Abstract

We present the recipe and characterization for preparing liquid phantoms that are suitable for both near-infrared spectroscopy and diffuse correlation spectroscopy. The phantoms have well-defined and tunable optical and dynamic properties, and consist of a solution of water and glycerol with fat emulsion as the scattering element. The recipe takes into account the effect of bulk refractive index changes due to the addition of glycerol, which is commonly used to alter the sample viscosity.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time domain diffuse correlation spectroscopy with a high coherence pulsed source: in vivo and phantom results

M. Pagliazzi, S. Konugolu Venkata Sekar, L. Colombo, E. Martinenghi, J. Minnema, R. Erdmann, D. Contini, A. Dalla Mora, A. Torricelli, A. Pifferi, and T. Durduran
Biomed. Opt. Express 8(11) 5311-5325 (2017)

Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements

Daniel Irwin, Lixin Dong, Yu Shang, Ran Cheng, Mahesh Kudrimoti, Scott D. Stevens, and Guoqiang Yu
Biomed. Opt. Express 2(7) 1969-1985 (2011)

Assessment of a multi-layered diffuse correlation spectroscopy method for monitoring cerebral blood flow in adults

Kyle Verdecchia, Mamadou Diop, Albert Lee, Laura B. Morrison, Ting-Yim Lee, and Keith St. Lawrence
Biomed. Opt. Express 7(9) 3659-3674 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
    [Crossref] [PubMed]
  2. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Optics 28, 2331 (1989).
    [Crossref]
  3. S. Konugolu Venkata Sekar, I. Bargigia, A. Dalla Mora, P. Taroni, A. Ruggeri, A. Tosi, A. Pifferi, and A. Farina, “Diffuse optical characterization of collagen absorption from 500 to 1700 nm,” J. Biomed. Opt. 22(1), 015006 (2017).
    [Crossref]
  4. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
    [Crossref] [PubMed]
  5. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997)
    [Crossref]
  6. D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express 2(7), 1969–1985 (2011).
    [Crossref] [PubMed]
  7. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971 (1997).
    [Crossref] [PubMed]
  8. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
    [Crossref] [PubMed]
  9. P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express 2(8), 2265–2278 (2011).
    [Crossref] [PubMed]
  10. P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56(2), N21 (2011).
    [Crossref]
  11. P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt. 51(30), 7176–7182 (2012).
    [Crossref] [PubMed]
  12. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [Crossref] [PubMed]
  13. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Laser Surg. Med. 12(5), 510–519 (1992).
    [Crossref]
  14. L. A. Dempsey, M. Persad, S. Powell, D. Chitnis, and J. C. Hebden, “Geometrically complex 3D-printed phantoms for diffuse optical imaging,” Biomed. Opt. Express 8(3), 1754–1762 (2017).
    [Crossref] [PubMed]
  15. D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
    [Crossref] [PubMed]
  16. L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express 16(20), 15514–15530 (2008).
    [Crossref] [PubMed]
  17. D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” PhD Dissertation, University of Pennsylvania (1996).
  18. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053 (2001).
    [Crossref]
  19. Y. Lin, L. He, Y. Sang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt. 17(1), 010502 (2012).
    [Crossref] [PubMed]
  20. H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
    [Crossref]
  21. J. Dong, R. Bi, J. Hui Ho, P. S. P. Thong, K.-C. Soo, and K. Leea, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt. 17(9), 097004 (2012).
    [Crossref]
  22. J. Kim and H. Liu, “Investigation of biphasic tumor oxygen dynamics induced by hyperoxic gas intervention: the dynamic phantom approach,” Appl. Opt. 47(2), 242–252 (2008).
    [Crossref] [PubMed]
  23. T. Binzoni, A. Torricelli, R. Giust, B. Sanguinetti, P. Bernhard, and L. Spinelli, “Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography,” Biomed. Opt. Express 5(8), 2715–2725 (2014).
    [Crossref] [PubMed]
  24. J. P. O’Reilly, N. J. Kolodziejski, D. McAdams, D. E. Fernandez, C. J. Stapels, and J. F. Christian, “A capillary-mimicking optical tissue phantom for diffuse correlation spectroscopy,” Proc. of SPIE 10056, 1005613 (2017).
    [Crossref]
  25. Glycerine Producers’ Association, “Physical properties of glycerineand its solutions” (1963).
  26. Lipofundin20% has been chosen due to its facility of being purchased in the region of ICFO, Barcelona. For differences between other initial concentrations (i. e. Lipofundin10%) and different lipid emulsions (Intralipid and Lipovenoes) we refer to the work of Di Ninni et al. [11].
  27. L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
    [Crossref] [PubMed]
  28. F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. MacDonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: Experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
    [Crossref] [PubMed]
  29. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, ‘Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions and Software (SPIE, 2010).
    [Crossref]
  30. R. Elaloufi, R. Carminati, and J.-J. Greffet, “Time-dependent transport through scattering media: from radiative transfer to diffusion,” J. Opt. A - Pure Appl. Opt. 4, S103–S108 (2002).
    [Crossref]
  31. R. Elaloufi, R. Carminati, and J.-J. Greffet, “Diffusive-to-ballistic transition in dynamic light transmission through thin scattering slabs: a radiative transfer approach,” J. Opt. Soc. Am. A 21(8), 1430–1437 (2004).
    [Crossref]
  32. R. Graaff, J. G. Aarnoose, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
    [Crossref] [PubMed]
  33. J. R. Mourant, T. Fuselier, J. Boyer, T. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [Crossref] [PubMed]
  34. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” PNAS 100(21), 12349–12354 (2003).
    [Crossref] [PubMed]
  35. A. Einstein, “Investigations on the Theory of the Brownian Movement,” Dover Publications (1956) [Republication of the original 1926 translation].
  36. S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
    [Crossref]
  37. C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PloS One 11(1), e0147851 (2016).
    [Crossref] [PubMed]
  38. L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. express 15(11), 6589–6604 (2007).
    [Crossref] [PubMed]
  39. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37–R61 (2013).
    [Crossref] [PubMed]

