Abstract

In vivo imaging of self-illuminating bio-and chemiluminescent reporters is used to observe the physiology of small animals. However, strong light scattering by biological tissues results in poor spatial resolution of the optical imaging, which also degrades the quantitative accuracy. To overcome this challenging problem, focused ultrasound is used to modulate the light from the reporter at the ultrasound frequency. This produces an ultrasound switchable light ‘beacon’ that reduces the influence of light scattering in order to improve spatial resolution. The experimental results demonstrate that apart from light modulation at the ultrasound frequency (AC signal at 3.5 MHz), ultrasound also increases the DC intensity of the reporters. This is shown to be due to a temperature rise caused by insonification that was minimized to be within acceptable mammalian tissue safety thresholds by adjusting the duty cycle of the ultrasound. Line scans of bio-and chemiluminescent objects embedded within a scattering medium were obtained using ultrasound modulated (AC) and ultrasound enhanced (DC) signals. Lateral resolution is improved by a factor of 12 and 7 respectively, as compared to conventional CCD imaging. Two chemiluminescent sources separated by ~10 mm at ~20 mm deep inside a 50 mm thick chicken breast have been successfully resolved with an average signal-to-noise ratio of approximately 8-10 dB.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Feasibility study of high spatial resolution multimodality fluorescence tomography in ex vivo biological tissue

Tiffany C. Kwong, Farouk Nouizi, Jaedu Cho, Yuting Lin, Uma Sampathkumaran, and Gultekin Gulsen
Appl. Opt. 56(28) 7886-7891 (2017)

Video-rate fluorescence diffuse optical tomography for in vivo sentinel lymph node imaging

Metasebya Solomon, Brian R. White, Ralph E. Nothdruft, Walter Akers, Gail Sudlow, Adam T. Eggebrecht, Samuel Achilefu, and Joseph P. Culver
Biomed. Opt. Express 2(12) 3267-3277 (2011)

Multi-spectral angular domain optical imaging in biological tissues using diode laser sources

