Abstract

We propose a cost-effective high-pulse energy supercontinuum (SC) source based on a telecom range diode laser-based amplifier and a few meters of standard single-mode optical fiber, with a pulse energy density as high as ~25 nJ/nm in the 1650-1850 nm regime (factor >3 times higher than any SC source ever used in this wavelength range). We demonstrate how such an SC source combined with a tunable filter allows high-resolution spectroscopic photoacoustic imaging and the spectroscopy of lipids in the first overtone transition band of C-H bonds (1650-1850 nm). We show the successful discrimination of two different lipids (cholesterol and lipid in adipose tissue) and the photoacoustic cross-sectional scan of lipid-rich adipose tissue at three different locations. The proposed high-pulse energy SC laser paves a new direction towards compact, broadband and cost-effective source for spectroscopic photoacoustic imaging.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser

Takashi Buma, Nicole C. Conley, and Sang Won Choi
Biomed. Opt. Express 9(1) 276-288 (2018)

Lipid detection in atherosclerotic human coronaries by spectroscopic intravascular photoacoustic imaging

Krista Jansen, Min Wu, Antonius F. W. van der Steen, and Gijs van Soest
Opt. Express 21(18) 21472-21484 (2013)

Multispectral photoacoustic sensing for accurate glucose monitoring using a supercontinuum laser

Manoj Kumar Dasa, Christos Markos, Jakob Janting, and Ole Bang
J. Opt. Soc. Am. B 36(2) A61-A65 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. H. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [Crossref]
  2. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  3. Y. Junjie and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
    [Crossref]
  4. J. Weber, P. C. Beard, and S. E. Bohndiek, “Contrast agents for molecular photoacoustic imaging,” Nat. Methods 13(8), 639–650 (2016).
    [Crossref] [PubMed]
  5. P. C. Beard and T. N. Mills, “Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm,” Phys. Med. Biol. 42(1), 177–198 (1997).
    [Crossref] [PubMed]
  6. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express 16(5), 3362–3367 (2008).
    [Crossref] [PubMed]
  7. J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
    [Crossref] [PubMed]
  8. P. Wang, P. Wang, H. W. Wang, and J. X. Cheng, “Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration,” J. Biomed. Opt. 17(9), 096010 (2012).
    [Crossref] [PubMed]
  9. K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K. K. Shung, D. P. V. de Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” J. Biomed. Opt. 19(2), 026006 (2014).
    [Crossref] [PubMed]
  10. K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
    [Crossref] [PubMed]
  11. T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
    [Crossref] [PubMed]
  12. Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C. S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm,” Appl. Phys. Lett. 107(8), 083701 (2015).
    [Crossref] [PubMed]
  13. T. Buma, B. C. Wilkinson, and T. C. Sheehan, “Near-infrared spectroscopic photoacoustic microscopy using a multi-color fiber laser source,” Biomed. Opt. Express 6(8), 2819–2829 (2015).
    [Crossref] [PubMed]
  14. M. Wu, K. Jansen, A. F. W. van der Steen, and G. van Soest, “Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics,” Biomed. Opt. Express 6(9), 3276–3286 (2015).
    [Crossref] [PubMed]
  15. C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7-2.1 μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
    [Crossref]
  16. M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
    [Crossref] [PubMed]
  17. E. Aytac-Kipergil, A. Demirkiran, N. Uluc, S. Yavas, T. Kayikcioglu, S. Salman, S. G. Karamuk, F. O. Ilday, and M. B. Unlu, “Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy,” Sci. Rep. 6(1), 38674 (2016).
    [Crossref] [PubMed]
  18. T. Buma, N. C. Conley, and S. W. Choi, “Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser,” Biomed. Opt. Express 9(1), 276–288 (2018).
    [Crossref] [PubMed]
  19. Y. N. Billeh, M. Liu, and T. Buma, “Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source,” Opt. Express 18(18), 18519–18524 (2010).
    [Crossref] [PubMed]
  20. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  21. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
    [Crossref]
  22. C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
    [Crossref]
  23. M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

2016 (4)

J. Weber, P. C. Beard, and S. E. Bohndiek, “Contrast agents for molecular photoacoustic imaging,” Nat. Methods 13(8), 639–650 (2016).
[Crossref] [PubMed]

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

E. Aytac-Kipergil, A. Demirkiran, N. Uluc, S. Yavas, T. Kayikcioglu, S. Salman, S. G. Karamuk, F. O. Ilday, and M. B. Unlu, “Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy,” Sci. Rep. 6(1), 38674 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (2)

K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K. K. Shung, D. P. V. de Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” J. Biomed. Opt. 19(2), 026006 (2014).
[Crossref] [PubMed]

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Junjie and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref]

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[Crossref]

2012 (2)

P. Wang, P. Wang, H. W. Wang, and J. X. Cheng, “Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration,” J. Biomed. Opt. 17(9), 096010 (2012).
[Crossref] [PubMed]

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (2)

M. H. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

1997 (1)

P. C. Beard and T. N. Mills, “Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm,” Phys. Med. Biol. 42(1), 177–198 (1997).
[Crossref] [PubMed]

1978 (1)

C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7-2.1 μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[Crossref]

Abdolvand, A.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Allen, T. J.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Amirian, J. H.