2017 (4)

S. Konugolu Venkata Sekar, I. Bargigia, A. Dalla Mora, P. Taroni, A. Ruggeri, A. Tosi, A. Pifferi, and A. Farina, “Diffuse optical characterization of collagen absorption from 500 to 1700 nm,” J. Biomed. Opt. 22(1), 015006 (2017).
[Crossref]

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

J. P. O’Reilly, N. J. Kolodziejski, D. McAdams, D. E. Fernandez, C. J. Stapels, and J. F. Christian, “A capillary-mimicking optical tissue phantom for diffuse correlation spectroscopy,” Proc. of SPIE 10056, 1005613 (2017).
[Crossref]

L. A. Dempsey, M. Persad, S. Powell, D. Chitnis, and J. C. Hebden, “Geometrically complex 3D-printed phantoms for diffuse optical imaging,” Biomed. Opt. Express 8(3), 1754–1762 (2017).
[Crossref] [PubMed]

2016 (3)

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
[Crossref]

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PloS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

2014 (3)

2013 (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37–R61 (2013).
[Crossref] [PubMed]

2012 (3)

P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt. 51(30), 7176–7182 (2012).
[Crossref] [PubMed]

Y. Lin, L. He, Y. Sang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt. 17(1), 010502 (2012).
[Crossref] [PubMed]

J. Dong, R. Bi, J. Hui Ho, P. S. P. Thong, K.-C. Soo, and K. Leea, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt. 17(9), 097004 (2012).
[Crossref]

2011 (3)

2010 (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

2008 (2)

2007 (1)

2006 (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” PNAS 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

2002 (1)

R. Elaloufi, R. Carminati, and J.-J. Greffet, “Time-dependent transport through scattering media: from radiative transfer to diffusion,” J. Opt. A - Pure Appl. Opt. 4, S103–S108 (2002).
[Crossref]

2001 (1)

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053 (2001).
[Crossref]

1997 (3)

1995 (1)

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[Crossref] [PubMed]

1992 (2)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Laser Surg. Med. 12(5), 510–519 (1992).
[Crossref]

R. Graaff, J. G. Aarnoose, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
[Crossref] [PubMed]

1991 (1)

1989 (1)

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Optics 28, 2331 (1989).
[Crossref]

Aarnoose, J. G.