Fartash Vasefi, Bozena Kaminska, Paulman K. Y. Chan, and Glenn H. Chapman
Opt. Express 16(19) 14456-14468 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Roda, M. Guardigli, P. Pasini, M. Mirasoli, E. Michelini, and M. Musiani, “Bio- and chemiluminescence imaging in analytical chemistry,” Anal. Chim. Acta 541(1–2), 25–35 (2005).
    [Crossref]
  2. L. J. Kricka, “Chemiluminescent and bioluminescent techniques,” Clin. Chem. 37(9), 1472–1481 (1991).
    [PubMed]
  3. F. Berger, R. Paulmurugan, S. Bhaumik, and S. S. Gambhir, “Uptake kinetics and biodistribution of 14C-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging,” Eur. J. Nucl. Med. Mol. Imaging 35(12), 2275–2285 (2008).
    [Crossref] [PubMed]
  4. C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
    [Crossref] [PubMed]
  5. H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008).
    [Crossref] [PubMed]
  6. D. M. Close, T. Xu, G. S. Sayler, and S. Ripp, “In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals,” Sensors (Basel) 11(1), 180–206 (2010).
    [Crossref] [PubMed]
  7. K. R. Zinn, T. R. Chaudhuri, A. A. Szafran, D. O’Quinn, C. Weaver, K. Dugger, D. Lamar, R. A. Kesterson, X. Wang, and S. J. Frank, “Noninvasive bioluminescence imaging in small animals,” ILAR J. 49(1), 103–115 (2008).
    [Crossref] [PubMed]
  8. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006).
    [Crossref] [PubMed]
  9. PerkinElmer, “IVIS spectrum in vivo imaging system,” www.perkinelmer.com , part no. 124262 (2017).
  10. C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photonics Rev. 8(1), 94–114 (2014).
    [Crossref]
  11. C. A. DiMarzio and T. W. Murray, “Medical imaging techniques combining light and ultrasound,” Subsurf. Sens. Technol. Appl. 4(4), 289–309 (2003).
    [Crossref]
  12. Z. Li-Li and L. Hui, “Mechanisms of ultrasonic modulation of multiply scattered incoherent light based on diffusion theory,” Chin. Phys. B 24(1), 018701 (2015).
    [Crossref]
  13. L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26(15), 1191–1193 (2001).
    [Crossref] [PubMed]
  14. S. G. Resink, A. C. Boccara, and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt. 17(4), 040901 (2012).
    [Crossref] [PubMed]
  15. S. R. Kothapalli, S. Sakadzić, C. Kim, and L. V. Wang, “Imaging optically scattering objects with ultrasound-modulated optical tomography,” Opt. Lett. 32(16), 2351–2353 (2007).
    [Crossref] [PubMed]
  16. D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
    [Crossref] [PubMed]
  17. B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001).
    [Crossref] [PubMed]
  18. C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59(1), R1–R64 (2014).
    [Crossref] [PubMed]
  19. N. T. Huynh, B. R. Hayes-Gill, F. Zhang, and S. P. Morgan, “Ultrasound modulated imaging of luminescence generated within a scattering medium,” J. Biomed. Opt. 18(2), 020505 (2013).
    [Crossref] [PubMed]
  20. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
    [Crossref] [PubMed]
  21. Q. Zhang, M. L. Mather, and S. P. Morgan, “Numerical investigation of the mechanisms of ultrasound-modulated bioluminescence tomography,” IEEE Trans. Biomed. Eng. 62(9), 2135–2143 (2015).
    [Crossref] [PubMed]
  22. J. Ahmad, B. Jayet, P. J. Hill, M. L. Mather, H. Dehghani, and S. P. Morgan, “Ultrasound modulation of bioluminescence generated inside a turbid medium,” Proc. SPIE BiOS 10064, Photons Plus Ultrasound: Imaging and Sensing, 2017.
  23. D. M. Barrett, A. E. Seif, C. Carpenito, D. T. Teachey, J. D. Fish, C. H. June, S. A. Grupp, and G. S. D. Reid, “Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling,” Blood 118(15), e112–e117 (2011).
    [Crossref] [PubMed]
  24. H. Ruan, “Pulsed ultrasound modulated optical tomography with parallel speckle detection,” PhD thesis, The Univ. of Nottingham UK, 1–192 (2012).
  25. M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
    [Crossref] [PubMed]
  26. J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
    [Crossref] [PubMed]
  27. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
    [Crossref] [PubMed]
  28. S. Whitaker, P. J. Herring, A. K. Campbell, P. J. Hill, and Rees, “Characterization of a fish symbiont of photobacterium phosphoreum with altered spectral properties,” in Bioluminescence and Chemiluminescence: Chemistry, Biology and Applications, A. A. Szalay, P. J. Hill, L. J. Kricka, and P.E. Stanley, eds. (World Scientific Publications, 2006), pp. 35–38.
  29. M. R. Myers, “Transient temperature rise due to ultrasound absorption at a bone/soft-tissue interface,” J. Acoust. Soc. Am. 115(6), 2887–2891 (2004).
    [Crossref] [PubMed]
  30. H. Morris, I. Rivens, A. Shaw, and G. T. Haar, “Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field,” Phys. Med. Biol. 53(17), 4759–4776 (2008).
    [Crossref] [PubMed]
  31. M. Kobayashi, N. Kikuchi, and A. Sato, “Ultrasound-enhanced chemiluminescence tomography in biological tissue,” Ultrason. Sonochem. 31, 1–6 (2016).
    [Crossref] [PubMed]
  32. S. D. Vikas and A. Grover, “Fabrication and applications of fiber bragg grating - A Review,” Adv. Eng. Tech. Appl. 4(2), 15–25 (2015).
  33. C. Staveley, “Smart scan Interrogators for fiber Bragg Grating sensors,” Smart fibres, technical Datasheet 12 June 2012, http://www.smartfibres.com/FBG-interrogators (12 June 2012).
  34. American Institute of Ultrasound in Medicine, (2017), “Statement on mammalian biological effects of ultrasound in vivo,” http://www.aium.org .
  35. H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
    [Crossref] [PubMed]
  36. G. Wang, H. Shen, W. Cong, S. Zhao, and G. W. Wei, “Temperature-modulated bioluminescence tomography,” Opt. Express 14(17), 7852–7871 (2006).
    [Crossref] [PubMed]
  37. K. Noda, T. Matsuno, H. Fujii, T. Kogure, M. Urata, Y. Asami, and A. Kuroda, “Single bacterial cell detection using a mutant luciferase,” Biotechnol. Lett. 30(6), 1051–1054 (2008).
    [Crossref] [PubMed]
  38. H. Fujii, K. Noda, Y. Asami, A. Kuroda, M. Sakata, and A. Tokida, “Increase in bioluminescence intensity of firefly luciferase using genetic modification,” Anal. Biochem. 366(2), 131–136 (2007).
    [Crossref] [PubMed]
  39. N. T. Huynh, H. Ruan, D. He, B. R. Hayes-Gill, and S. P. Morgan, “Effect of object size and acoustic wavelength on pulsed ultrasound modulated fluorescence signals,” J. Biomed. Opt. 17(7), 0760081 (2012).
    [Crossref] [PubMed]
  40. H. Ruan, M. L. Mather, and S. P. Morgan, “Pulsed ultrasound modulated optical tomography utilizing the harmonic response of lock-in detection,” Appl. Opt. 52(19), 4755–4762 (2013).
    [Crossref] [PubMed]
  41. H. Ruan, M. L. Mather, and S. P. Morgan, “Pulsed ultrasound modulated optical tomography with harmonic lock-in holography detection,” J. Opt. Soc. Am. A 30(7), 1409–1416 (2013).
    [Crossref] [PubMed]
  42. J. Singh, “The national centre for the replacement, refinement, and reduction of animals in research,” J. Pharmacol. Pharmacother. 3(1), 87–89 (2012).
    [PubMed]