Aytac-Kipergil, E.

E. Aytac-Kipergil, A. Demirkiran, N. Uluc, S. Yavas, T. Kayikcioglu, S. Salman, S. G. Karamuk, F. O. Ilday, and M. B. Unlu, “Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy,” Sci. Rep. 6(1), 38674 (2016).
[Crossref] [PubMed]

Bang, O.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref] [PubMed]

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[Crossref]

Beard, P. C.

J. Weber, P. C. Beard, and S. E. Bohndiek, “Contrast agents for molecular photoacoustic imaging,” Nat. Methods 13(8), 639–650 (2016).
[Crossref] [PubMed]

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

P. C. Beard and T. N. Mills, “Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm,” Phys. Med. Biol. 42(1), 177–198 (1997).
[Crossref] [PubMed]

Billeh, Y. N.

Bohndiek, S. E.

J. Weber, P. C. Beard, and S. E. Bohndiek, “Contrast agents for molecular photoacoustic imaging,” Nat. Methods 13(8), 639–650 (2016).
[Crossref] [PubMed]

Bondu, M.

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

Bravo Gonzalo, I.

Brooks, C.

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

Buma, T.

Chen, Z.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C. S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref] [PubMed]

Cheng, J. X.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

P. Wang, P. Wang, H. W. Wang, and J. X. Cheng, “Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration,” J. Biomed. Opt. 17(9), 096010 (2012).
[Crossref] [PubMed]

Choi, S. W.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Conley, N. C.

de Kleijn, D. P. V.

K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K. K. Shung, D. P. V. de Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” J. Biomed. Opt. 19(2), 026006 (2014).
[Crossref] [PubMed]

Demirkiran, A.

E. Aytac-Kipergil, A. Demirkiran, N. Uluc, S. Yavas, T. Kayikcioglu, S. Salman, S. G. Karamuk, F. O. Ilday, and M. B. Unlu, “Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy,” Sci. Rep. 6(1), 38674 (2016).
[Crossref] [PubMed]

Denninger, M.

Dhillon, A. P.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Eggleton, B. J.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Emelianov, S. Y.

Feuchter, T.

French, W. G.

C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7-2.1 μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Goergen, C. J.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

Hall, A.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Hansen, K. P.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[Crossref]

Huang, S.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C. S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref] [PubMed]

Hui, J.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

Ilday, F. O.

E. Aytac-Kipergil, A. Demirkiran, N. Uluc, S. Yavas, T. Kayikcioglu, S. Salman, S. G. Karamuk, F. O. Ilday, and M. B. Unlu, “Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy,” Sci. Rep. 6(1), 38674 (2016).
[Crossref] [PubMed]

Jakobsen, C.

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

Jansen, K.

M. Wu, K. Jansen, A. F. W. van der Steen, and G. van Soest, “Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics,” Biomed. Opt. Express 6(9), 3276–3286 (2015).
[Crossref] [PubMed]

K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K. K. Shung, D. P. V. de Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” J. Biomed. Opt. 19(2), 026006 (2014).
[Crossref] [PubMed]

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

Junjie, Y.

Y. Junjie and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref]

Karamuk, S. G.

E. Aytac-Kipergil, A. Demirkiran, N. Uluc, S. Yavas, T. Kayikcioglu, S. Salman, S. G. Karamuk, F. O. Ilday, and M. B. Unlu, “Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy,” Sci. Rep. 6(1), 38674 (2016).
[Crossref] [PubMed]

Kayikcioglu, T.

E. Aytac-Kipergil, A. Demirkiran, N. Uluc, S. Yavas, T. Kayikcioglu, S. Salman, S. G. Karamuk, F. O. Ilday, and M. B. Unlu, “Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy,” Sci. Rep. 6(1), 38674 (2016).
[Crossref] [PubMed]

Kim, C. S.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C. S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref] [PubMed]

Kirk Shung, K.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C. S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref] [PubMed]

Larsen, C.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[Crossref]

Leick, L.

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref] [PubMed]

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

Li, J.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C. S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref] [PubMed]

Li, R.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

Li, X.