Andersson-Engels, S.

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Bargigia, I.

S. Konugolu Venkata Sekar, I. Bargigia, A. Dalla Mora, P. Taroni, A. Ruggeri, A. Tosi, A. Pifferi, and A. Farina, “Diffuse optical characterization of collagen absorption from 500 to 1700 nm,” J. Biomed. Opt. 22(1), 015006 (2017).
[Crossref]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
[Crossref]

Baribeau, F.

Bénazech-Lavoué, M.

Bernhard, P.

Bérubé-Lauzière, Y.

Bherer, L.

Bi, R.

J. Dong, R. Bi, J. Hui Ho, P. S. P. Thong, K.-C. Soo, and K. Leea, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt. 17(9), 097004 (2012).
[Crossref]

Bigio, I. J.

Binzoni, T.

Boas, D. A.

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997)
[Crossref]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[Crossref] [PubMed]

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” PhD Dissertation, University of Pennsylvania (1996).

Bodnar, O.

Botwicz, M.

Bouchard, J.-P.

Boyer, J.

Campbell, L. E.

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[Crossref] [PubMed]

Carminati, R.

R. Elaloufi, R. Carminati, and J.-J. Greffet, “Diffusive-to-ballistic transition in dynamic light transmission through thin scattering slabs: a radiative transfer approach,” J. Opt. Soc. Am. A 21(8), 1430–1437 (2004).
[Crossref]

R. Elaloufi, R. Carminati, and J.-J. Greffet, “Time-dependent transport through scattering media: from radiative transfer to diffusion,” J. Opt. A - Pure Appl. Opt. 4, S103–S108 (2002).
[Crossref]

Carp, S. A.

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

Carrol, R. M.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Chambers, J. G.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” PNAS 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Chance, B.

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Optics 28, 2331 (1989).
[Crossref]

Cheng, R.

Cheung, C.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053 (2001).
[Crossref]

Chitnis, D.

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Christian, J. F.

J. P. O’Reilly, N. J. Kolodziejski, D. McAdams, D. E. Fernandez, C. J. Stapels, and J. F. Christian, “A capillary-mimicking optical tissue phantom for diffuse correlation spectroscopy,” Proc. of SPIE 10056, 1005613 (2017).
[Crossref]

Combs, F. J.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Contini, D.

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. MacDonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: Experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

Cubeddu, R.

Culver, J. P.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053 (2001).
[Crossref]

Dalla Mora, A.

S. Konugolu Venkata Sekar, I. Bargigia, A. Dalla Mora, P. Taroni, A. Ruggeri, A. Tosi, A. Pifferi, and A. Farina, “Diffuse optical characterization of collagen absorption from 500 to 1700 nm,” J. Biomed. Opt. 22(1), 015006 (2017).
[Crossref]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
[Crossref]

de Mul, F. F. M.

Dehghani, H.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” PNAS 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Del Bianco, S.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, ‘Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions and Software (SPIE, 2010).
[Crossref]

Dempsey, L. A.

Desjardins, M.

Di Ninni, P.

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. MacDonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: Experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt. 51(30), 7176–7182 (2012).
[Crossref] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56(2), N21 (2011).
[Crossref]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express 2(8), 2265–2278 (2011).
[Crossref] [PubMed]

Dong, J.

J. Dong, R. Bi, J. Hui Ho, P. S. P. Thong, K.-C. Soo, and K. Leea, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt. 17(9), 097004 (2012).
[Crossref]

Dong, L.

Durduran, T.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
[Crossref]

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PloS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Durkin, A.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Einstein, A.

A. Einstein, “Investigations on the Theory of the Brownian Movement,” Dover Publications (1956) [Republication of the original 1926 translation].

Elaloufi, R.

R. Elaloufi, R. Carminati, and J.-J. Greffet, “Diffusive-to-ballistic transition in dynamic light transmission through thin scattering slabs: a radiative transfer approach,” J. Opt. Soc. Am. A 21(8), 1430–1437 (2004).
[Crossref]

R. Elaloufi, R. Carminati, and J.-J. Greffet, “Time-dependent transport through scattering media: from radiative transfer to diffusion,” J. Opt. A - Pure Appl. Opt. 4, S103–S108 (2002).
[Crossref]

Elster, C.