2016 (1)

M. Kobayashi, N. Kikuchi, and A. Sato, “Ultrasound-enhanced chemiluminescence tomography in biological tissue,” Ultrason. Sonochem. 31, 1–6 (2016).
[Crossref] [PubMed]

2015 (3)

S. D. Vikas and A. Grover, “Fabrication and applications of fiber bragg grating - A Review,” Adv. Eng. Tech. Appl. 4(2), 15–25 (2015).

Q. Zhang, M. L. Mather, and S. P. Morgan, “Numerical investigation of the mechanisms of ultrasound-modulated bioluminescence tomography,” IEEE Trans. Biomed. Eng. 62(9), 2135–2143 (2015).
[Crossref] [PubMed]

Z. Li-Li and L. Hui, “Mechanisms of ultrasonic modulation of multiply scattered incoherent light based on diffusion theory,” Chin. Phys. B 24(1), 018701 (2015).
[Crossref]

2014 (2)

C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59(1), R1–R64 (2014).
[Crossref] [PubMed]

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photonics Rev. 8(1), 94–114 (2014).
[Crossref]

2013 (3)

2012 (3)

J. Singh, “The national centre for the replacement, refinement, and reduction of animals in research,” J. Pharmacol. Pharmacother. 3(1), 87–89 (2012).
[PubMed]

N. T. Huynh, H. Ruan, D. He, B. R. Hayes-Gill, and S. P. Morgan, “Effect of object size and acoustic wavelength on pulsed ultrasound modulated fluorescence signals,” J. Biomed. Opt. 17(7), 0760081 (2012).
[Crossref] [PubMed]

S. G. Resink, A. C. Boccara, and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt. 17(4), 040901 (2012).
[Crossref] [PubMed]

2011 (3)

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[Crossref] [PubMed]

C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
[Crossref] [PubMed]

D. M. Barrett, A. E. Seif, C. Carpenito, D. T. Teachey, J. D. Fish, C. H. June, S. A. Grupp, and G. S. D. Reid, “Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling,” Blood 118(15), e112–e117 (2011).
[Crossref] [PubMed]

2010 (2)

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
[Crossref] [PubMed]

D. M. Close, T. Xu, G. S. Sayler, and S. Ripp, “In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals,” Sensors (Basel) 11(1), 180–206 (2010).
[Crossref] [PubMed]

2009 (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

2008 (5)

K. R. Zinn, T. R. Chaudhuri, A. A. Szafran, D. O’Quinn, C. Weaver, K. Dugger, D. Lamar, R. A. Kesterson, X. Wang, and S. J. Frank, “Noninvasive bioluminescence imaging in small animals,” ILAR J. 49(1), 103–115 (2008).
[Crossref] [PubMed]

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008).
[Crossref] [PubMed]

F. Berger, R. Paulmurugan, S. Bhaumik, and S. S. Gambhir, “Uptake kinetics and biodistribution of 14C-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging,” Eur. J. Nucl. Med. Mol. Imaging 35(12), 2275–2285 (2008).
[Crossref] [PubMed]

H. Morris, I. Rivens, A. Shaw, and G. T. Haar, “Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field,” Phys. Med. Biol. 53(17), 4759–4776 (2008).
[Crossref] [PubMed]

K. Noda, T. Matsuno, H. Fujii, T. Kogure, M. Urata, Y. Asami, and A. Kuroda, “Single bacterial cell detection using a mutant luciferase,” Biotechnol. Lett. 30(6), 1051–1054 (2008).
[Crossref] [PubMed]

2007 (3)

H. Fujii, K. Noda, Y. Asami, A. Kuroda, M. Sakata, and A. Tokida, “Increase in bioluminescence intensity of firefly luciferase using genetic modification,” Anal. Biochem. 366(2), 131–136 (2007).
[Crossref] [PubMed]

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

S. R. Kothapalli, S. Sakadzić, C. Kim, and L. V. Wang, “Imaging optically scattering objects with ultrasound-modulated optical tomography,” Opt. Lett. 32(16), 2351–2353 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

