J. H. Hwang, and X. Li, “High-resolution OCT balloon imaging catheter with astigmatism correction,” Opt. Lett. 34(13), 1943–1945 (2009).
[Crossref] [PubMed]

L. Wu and H. Xie, “Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging. J. of Micro/Nanolithography,” MEMS, and MOEMS 8(1), 013030 (2009).
[Crossref]

2007 (1)

2006 (1)

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[Crossref]

2005 (1)

2004 (2)

2003 (1)

S. Wang, Y. Ruan, D. Yin, and Z. Yang, “The calculation and analyzing of the RL of C-lens collimator,” Optoelectronic Technology and Information 16(1), 24–28 (2003).

2001 (1)

2000 (1)

1999 (1)

1997 (2)

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22(21), 1618–1620 (1997).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

Aguirre, A. D.

Ahsen, O. O.

Bancu, M. G.

Bernstein, J. J.

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22(21), 1618–1620 (1997).
[Crossref] [PubMed]

Bouma, B. E.

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22(21), 1618–1620 (1997).
[Crossref] [PubMed]

Cable, A. E.

Chen, Y.

Chen, Z.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[Crossref]

Choe, S. W.

S. R. Samuelson, L. Wu, J. J. Sun, S. W. Choe, B. S. Sorg, and H. K. Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

Chudoba, C.

Cobb, M. J.

Daniels, J. M. A.

de Boer, J. F.

de Groot, M.

Duan, C.

Fedder, G. K.

Figueiredo, M.

Fu, L.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

Giacomelli, M. G.

Gong, Z.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

Goodnow, J.

Gora, M. J.

Grünberg, K.

Guo, S.

Helderman, F.

Herz, P. R.

Hsiung, P.

Huang, Q.

Huo, L.

Hwang, J. H.

Jayaraman, V.

Jia, D.

Jia, H.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

D. Wang, P. Liang, S. Samuelson, H. Jia, J. Ma, and H. Xie, “Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors,” Biomed. Opt. Express 4(10), 2066–2077 (2013).
[Crossref] [PubMed]

Jing, W.

Jung, W.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[Crossref]

Kim, K. H.

Kirtane, T. S.

T. S. Kirtane and M. S. Wagh, “Endoscopic Optical Coherence Tomography (OCT): Advances in Gastrointestinal Imaging,” Gastroenterol. Res. Pract. 2014, 376367 (2014).
[Crossref] [PubMed]

Ko, T.

Kong, F.

Kucharczyk, W.

Lee, H.-C.

Lee, T. W.

Li, J.

Li, X.

Liang, K.

Liang, P.

Lin, E.

L. Liu, L. Wu, J. Sun, E. Lin, and H. Xie, “Miniature endoscopic optical coherence tomography probe employing a two-axis microelectromechanical scanning mirror with through-silicon vias,” J. Biomed. Opt. 16(2), 026006 (2011).
[Crossref] [PubMed]

Liu, K.

Liu, L.

L. Liu, L. Wu, J. Sun, E. Lin, and H. Xie, “Miniature endoscopic optical coherence tomography probe employing a two-axis microelectromechanical scanning mirror with through-silicon vias,” J. Biomed. Opt. 16(2), 026006 (2011).
[Crossref] [PubMed]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

Ma, J.

Ma, J. S.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

Madden, K.

Maguluri, G. N.

Mao, Y. X.

Marcon, N. E.

Mashimo, H.

McCormick, D. T.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[Crossref]

Mo, J.

Munce, N.

Pan, Y.

Park, B. H.

Petersen, C.

Pitris, C.

Potsaid, B. M.

Pozzi, A.

Rogomentich, F. J.

Ruan, Y.

S. Wang, Y. Ruan, D. Yin, and Z. Yang, “The calculation and analyzing of the RL of C-lens collimator,” Optoelectronic Technology and Information 16(1), 24–28 (2003).

Samuelson, S.

Samuelson, S. R.

S. R. Samuelson and H. Xie, “A Large Piston Displacement MEMS Mirror With Electrothermal Ladder Actuator Arrays for Ultra-Low Tilt Applications,” J. Microelectromech. Syst. 23(1), 39–49 (2014).
[Crossref]

S. R. Samuelson, L. Wu, J. J. Sun, S. W. Choe, B. S. Sorg, and H. K. Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

Schmitt, J.

Schneider, K.

Sorg, B. S.

S. R. Samuelson, L. Wu, J. J. Sun, S. W. Choe, B. S. Sorg, and H. K. Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

Standish, B.

Sun, J.

Sun, J. J.

S. R. Samuelson, L. Wu, J. J. Sun, S. W. Choe, B. S. Sorg, and H. K. Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

Sutedja, T. G.