Farina, A.

Farina, Andrea

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
[Crossref]

Farzam, P.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PloS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
[Crossref]

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

Fernandez, D. E.

J. P. O’Reilly, N. J. Kolodziejski, D. McAdams, D. E. Fernandez, C. J. Stapels, and J. F. Christian, “A capillary-mimicking optical tissue phantom for diffuse correlation spectroscopy,” Proc. of SPIE 10056, 1005613 (2017).
[Crossref]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Laser Surg. Med. 12(5), 510–519 (1992).
[Crossref]

Foschum, F.

Franceschini, M. A.

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

Fuselier, T.

Gagnon, L.

Gallant, P.

Giust, R.

Graaff, R.

Greenberg, J. H.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053 (2001).
[Crossref]

Greffet, J.-J.

R. Elaloufi, R. Carminati, and J.-J. Greffet, “Diffusive-to-ballistic transition in dynamic light transmission through thin scattering slabs: a radiative transfer approach,” J. Opt. Soc. Am. A 21(8), 1430–1437 (2004).
[Crossref]

R. Elaloufi, R. Carminati, and J.-J. Greffet, “Time-dependent transport through scattering media: from radiative transfer to diffusion,” J. Opt. A - Pure Appl. Opt. 4, S103–S108 (2002).
[Crossref]

Greve, J.

Halperin, I.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PloS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

Hanzu, F.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PloS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

He, L.

Y. Lin, L. He, Y. Sang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt. 17(1), 010502 (2012).
[Crossref] [PubMed]

Hebden, J. C.

Hill, B.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Ho, H.-C.

Hui Ho, J.

J. Dong, R. Bi, J. Hui Ho, P. S. P. Thong, K.-C. Soo, and K. Leea, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt. 17(9), 097004 (2012).
[Crossref]

Irwin, D.

Ismaelli, A.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, ‘Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions and Software (SPIE, 2010).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37–R61 (2013).
[Crossref] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Laser Surg. Med. 12(5), 510–519 (1992).
[Crossref]

Jehanne-Lacasse, J.

Jiang, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” PNAS 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Johansson, J.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PloS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

Johnson, T.

Kacprzak, M.

Khoptyar, D.

Kienle, A.

Kim, J.

Klauenberg, K.

Koelink, M. H.

Kogel, C.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” PNAS 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Kolodziejski, N. J.

J. P. O’Reilly, N. J. Kolodziejski, D. McAdams, D. E. Fernandez, C. J. Stapels, and J. F. Christian, “A capillary-mimicking optical tissue phantom for diffuse correlation spectroscopy,” Proc. of SPIE 10056, 1005613 (2017).
[Crossref]

Konugolu Venkata Sekar, S.

S. Konugolu Venkata Sekar, I. Bargigia, A. Dalla Mora, P. Taroni, A. Ruggeri, A. Tosi, A. Pifferi, and A. Farina, “Diffuse optical characterization of collagen absorption from 500 to 1700 nm,” J. Biomed. Opt. 22(1), 015006 (2017).
[Crossref]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
[Crossref]

Kudrimoti, M.

Lam, J.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Leclair, S.

Leea, K.

J. Dong, R. Bi, J. Hui Ho, P. S. P. Thong, K.-C. Soo, and K. Leea, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt. 17(9), 097004 (2012).
[Crossref]

Leproux, A.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Lesage, F.

Liebert, A.

Lin, Y.

Y. Lin, L. He, Y. Sang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt. 17(1), 010502 (2012).
[Crossref] [PubMed]

Lindner, C.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PloS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
[Crossref]

Liu, H.

MacDonald, R.

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. MacDonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: Experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

Martelli, F.

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. MacDonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: Experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt. 51(30), 7176–7182 (2012).
[Crossref] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56(2), N21 (2011).
[Crossref]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express 2(8), 2265–2278 (2011).
[Crossref] [PubMed]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. express 15(11), 6589–6604 (2007).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, ‘Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions and Software (SPIE, 2010).
[Crossref]

Martinenghi, E.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
[Crossref]

Mazurenka, M.

McAdams, D.