A. Roda, M. Guardigli, P. Pasini, M. Mirasoli, E. Michelini, and M. Musiani, “Bio- and chemiluminescence imaging in analytical chemistry,” Anal. Chim. Acta 541(1–2), 25–35 (2005).
[Crossref]

2004 (1)

M. R. Myers, “Transient temperature rise due to ultrasound absorption at a bone/soft-tissue interface,” J. Acoust. Soc. Am. 115(6), 2887–2891 (2004).
[Crossref] [PubMed]

2003 (2)

J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
[Crossref] [PubMed]

C. A. DiMarzio and T. W. Murray, “Medical imaging techniques combining light and ultrasound,” Subsurf. Sens. Technol. Appl. 4(4), 289–309 (2003).
[Crossref]

2001 (2)

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26(15), 1191–1193 (2001).
[Crossref] [PubMed]

B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001).
[Crossref] [PubMed]

1991 (1)

L. J. Kricka, “Chemiluminescent and bioluminescent techniques,” Clin. Chem. 37(9), 1472–1481 (1991).
[PubMed]

Asami, Y.

K. Noda, T. Matsuno, H. Fujii, T. Kogure, M. Urata, Y. Asami, and A. Kuroda, “Single bacterial cell detection using a mutant luciferase,” Biotechnol. Lett. 30(6), 1051–1054 (2008).
[Crossref] [PubMed]

H. Fujii, K. Noda, Y. Asami, A. Kuroda, M. Sakata, and A. Tokida, “Increase in bioluminescence intensity of firefly luciferase using genetic modification,” Anal. Biochem. 366(2), 131–136 (2007).
[Crossref] [PubMed]

Badr, C. E.

C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
[Crossref] [PubMed]

Barrett, D. M.

D. M. Barrett, A. E. Seif, C. Carpenito, D. T. Teachey, J. D. Fish, C. H. June, S. A. Grupp, and G. S. D. Reid, “Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling,” Blood 118(15), e112–e117 (2011).
[Crossref] [PubMed]

Berger, F.

F. Berger, R. Paulmurugan, S. Bhaumik, and S. S. Gambhir, “Uptake kinetics and biodistribution of 14C-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging,” Eur. J. Nucl. Med. Mol. Imaging 35(12), 2275–2285 (2008).
[Crossref] [PubMed]

Bhaumik, S.

F. Berger, R. Paulmurugan, S. Bhaumik, and S. S. Gambhir, “Uptake kinetics and biodistribution of 14C-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging,” Eur. J. Nucl. Med. Mol. Imaging 35(12), 2275–2285 (2008).
[Crossref] [PubMed]

Boccara, A. C.

S. G. Resink, A. C. Boccara, and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt. 17(4), 040901 (2012).
[Crossref] [PubMed]

Browne, J. E.

J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
[Crossref] [PubMed]

Cable, M. D.

B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001).
[Crossref] [PubMed]

Carpenito, C.

D. M. Barrett, A. E. Seif, C. Carpenito, D. T. Teachey, J. D. Fish, C. H. June, S. A. Grupp, and G. S. D. Reid, “Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling,” Blood 118(15), e112–e117 (2011).
[Crossref] [PubMed]

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Chaudhuri, T. R.

K. R. Zinn, T. R. Chaudhuri, A. A. Szafran, D. O’Quinn, C. Weaver, K. Dugger, D. Lamar, R. A. Kesterson, X. Wang, and S. J. Frank, “Noninvasive bioluminescence imaging in small animals,” ILAR J. 49(1), 103–115 (2008).
[Crossref] [PubMed]

Close, D. M.

D. M. Close, T. Xu, G. S. Sayler, and S. Ripp, “In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals,” Sensors (Basel) 11(1), 180–206 (2010).
[Crossref] [PubMed]

Cong, W.

Contag, C. H.

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

Coquoz, O.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

Culjat, M. O.

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
[Crossref] [PubMed]

Darne, C.

C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59(1), R1–R64 (2014).
[Crossref] [PubMed]

Davis, S. C.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008).
[Crossref] [PubMed]

Dehghani, H.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008).
[Crossref] [PubMed]

DiMarzio, C. A.

C. A. DiMarzio and T. W. Murray, “Medical imaging techniques combining light and ultrasound,” Subsurf. Sens. Technol. Appl. 4(4), 289–309 (2003).
[Crossref]

Doyle, T. C.

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

Dugger, K.

K. R. Zinn, T. R. Chaudhuri, A. A. Szafran, D. O’Quinn, C. Weaver, K. Dugger, D. Lamar, R. A. Kesterson, X. Wang, and S. J. Frank, “Noninvasive bioluminescence imaging in small animals,” ILAR J. 49(1), 103–115 (2008).
[Crossref] [PubMed]

Dunsby, C.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[Crossref] [PubMed]

Durairaj, K.