K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K. K. Shung, D. P. V. de Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” J. Biomed. Opt. 19(2), 026006 (2014).
[Crossref] [PubMed]

Lin, C.

C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7-2.1 μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[Crossref]

Litovsky, S. H.

Liu, M.

Ma, T.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C. S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref] [PubMed]

Maria, M.

Markos, C.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Mattsson, K. E.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[Crossref]

Mills, T. N.

P. C. Beard and T. N. Mills, “Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm,” Phys. Med. Biol. 42(1), 177–198 (1997).
[Crossref] [PubMed]

Moselund, P. M.

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref] [PubMed]

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

Nguyen, V. T.

C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7-2.1 μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[Crossref]

Noordegraaf, D.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[Crossref]

Oakes, K.

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

Owen, J. S.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Phillips, E. H.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

Piao, Z.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C. S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref] [PubMed]

Podoleanu, A.

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref] [PubMed]

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

Salman, S.

E. Aytac-Kipergil, A. Demirkiran, N. Uluc, S. Yavas, T. Kayikcioglu, S. Salman, S. G. Karamuk, F. O. Ilday, and M. B. Unlu, “Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy,” Sci. Rep. 6(1), 38674 (2016).
[Crossref] [PubMed]

Sethuraman, S.

Sheehan, T. C.

Shung, K. K.

K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K. K. Shung, D. P. V. de Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” J. Biomed. Opt. 19(2), 026006 (2014).
[Crossref] [PubMed]

Smalling, R. W.

Sørensen, S. T.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[Crossref]

Springeling, G.

K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K. K. Shung, D. P. V. de Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” J. Biomed. Opt. 19(2), 026006 (2014).
[Crossref] [PubMed]

Sturek, M.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

Travers, J. C.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Uluc, N.

E. Aytac-Kipergil, A. Demirkiran, N. Uluc, S. Yavas, T. Kayikcioglu, S. Salman, S. G. Karamuk, F. O. Ilday, and M. B. Unlu, “Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy,” Sci. Rep. 6(1), 38674 (2016).
[Crossref] [PubMed]

Unlu, M. B.

E. Aytac-Kipergil, A. Demirkiran, N. Uluc, S. Yavas, T. Kayikcioglu, S. Salman, S. G. Karamuk, F. O. Ilday, and M. B. Unlu, “Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy,” Sci. Rep. 6(1), 38674 (2016).
[Crossref] [PubMed]

van Beusekom, H. M. M.

K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K. K. Shung, D. P. V. de Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” J. Biomed. Opt. 19(2), 026006 (2014).
[Crossref] [PubMed]

van der Steen, A. F. W.

M. Wu, K. Jansen, A. F. W. van der Steen, and G. van Soest, “Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics,” Biomed. Opt. Express 6(9), 3276–3286 (2015).
[Crossref] [PubMed]

K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K. K. Shung, D. P. V. de Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” J. Biomed. Opt. 19(2), 026006 (2014).
[Crossref] [PubMed]

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

van Soest, G.

M. Wu, K. Jansen, A. F. W. van der Steen, and G. van Soest, “Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics,” Biomed. Opt. Express 6(9), 3276–3286 (2015).
[Crossref] [PubMed]

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K. K. Shung, D. P. V. de Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” J. Biomed. Opt. 19(2), 026006 (2014).
[Crossref] [PubMed]

Wang, H. W.

P. Wang, P. Wang, H. W. Wang, and J. X. Cheng, “Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration,” J. Biomed. Opt. 17(9), 096010 (2012).
[Crossref] [PubMed]

Wang, L. V.

Y. Junjie and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

M. H. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Wang, P.

P. Wang, P. Wang, H. W. Wang, and J. X. Cheng, “Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration,” J. Biomed. Opt. 17(9), 096010 (2012).
[Crossref] [PubMed]

P. Wang, P. Wang, H. W. Wang, and J. X. Cheng, “Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration,” J. Biomed. Opt. 17(9), 096010 (2012).
[Crossref] [PubMed]

Weber, J.

J. Weber, P. C. Beard, and S. E. Bohndiek, “Contrast agents for molecular photoacoustic imaging,” Nat. Methods 13(8), 639–650 (2016).
[Crossref] [PubMed]

Wiedmann, M. T.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C. S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref] [PubMed]

Wilkinson, B. C.

Wu, M.

M. Wu, K. Jansen, A. F. W. van der Steen, and G. van Soest, “Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics,” Biomed. Opt. Express 6(9), 3276–3286 (2015).
[Crossref] [PubMed]

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K. K. Shung, D. P. V. de Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” J. Biomed. Opt. 19(2), 026006 (2014).
[Crossref] [PubMed]

Xu, M. H.