Suter, M. J.

Tang, F.

Tanguy, Q.

Tao, Y. K.

Tearney, G. J.

Tien, N. C.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[Crossref]

Tsai, T.-H.

van der Steen, A. F. W.

van Soest, G.

Vitkin, I. A.

Wagh, M. S.

T. S. Kirtane and M. S. Wagh, “Endoscopic Optical Coherence Tomography (OCT): Advances in Gastrointestinal Imaging,” Gastroenterol. Res. Pract. 2014, 376367 (2014).
[Crossref] [PubMed]

Wang, D.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

D. Wang, P. Liang, S. Samuelson, H. Jia, J. Ma, and H. Xie, “Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors,” Biomed. Opt. Express 4(10), 2066–2077 (2013).
[Crossref] [PubMed]

Wang, L.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[Crossref]

Wang, S.

S. Wang, Y. Ruan, D. Yin, and Z. Yang, “The calculation and analyzing of the RL of C-lens collimator,” Optoelectronic Technology and Information 16(1), 24–28 (2003).

Wang, T.

Wang, X.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

Wilson, B. C.

Wu, L.

S. R. Samuelson, L. Wu, J. J. Sun, S. W. Choe, B. S. Sorg, and H. K. Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

L. Liu, L. Wu, J. Sun, E. Lin, and H. Xie, “Miniature endoscopic optical coherence tomography probe employing a two-axis microelectromechanical scanning mirror with through-silicon vias,” J. Biomed. Opt. 16(2), 026006 (2011).
[Crossref] [PubMed]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

L. Wu and H. Xie, “Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging. J. of Micro/Nanolithography,” MEMS, and MOEMS 8(1), 013030 (2009).
[Crossref]

Wu, Y.

Xi, J.

Xie, H.

C. Duan, Q. Tanguy, A. Pozzi, and H. Xie, “Optical coherence tomography endoscopic probe based on a tilted MEMS mirror,” Biomed. Opt. Express 7(9), 3345–3354 (2016).
[Crossref] [PubMed]

S. R. Samuelson and H. Xie, “A Large Piston Displacement MEMS Mirror With Electrothermal Ladder Actuator Arrays for Ultra-Low Tilt Applications,” J. Microelectromech. Syst. 23(1), 39–49 (2014).
[Crossref]

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

D. Wang, P. Liang, S. Samuelson, H. Jia, J. Ma, and H. Xie, “Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors,” Biomed. Opt. Express 4(10), 2066–2077 (2013).
[Crossref] [PubMed]

C. Duan, J. Sun, S. Samuelson, and H. Xie, “Probe alignment and design issues of microelectromechanical system based optical coherence tomography endoscopic imaging,” Appl. Opt. 52(26), 6589–6598 (2013).
[Crossref] [PubMed]

L. Liu, L. Wu, J. Sun, E. Lin, and H. Xie, “Miniature endoscopic optical coherence tomography probe employing a two-axis microelectromechanical scanning mirror with through-silicon vias,” J. Biomed. Opt. 16(2), 026006 (2011).
[Crossref] [PubMed]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

L. Wu and H. Xie, “Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging. J. of Micro/Nanolithography,” MEMS, and MOEMS 8(1), 013030 (2009).
[Crossref]

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001).
[Crossref] [PubMed]

Xie, H. K.

S. R. Samuelson, L. Wu, J. J. Sun, S. W. Choe, B. S. Sorg, and H. K. Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

Xue, P.

Yang, V. X. D.

Yang, Z.

S. Wang, Y. Ruan, D. Yin, and Z. Yang, “The calculation and analyzing of the RL of C-lens collimator,” Optoelectronic Technology and Information 16(1), 24–28 (2003).

Yin, D.

S. Wang, Y. Ruan, D. Yin, and Z. Yang, “The calculation and analyzing of the RL of C-lens collimator,” Optoelectronic Technology and Information 16(1), 24–28 (2003).

Yu, J.

Zhang, H.

Zhang, J.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[Crossref]

Zhang, N.

Zhang, Y.