Eames, M. E.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Eckersley, R.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[Crossref] [PubMed]

Elson, D. S.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[Crossref] [PubMed]

Feng, J.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photonics Rev. 8(1), 94–114 (2014).
[Crossref]

Fish, J. D.

D. M. Barrett, A. E. Seif, C. Carpenito, D. T. Teachey, J. D. Fish, C. H. June, S. A. Grupp, and G. S. D. Reid, “Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling,” Blood 118(15), e112–e117 (2011).
[Crossref] [PubMed]

Frank, S. J.

K. R. Zinn, T. R. Chaudhuri, A. A. Szafran, D. O’Quinn, C. Weaver, K. Dugger, D. Lamar, R. A. Kesterson, X. Wang, and S. J. Frank, “Noninvasive bioluminescence imaging in small animals,” ILAR J. 49(1), 103–115 (2008).
[Crossref] [PubMed]

Fujii, H.

K. Noda, T. Matsuno, H. Fujii, T. Kogure, M. Urata, Y. Asami, and A. Kuroda, “Single bacterial cell detection using a mutant luciferase,” Biotechnol. Lett. 30(6), 1051–1054 (2008).
[Crossref] [PubMed]

H. Fujii, K. Noda, Y. Asami, A. Kuroda, M. Sakata, and A. Tokida, “Increase in bioluminescence intensity of firefly luciferase using genetic modification,” Anal. Biochem. 366(2), 131–136 (2007).
[Crossref] [PubMed]

Gambhir, S. S.

F. Berger, R. Paulmurugan, S. Bhaumik, and S. S. Gambhir, “Uptake kinetics and biodistribution of 14C-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging,” Eur. J. Nucl. Med. Mol. Imaging 35(12), 2275–2285 (2008).
[Crossref] [PubMed]

Goldenberg, D.

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
[Crossref] [PubMed]

Grover, A.

S. D. Vikas and A. Grover, “Fabrication and applications of fiber bragg grating - A Review,” Adv. Eng. Tech. Appl. 4(2), 15–25 (2015).

Grupp, S. A.

D. M. Barrett, A. E. Seif, C. Carpenito, D. T. Teachey, J. D. Fish, C. H. June, S. A. Grupp, and G. S. D. Reid, “Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling,” Blood 118(15), e112–e117 (2011).
[Crossref] [PubMed]

Guardigli, M.

A. Roda, M. Guardigli, P. Pasini, M. Mirasoli, E. Michelini, and M. Musiani, “Bio- and chemiluminescence imaging in analytical chemistry,” Anal. Chim. Acta 541(1–2), 25–35 (2005).
[Crossref]

Haar, G. T.

H. Morris, I. Rivens, A. Shaw, and G. T. Haar, “Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field,” Phys. Med. Biol. 53(17), 4759–4776 (2008).
[Crossref] [PubMed]

Hayes-Gill, B. R.

N. T. Huynh, B. R. Hayes-Gill, F. Zhang, and S. P. Morgan, “Ultrasound modulated imaging of luminescence generated within a scattering medium,” J. Biomed. Opt. 18(2), 020505 (2013).
[Crossref] [PubMed]

N. T. Huynh, H. Ruan, D. He, B. R. Hayes-Gill, and S. P. Morgan, “Effect of object size and acoustic wavelength on pulsed ultrasound modulated fluorescence signals,” J. Biomed. Opt. 17(7), 0760081 (2012).
[Crossref] [PubMed]

He, D.

N. T. Huynh, H. Ruan, D. He, B. R. Hayes-Gill, and S. P. Morgan, “Effect of object size and acoustic wavelength on pulsed ultrasound modulated fluorescence signals,” J. Biomed. Opt. 17(7), 0760081 (2012).
[Crossref] [PubMed]

Henry, M.

Hoffman, E.

Hoskins, P. R.

J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
[Crossref] [PubMed]

Hui, L.

Z. Li-Li and L. Hui, “Mechanisms of ultrasonic modulation of multiply scattered incoherent light based on diffusion theory,” Chin. Phys. B 24(1), 018701 (2015).
[Crossref]

Huynh, N. T.

N. T. Huynh, B. R. Hayes-Gill, F. Zhang, and S. P. Morgan, “Ultrasound modulated imaging of luminescence generated within a scattering medium,” J. Biomed. Opt. 18(2), 020505 (2013).
[Crossref] [PubMed]

N. T. Huynh, H. Ruan, D. He, B. R. Hayes-Gill, and S. P. Morgan, “Effect of object size and acoustic wavelength on pulsed ultrasound modulated fluorescence signals,” J. Biomed. Opt. 17(7), 0760081 (2012).
[Crossref] [PubMed]

Jin, Z.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photonics Rev. 8(1), 94–114 (2014).
[Crossref]

June, C. H.