M. H. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Yavas, S.

E. Aytac-Kipergil, A. Demirkiran, N. Uluc, S. Yavas, T. Kayikcioglu, S. Salman, S. G. Karamuk, F. O. Ilday, and M. B. Unlu, “Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy,” Sci. Rep. 6(1), 38674 (2016).
[Crossref] [PubMed]

Yu, M.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C. S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref] [PubMed]

Zhou, Q.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C. S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref] [PubMed]

K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K. K. Shung, D. P. V. de Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” J. Biomed. Opt. 19(2), 026006 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C. S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Electron. Lett. (1)

C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7-2.1 μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[Crossref]

J. Biomed. Opt. (4)

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

P. Wang, P. Wang, H. W. Wang, and J. X. Cheng, “Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration,” J. Biomed. Opt. 17(9), 096010 (2012).
[Crossref] [PubMed]

K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom, G. Springeling, X. Li, Q. Zhou, K. K. Shung, D. P. V. de Kleijn, and G. van Soest, “Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis,” J. Biomed. Opt. 19(2), 026006 (2014).
[Crossref] [PubMed]

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

Y. Junjie and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref]

Nat. Methods (1)

J. Weber, P. C. Beard, and S. E. Bohndiek, “Contrast agents for molecular photoacoustic imaging,” Nat. Methods 13(8), 639–650 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Photoacoustics (2)

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

P. C. Beard and T. N. Mills, “Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm,” Phys. Med. Biol. 42(1), 177–198 (1997).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

M. H. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Sci. Rep. (1)

E. Aytac-Kipergil, A. Demirkiran, N. Uluc, S. Yavas, T. Kayikcioglu, S. Salman, S. G. Karamuk, F. O. Ilday, and M. B. Unlu, “Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy,” Sci. Rep. 6(1), 38674 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Absorption coefficients of major endogenous agents (oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), water, and lipid) inside the biological tissue. The inset shows the first and second overtone transition of C-H bond regions in the lipid molecules. (HbO2, Hb, and water are plotted based on the data from http://omlc.org/spectra/index.html and lipid from Ref [7].)
Fig. 2
Fig. 2 (a). Schematic of the high-pulse energy SC laser source. A function generator is used to drive directly modulated 1550 nm diode-laser based amplifier, with pulse duration 3 ns, and a repetition rate of 30 kHz. The output from the laser is used to pump a standard SMF. A bend filter (BF) is implemented and the fiber is angled cleaved and FC/APC connectorized, so as to eliminate back reflections from the end facet. Fig. 2(b). Power spectral density (PSD) of SC spectra generated by pumping an SMF of different length. The highlighted region is showing the first overtone transition of C-H bond region in lipids (1650-1850 nm).
Fig. 3
Fig. 3 Output spectrum of high-pulse energy SC laser source (a) PED of home built SC laser (3 meters of SMF) in comparison with commercial SC laser (b) PED of the SC laser in the first overtone region (3 meters of SMF) in comparison with the commercial SC laser, the inset shows the measured pulse energies (nJ) in 25 nm bands.
Fig. 4
Fig. 4 Spectral profile of the Relative Intensity Noise (RIN) of the high-energy SC laser source, measured using the LVF.
Fig. 5
Fig. 5 Schematic of the spectroscopic PAI system. The fiber-coupled SC laser is used an excitation source, the light from the laser is collimated using an objective lens (L1). The excitation wavelength is filtered using an LVF. The filtered light is steered using the mirrors (M1, M2, and M4) and then focused on the phantom using an objective lens (L2). The generated PA signal is detected using a focused transducer, amplified using low-noise amplifiers and then sent to an oscilloscope. P1 and P2 are pinholes. A flip-mirror (M3), a lens (L3) and a CCD are used to align the sample.
Fig. 6
Fig. 6 Spatial resolution test of the spectroscopic PAI system. (a) Lateral resolution estimated by using the edge and line spread functions. (b) The axial resolution of the system estimated using the FWHM of the A-line envelope
Fig. 7
Fig. 7 Characterization of the LVF. (a) The filtered output of the SC source using the LVF in selected positions. The inset shows an optical photograph of the LVF. (b) Corresponding FWHM bandwidth and pulse energies. The error bars show the measured standard deviation of FWHM and pulse energies.
Fig. 8
Fig. 8 Photoacoustic spectra (arbitrary units) of lipids in commercial grade cholesterol and adipose tissue, normalized to a reference spectrum with no sample, i.e., only with distilled water, and to the respective maxima.
Fig. 9
Fig. 9 Optical image of the lipid-rich adipose tissue from chicken. Insets show photoacoustic cross-sectional scan profiles along the dotted red, green, and blue lines on the image.

Metrics