J. P. O’Reilly, N. J. Kolodziejski, D. McAdams, D. E. Fernandez, C. J. Stapels, and J. F. Christian, “A capillary-mimicking optical tissue phantom for diffuse correlation spectroscopy,” Proc. of SPIE 10056, 1005613 (2017).
[Crossref]

Mercatelli, L.

Mermut, O.

Milej, D.

Moes, C. J. M.

Mora, M.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PloS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

Mourant, J. R.

Noiseux, I.

O’Reilly, J. P.

J. P. O’Reilly, N. J. Kolodziejski, D. McAdams, D. E. Fernandez, C. J. Stapels, and J. F. Christian, “A capillary-mimicking optical tissue phantom for diffuse correlation spectroscopy,” Proc. of SPIE 10056, 1005613 (2017).
[Crossref]

O’Sullivan, T. D.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Pagliazzi, M.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
[Crossref]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Optics 28, 2331 (1989).
[Crossref]

Paulsen, K. D.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” PNAS 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Persad, M.

Pifferi, A.

S. Konugolu Venkata Sekar, I. Bargigia, A. Dalla Mora, P. Taroni, A. Ruggeri, A. Tosi, A. Pifferi, and A. Farina, “Diffuse optical characterization of collagen absorption from 500 to 1700 nm,” J. Biomed. Opt. 22(1), 015006 (2017).
[Crossref]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
[Crossref]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. MacDonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: Experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. express 15(11), 6589–6604 (2007).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971 (1997).
[Crossref] [PubMed]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” PNAS 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Police, A. M.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Poplack, S. P.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” PNAS 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Powell, S.

Prahl, S. A.

Ruggeri, A.

S. Konugolu Venkata Sekar, I. Bargigia, A. Dalla Mora, P. Taroni, A. Ruggeri, A. Tosi, A. Pifferi, and A. Farina, “Diffuse optical characterization of collagen absorption from 500 to 1700 nm,” J. Biomed. Opt. 22(1), 015006 (2017).
[Crossref]

Sakadžic, S.

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

Sang, Y.

Y. Lin, L. He, Y. Sang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt. 17(1), 010502 (2012).
[Crossref] [PubMed]

Sanguinetti, B.

Sani, E.

Sassaroli, A.

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. MacDonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: Experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

Sawosz, P.

Selb, J.

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

Shang, Y.

Sloot, P. M. A.

Soho, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” PNAS 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Soo, K.-C.

J. Dong, R. Bi, J. Hui Ho, P. S. P. Thong, K.-C. Soo, and K. Leea, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt. 17(9), 097004 (2012).
[Crossref]

Spinelli, L.

T. Binzoni, A. Torricelli, R. Giust, B. Sanguinetti, P. Bernhard, and L. Spinelli, “Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography,” Biomed. Opt. Express 5(8), 2715–2725 (2014).
[Crossref] [PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. MacDonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: Experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. express 15(11), 6589–6604 (2007).
[Crossref] [PubMed]

Squarcia, M.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PloS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

Srinivasan, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” PNAS 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Stapels, C. J.

J. P. O’Reilly, N. J. Kolodziejski, D. McAdams, D. E. Fernandez, C. J. Stapels, and J. F. Christian, “A capillary-mimicking optical tissue phantom for diffuse correlation spectroscopy,” Proc. of SPIE 10056, 1005613 (2017).
[Crossref]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Laser Surg. Med. 12(5), 510–519 (1992).
[Crossref]

Stevens, S. D.

Strömberg, T.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Subash, A. A.

Takahashi, K.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053 (2001).
[Crossref]

Taroni, P.

S. Konugolu Venkata Sekar, I. Bargigia, A. Dalla Mora, P. Taroni, A. Ruggeri, A. Tosi, A. Pifferi, and A. Farina, “Diffuse optical characterization of collagen absorption from 500 to 1700 nm,” J. Biomed. Opt. 22(1), 015006 (2017).
[Crossref]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971 (1997).
[Crossref] [PubMed]

Telep, S.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Thong, P. S. P.

J. Dong, R. Bi, J. Hui Ho, P. S. P. Thong, K.-C. Soo, and K. Leea, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt. 17(9), 097004 (2012).
[Crossref]

Torricelli, A.