Zhou, G.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[Crossref]

Biomed. Opt. Express (4)

Gastroenterol. Res. Pract. (1)

T. S. Kirtane and M. S. Wagh, “Endoscopic Optical Coherence Tomography (OCT): Advances in Gastrointestinal Imaging,” Gastroenterol. Res. Pract. 2014, 376367 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

L. Liu, L. Wu, J. Sun, E. Lin, and H. Xie, “Miniature endoscopic optical coherence tomography probe employing a two-axis microelectromechanical scanning mirror with through-silicon vias,” J. Biomed. Opt. 16(2), 026006 (2011).
[Crossref] [PubMed]

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[Crossref] [PubMed]

J. Microelectromech. Syst. (2)

S. R. Samuelson and H. Xie, “A Large Piston Displacement MEMS Mirror With Electrothermal Ladder Actuator Arrays for Ultra-Low Tilt Applications,” J. Microelectromech. Syst. 23(1), 39–49 (2014).
[Crossref]

S. R. Samuelson, L. Wu, J. J. Sun, S. W. Choe, B. S. Sorg, and H. K. Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” J. Microelectromech. Syst. 21(6), 1291–1302 (2012).
[Crossref]

MEMS, and MOEMS (1)

L. Wu and H. Xie, “Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging. J. of Micro/Nanolithography,” MEMS, and MOEMS 8(1), 013030 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25(20), 1520–1522 (2000).
[Crossref] [PubMed]

B. E. Bouma and G. J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt. Lett. 24(8), 531–533 (1999).
[Crossref] [PubMed]

V. X. D. Yang, Y. X. Mao, N. Munce, B. Standish, W. Kucharczyk, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, “Interstitial Doppler optical coherence tomography,” Opt. Lett. 30(14), 1791–1793 (2005).
[Crossref] [PubMed]

P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, C. Petersen, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(19), 2261–2263 (2004).
[Crossref] [PubMed]

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22(21), 1618–1620 (1997).
[Crossref] [PubMed]

N. Zhang, T.-H. Tsai, O. O. Ahsen, K. Liang, H.-C. Lee, P. Xue, X. Li, and J. G. Fujimoto, “Compact piezoelectric transducer fiber scanning probe for optical coherence tomography,” Opt. Lett. 39(2), 186–188 (2014).
[Crossref] [PubMed]

J. Xi, L. Huo, Y. Wu, M. J. Cobb, J. H. Hwang, and X. Li, “High-resolution OCT balloon imaging catheter with astigmatism correction,” Opt. Lett. 34(13), 1943–1945 (2009).
[Crossref] [PubMed]

Optoelectronic Technology and Information (1)

S. Wang, Y. Ruan, D. Yin, and Z. Yang, “The calculation and analyzing of the RL of C-lens collimator,” Optoelectronic Technology and Information 16(1), 24–28 (2003).

Science (1)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

Other (2)

Nine Point Company http://www.ninepointmedical.com/nvisionvle-imaging-system

CASIX CO, LTD, “Collimators: C-lens”, http://www.casix.com/products/fiber-optics-subs/collimators.shtml

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) The conceptual design of the proposed MEMS probe. (b) The sketch of the optical scan in the plane transverse to the probe. (c) The scan depth arrangement.
Fig. 2
Fig. 2 (A) Schematic of the C-lens collimator. (B) The plot of ω0 over b. (C) The plots of ZR and Z0 over b.
Fig. 3
Fig. 3 (a) An SEM image of the MEMS mirror. (b) The mechanical rotation angle versus the driving voltage of the MEMS mirror.
Fig. 4
Fig. 4 Astigmatism analysis of the optical beam out of the probe. (a) The beam size variations around the focal point in two orthogonal directions. (b) The measured beam profile at the distance of 12 mm.
Fig. 5
Fig. 5 (a) The 3D model of the final probe design. A: the 3D-printed probe head; B: C-lens collimators; C: the MEMS chips; D: FPCB. (b) The bottom view of the probe.
Fig. 6
Fig. 6 (a) Six FPCBs and six MEMS chips are fixed on the hexagonal prism. (b) The assembled probe. (c) A zoom-in picture showing the C-lens collimators and MEMS chips. (d) A back-view picture showing the FPCBs folded into the hollow hole.
Fig. 7
Fig. 7 (a) A photo of the assembled probe (pictured with a Chinese Yuan coin). (b) A photo of the probe in a glass tube. (c) A photo showing the optical scan of the probe (the units on the ruler are cm).
Fig. 8
Fig. 8 (a) Schematic of the sample with two coverslips spaced by a bare fiber. (b1) The OCT image of the sample at a point with a 125 μm air gap. (b2) The original OCT signal of an A-scan line of (b1). (c1) The OCT image of the sample at a position with a 12 μm air gap. (c2) The original OCT signal of an A-scan line of (c1).
Fig. 9
Fig. 9 The schematic of the OCT system with the MEMS array probe. PD is the photodetector, PC is computer.
Fig. 10
Fig. 10 (a) The imaging sample of a swine’s small intestine covering a glass tube. (b) The optical system of the MEMS arrayed probe. (c) The OCT image of the sample.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ = θ + 2 arc sin ( r 1 r 2 sin θ 2 )

Metrics