D. M. Barrett, A. E. Seif, C. Carpenito, D. T. Teachey, J. D. Fish, C. H. June, S. A. Grupp, and G. S. D. Reid, “Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling,” Blood 118(15), e112–e117 (2011).
[Crossref] [PubMed]

Kalish, F.

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

Kesterson, R. A.

K. R. Zinn, T. R. Chaudhuri, A. A. Szafran, D. O’Quinn, C. Weaver, K. Dugger, D. Lamar, R. A. Kesterson, X. Wang, and S. J. Frank, “Noninvasive bioluminescence imaging in small animals,” ILAR J. 49(1), 103–115 (2008).
[Crossref] [PubMed]

Kikuchi, N.

M. Kobayashi, N. Kikuchi, and A. Sato, “Ultrasound-enhanced chemiluminescence tomography in biological tissue,” Ultrason. Sonochem. 31, 1–6 (2016).
[Crossref] [PubMed]

Kim, C.

Kobayashi, M.

M. Kobayashi, N. Kikuchi, and A. Sato, “Ultrasound-enhanced chemiluminescence tomography in biological tissue,” Ultrason. Sonochem. 31, 1–6 (2016).
[Crossref] [PubMed]

Kogure, T.

K. Noda, T. Matsuno, H. Fujii, T. Kogure, M. Urata, Y. Asami, and A. Kuroda, “Single bacterial cell detection using a mutant luciferase,” Biotechnol. Lett. 30(6), 1051–1054 (2008).
[Crossref] [PubMed]

Kothapalli, S. R.

Kricka, L. J.

L. J. Kricka, “Chemiluminescent and bioluminescent techniques,” Clin. Chem. 37(9), 1472–1481 (1991).
[PubMed]

Kuo, C.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

Kuroda, A.

K. Noda, T. Matsuno, H. Fujii, T. Kogure, M. Urata, Y. Asami, and A. Kuroda, “Single bacterial cell detection using a mutant luciferase,” Biotechnol. Lett. 30(6), 1051–1054 (2008).
[Crossref] [PubMed]

H. Fujii, K. Noda, Y. Asami, A. Kuroda, M. Sakata, and A. Tokida, “Increase in bioluminescence intensity of firefly luciferase using genetic modification,” Anal. Biochem. 366(2), 131–136 (2007).
[Crossref] [PubMed]

Lamar, D.

K. R. Zinn, T. R. Chaudhuri, A. A. Szafran, D. O’Quinn, C. Weaver, K. Dugger, D. Lamar, R. A. Kesterson, X. Wang, and S. J. Frank, “Noninvasive bioluminescence imaging in small animals,” ILAR J. 49(1), 103–115 (2008).
[Crossref] [PubMed]

Li, R.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[Crossref] [PubMed]

Li-Li, Z.

Z. Li-Li and L. Hui, “Mechanisms of ultrasonic modulation of multiply scattered incoherent light based on diffusion theory,” Chin. Phys. B 24(1), 018701 (2015).
[Crossref]

Lu, Y.

C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59(1), R1–R64 (2014).
[Crossref] [PubMed]

Ma, X.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photonics Rev. 8(1), 94–114 (2014).
[Crossref]

Mather, M. L.

Matsuno, T.

K. Noda, T. Matsuno, H. Fujii, T. Kogure, M. Urata, Y. Asami, and A. Kuroda, “Single bacterial cell detection using a mutant luciferase,” Biotechnol. Lett. 30(6), 1051–1054 (2008).
[Crossref] [PubMed]

McLennan, G.

Michelini, E.

A. Roda, M. Guardigli, P. Pasini, M. Mirasoli, E. Michelini, and M. Musiani, “Bio- and chemiluminescence imaging in analytical chemistry,” Anal. Chim. Acta 541(1–2), 25–35 (2005).
[Crossref]

Mirasoli, M.

A. Roda, M. Guardigli, P. Pasini, M. Mirasoli, E. Michelini, and M. Musiani, “Bio- and chemiluminescence imaging in analytical chemistry,” Anal. Chim. Acta 541(1–2), 25–35 (2005).
[Crossref]

Morgan, S. P.