T. Binzoni, A. Torricelli, R. Giust, B. Sanguinetti, P. Bernhard, and L. Spinelli, “Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography,” Biomed. Opt. Express 5(8), 2715–2725 (2014).
[Crossref] [PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. MacDonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: Experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. express 15(11), 6589–6604 (2007).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971 (1997).
[Crossref] [PubMed]

Tosi, A.

S. Konugolu Venkata Sekar, I. Bargigia, A. Dalla Mora, P. Taroni, A. Ruggeri, A. Tosi, A. Pifferi, and A. Farina, “Diffuse optical characterization of collagen absorption from 500 to 1700 nm,” J. Biomed. Opt. 22(1), 015006 (2017).
[Crossref]

Tosteson, T. D.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” PNAS 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Tromberg, B.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971 (1997).
[Crossref] [PubMed]

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Laser Surg. Med. 12(5), 510–519 (1992).
[Crossref]

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
[Crossref] [PubMed]

van Marie, J.

van Staveren, H. J.

Wabnitz, H.

Weigel, U.

Weigel, U. M.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PloS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Laser Surg. Med. 12(5), 510–519 (1992).
[Crossref]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Optics 28, 2331 (1989).
[Crossref]

Yadzi, S. S.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Yazdi, H. S.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053 (2001).
[Crossref]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997)
[Crossref]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[Crossref] [PubMed]

Yodth, A.G.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

Yu, G.

Zaccanti, G.

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. MacDonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: Experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express 2(8), 2265–2278 (2011).
[Crossref] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56(2), N21 (2011).
[Crossref]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. express 15(11), 6589–6604 (2007).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, ‘Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions and Software (SPIE, 2010).
[Crossref]

Zijp, J. R.

Zolek, N.

Appl. Opt. (5)

Appl. Optics (1)

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Optics 28, 2331 (1989).
[Crossref]

Biomed. Opt. Express (5)

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express 2(7), 1969–1985 (2011).
[Crossref] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express 2(8), 2265–2278 (2011).
[Crossref] [PubMed]

L. A. Dempsey, M. Persad, S. Powell, D. Chitnis, and J. C. Hebden, “Geometrically complex 3D-printed phantoms for diffuse optical imaging,” Biomed. Opt. Express 8(3), 1754–1762 (2017).
[Crossref] [PubMed]

T. Binzoni, A. Torricelli, R. Giust, B. Sanguinetti, P. Bernhard, and L. Spinelli, “Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography,” Biomed. Opt. Express 5(8), 2715–2725 (2014).
[Crossref] [PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

IEEE J. of Sel. Top. Quant. (1)

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and Andrea Farina, “Broadband (600 – 1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. of Sel. Top. Quant. 22(3), 406–414 (2016).
[Crossref]

J. Biomed. Opt. (6)

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. MacDonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: Experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref] [PubMed]

Y. Lin, L. He, Y. Sang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt. 17(1), 010502 (2012).
[Crossref] [PubMed]

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yadzi, A. M. Police, R. M. Carrol, F. J. Combs, T. Strömberg, A.G. Yodth, and B. Tromberg, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017)
[Crossref]

J. Dong, R. Bi, J. Hui Ho, P. S. P. Thong, K.-C. Soo, and K. Leea, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt. 17(9), 097004 (2012).
[Crossref]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, I. Bargigia, A. Dalla Mora, P. Taroni, A. Ruggeri, A. Tosi, A. Pifferi, and A. Farina, “Diffuse optical characterization of collagen absorption from 500 to 1700 nm,” J. Biomed. Opt. 22(1), 015006 (2017).
[Crossref]

J. Opt. A - Pure Appl. Opt. (1)

R. Elaloufi, R. Carminati, and J.-J. Greffet, “Time-dependent transport through scattering media: from radiative transfer to diffusion,” J. Opt. A - Pure Appl. Opt. 4, S103–S108 (2002).
[Crossref]

J. Opt. Soc. Am. A (2)

Laser Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Laser Surg. Med. 12(5), 510–519 (1992).
[Crossref]

Neurophotonics (1)

D. A. Boas, S. Sakadžic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (4)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37–R61 (2013).
[Crossref] [PubMed]

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053 (2001).
[Crossref]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56(2), N21 (2011).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971 (1997).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[Crossref] [PubMed]

PloS One (1)

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PloS One 11(1), e0147851 (2016).
[Crossref] [PubMed]

PNAS (1)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. G. Chambers, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured by near-infrared tomography of normal breast in vivo,” PNAS 100(21), 12349–12354 (2003).
[Crossref] [PubMed]

Proc. of SPIE (1)

J. P. O’Reilly, N. J. Kolodziejski, D. McAdams, D. E. Fernandez, C. J. Stapels, and J. F. Christian, “A capillary-mimicking optical tissue phantom for diffuse correlation spectroscopy,” Proc. of SPIE 10056, 1005613 (2017).
[Crossref]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Other (5)

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” PhD Dissertation, University of Pennsylvania (1996).

Glycerine Producers’ Association, “Physical properties of glycerineand its solutions” (1963).

Lipofundin20% has been chosen due to its facility of being purchased in the region of ICFO, Barcelona. For differences between other initial concentrations (i. e. Lipofundin10%) and different lipid emulsions (Intralipid and Lipovenoes) we refer to the work of Di Ninni et al. [11].

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, ‘Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions and Software (SPIE, 2010).
[Crossref]

A. Einstein, “Investigations on the Theory of the Brownian Movement,” Dover Publications (1956) [Republication of the original 1926 translation].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 In panel (a) the reduced scattering coefficient (μ′s) at λ = 785 nm as a function of scatterer concentration at different glycerol concentrations is shown. The dots represent the reduced scattering coefficient measured and the lines the corresponding linear fit. In this case, we have excluded data from the lowest concentrations of scatterers since at such low values of reduced scattering coefficient the diffusion theory is not valid. In panel (b), the intrinsic reduced scattering coefficient of Lipofundin (s) for varying glycerol concentrations is shown for three wavelengths. Lines represent the linear fits performed. In panel (c), the intrinsic reduced scattering coefficient of Lipofundin (s) for varying wavelengths and different glycerol concentrations is shown. Lines represent the fits performed using the empirical Mie relation (equation 4). Finally, in panel (d), the absorption coefficient (μa) spectrum at a fixed scatterer concentration is shown over wavelength. Different colored dots correspond to different glycerol concentrations. The measurements are overlapped with the water absorption spectrum (line). Please note that the concentrations reported in the x-axes of panels (a) and (b) are expressed in % (normalized to 100), while, when reporting the results of the fits in Section 3.3, the concentrations are reported for consistence with literature in g/g (normalized to 1).
Fig. 2
Fig. 2 Results of the two independent DCS experiments (ICFO 1 and ICFO 2) for different glycerol and scatterer concentrations. Detailed results are reported in Table 4, Section 3.3.

Tables (4)

Tables Icon

Table 1 Results of the fits performed considering equation 2, from the experiment performed at Politecnico di Milano. Error bars are the standard errors of the regressions.

Tables Icon

Table 2 Results of the fits performed considering equation 3, from the experiment performed at Politecnico di Milano. Error bars are the standard errors of the regressions.

Tables Icon

Table 3 Results of the fits performed using the empirical Mie relation (equation 4) on the data obtained from the experiment performed in Politecnico di Milano. Error bars are the standard errors of the regressions.

Tables Icon

Table 4 Results of the DCS experiments are shown. The table reports the measured values of the Brownian diffusion coefficient, Db, for phantoms with different glycerol and scatterer concentrations. The ratio of the viscosity η is reported for temperature of 20 °C and, in parenthesis, for 30 °C. Error bars are the standard deviations of the results obtained from the four different acquisition channels.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

μ s ( λ ) = ρ s ( 1 g ) σ s ,
μ s ( λ ) = s ρ s + C ,
s ( λ ) = glyc ρ glyc + s 0 ,
s ( λ ) = A ( λ λ 0 ) b ,
D b = K B 6 π T r η ,
D b 1 D b 2 = η 2 η 1 .
ρ s = μ s C glyc ρ glyc + s 0 .
A = m ρ glyc + A 0 ,
ρ s = μ s C ( m ρ glyc + A 0 ) ( λ λ 0 ) b .

Metrics