Q. Zhang, M. L. Mather, and S. P. Morgan, “Numerical investigation of the mechanisms of ultrasound-modulated bioluminescence tomography,” IEEE Trans. Biomed. Eng. 62(9), 2135–2143 (2015).
[Crossref] [PubMed]

N. T. Huynh, B. R. Hayes-Gill, F. Zhang, and S. P. Morgan, “Ultrasound modulated imaging of luminescence generated within a scattering medium,” J. Biomed. Opt. 18(2), 020505 (2013).
[Crossref] [PubMed]

H. Ruan, M. L. Mather, and S. P. Morgan, “Pulsed ultrasound modulated optical tomography utilizing the harmonic response of lock-in detection,” Appl. Opt. 52(19), 4755–4762 (2013).
[Crossref] [PubMed]

H. Ruan, M. L. Mather, and S. P. Morgan, “Pulsed ultrasound modulated optical tomography with harmonic lock-in holography detection,” J. Opt. Soc. Am. A 30(7), 1409–1416 (2013).
[Crossref] [PubMed]

N. T. Huynh, H. Ruan, D. He, B. R. Hayes-Gill, and S. P. Morgan, “Effect of object size and acoustic wavelength on pulsed ultrasound modulated fluorescence signals,” J. Biomed. Opt. 17(7), 0760081 (2012).
[Crossref] [PubMed]

Morris, H.

H. Morris, I. Rivens, A. Shaw, and G. T. Haar, “Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field,” Phys. Med. Biol. 53(17), 4759–4776 (2008).
[Crossref] [PubMed]

Murray, T. W.

C. A. DiMarzio and T. W. Murray, “Medical imaging techniques combining light and ultrasound,” Subsurf. Sens. Technol. Appl. 4(4), 289–309 (2003).
[Crossref]

Musiani, M.

A. Roda, M. Guardigli, P. Pasini, M. Mirasoli, E. Michelini, and M. Musiani, “Bio- and chemiluminescence imaging in analytical chemistry,” Anal. Chim. Acta 541(1–2), 25–35 (2005).
[Crossref]

Myers, M. R.

M. R. Myers, “Transient temperature rise due to ultrasound absorption at a bone/soft-tissue interface,” J. Acoust. Soc. Am. 115(6), 2887–2891 (2004).
[Crossref] [PubMed]

Nelson, M. B.

B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001).
[Crossref] [PubMed]

Noda, K.

K. Noda, T. Matsuno, H. Fujii, T. Kogure, M. Urata, Y. Asami, and A. Kuroda, “Single bacterial cell detection using a mutant luciferase,” Biotechnol. Lett. 30(6), 1051–1054 (2008).
[Crossref] [PubMed]

H. Fujii, K. Noda, Y. Asami, A. Kuroda, M. Sakata, and A. Tokida, “Increase in bioluminescence intensity of firefly luciferase using genetic modification,” Anal. Biochem. 366(2), 131–136 (2007).
[Crossref] [PubMed]

O’Quinn, D.

K. R. Zinn, T. R. Chaudhuri, A. A. Szafran, D. O’Quinn, C. Weaver, K. Dugger, D. Lamar, R. A. Kesterson, X. Wang, and S. J. Frank, “Noninvasive bioluminescence imaging in small animals,” ILAR J. 49(1), 103–115 (2008).
[Crossref] [PubMed]

Pasini, P.

A. Roda, M. Guardigli, P. Pasini, M. Mirasoli, E. Michelini, and M. Musiani, “Bio- and chemiluminescence imaging in analytical chemistry,” Anal. Chim. Acta 541(1–2), 25–35 (2005).
[Crossref]

Paulmurugan, R.

F. Berger, R. Paulmurugan, S. Bhaumik, and S. S. Gambhir, “Uptake kinetics and biodistribution of 14C-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging,” Eur. J. Nucl. Med. Mol. Imaging 35(12), 2275–2285 (2008).
[Crossref] [PubMed]

Paulsen, K. D.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Pogue, B. W.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008).
[Crossref] [PubMed]

Qian, X.

Qin, C.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photonics Rev. 8(1), 94–114 (2014).
[Crossref]

Ramnarine, K. V.

J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
[Crossref] [PubMed]

Reid, G. S. D.

D. M. Barrett, A. E. Seif, C. Carpenito, D. T. Teachey, J. D. Fish, C. H. June, S. A. Grupp, and G. S. D. Reid, “Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling,” Blood 118(15), e112–e117 (2011).
[Crossref] [PubMed]

Resink, S. G.

S. G. Resink, A. C. Boccara, and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt. 17(4), 040901 (2012).
[Crossref] [PubMed]

Rice, B. W.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001).
[Crossref] [PubMed]

Ripp, S.

D. M. Close, T. Xu, G. S. Sayler, and S. Ripp, “In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals,” Sensors (Basel) 11(1), 180–206 (2010).
[Crossref] [PubMed]

Rivens, I.

H. Morris, I. Rivens, A. Shaw, and G. T. Haar, “Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field,” Phys. Med. Biol. 53(17), 4759–4776 (2008).
[Crossref] [PubMed]

Roda, A.

A. Roda, M. Guardigli, P. Pasini, M. Mirasoli, E. Michelini, and M. Musiani, “Bio- and chemiluminescence imaging in analytical chemistry,” Anal. Chim. Acta 541(1–2), 25–35 (2005).
[Crossref]

Ruan, H.

Sakadzic, S.

Sakata, M.

H. Fujii, K. Noda, Y. Asami, A. Kuroda, M. Sakata, and A. Tokida, “Increase in bioluminescence intensity of firefly luciferase using genetic modification,” Anal. Biochem. 366(2), 131–136 (2007).
[Crossref] [PubMed]

Sato, A.

M. Kobayashi, N. Kikuchi, and A. Sato, “Ultrasound-enhanced chemiluminescence tomography in biological tissue,” Ultrason. Sonochem. 31, 1–6 (2016).
[Crossref] [PubMed]

Sayler, G. S.

D. M. Close, T. Xu, G. S. Sayler, and S. Ripp, “In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals,” Sensors (Basel) 11(1), 180–206 (2010).
[Crossref] [PubMed]

Seif, A. E.

D. M. Barrett, A. E. Seif, C. Carpenito, D. T. Teachey, J. D. Fish, C. H. June, S. A. Grupp, and G. S. D. Reid, “Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling,” Blood 118(15), e112–e117 (2011).
[Crossref] [PubMed]

Sevick-Muraca, E. M.

C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59(1), R1–R64 (2014).
[Crossref] [PubMed]

Shaw, A.

H. Morris, I. Rivens, A. Shaw, and G. T. Haar, “Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field,” Phys. Med. Biol. 53(17), 4759–4776 (2008).
[Crossref] [PubMed]

Shen, H.

Singh, J.

J. Singh, “The national centre for the replacement, refinement, and reduction of animals in research,” J. Pharmacol. Pharmacother. 3(1), 87–89 (2012).
[PubMed]

Singh, R. S.

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
[Crossref] [PubMed]

Sinn, P.

Srinivasan, S.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Steenbergen, W.

S. G. Resink, A. C. Boccara, and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt. 17(4), 040901 (2012).
[Crossref] [PubMed]

Szafran, A. A.

K. R. Zinn, T. R. Chaudhuri, A. A. Szafran, D. O’Quinn, C. Weaver, K. Dugger, D. Lamar, R. A. Kesterson, X. Wang, and S. J. Frank, “Noninvasive bioluminescence imaging in small animals,” ILAR J. 49(1), 103–115 (2008).
[Crossref] [PubMed]

Tang, M. X.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[Crossref] [PubMed]

Tannous, B. A.

C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
[Crossref] [PubMed]

Teachey, D. T.

D. M. Barrett, A. E. Seif, C. Carpenito, D. T. Teachey, J. D. Fish, C. H. June, S. A. Grupp, and G. S. D. Reid, “Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling,” Blood 118(15), e112–e117 (2011).
[Crossref] [PubMed]

Tewari, P.

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
[Crossref] [PubMed]

Tian, J.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photonics Rev. 8(1), 94–114 (2014).
[Crossref]

Tokida, A.

H. Fujii, K. Noda, Y. Asami, A. Kuroda, M. Sakata, and A. Tokida, “Increase in bioluminescence intensity of firefly luciferase using genetic modification,” Anal. Biochem. 366(2), 131–136 (2007).
[Crossref] [PubMed]

Troy, T. L.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

Urata, M.

K. Noda, T. Matsuno, H. Fujii, T. Kogure, M. Urata, Y. Asami, and A. Kuroda, “Single bacterial cell detection using a mutant luciferase,” Biotechnol. Lett. 30(6), 1051–1054 (2008).
[Crossref] [PubMed]

Vikas, S. D.

S. D. Vikas and A. Grover, “Fabrication and applications of fiber bragg grating - A Review,” Adv. Eng. Tech. Appl. 4(2), 15–25 (2015).

Wang, G.

Wang, L. V.

Wang, X.

K. R. Zinn, T. R. Chaudhuri, A. A. Szafran, D. O’Quinn, C. Weaver, K. Dugger, D. Lamar, R. A. Kesterson, X. Wang, and S. J. Frank, “Noninvasive bioluminescence imaging in small animals,” ILAR J. 49(1), 103–115 (2008).
[Crossref] [PubMed]

Watson, A. J.

J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
[Crossref] [PubMed]

Weaver, C.

K. R. Zinn, T. R. Chaudhuri, A. A. Szafran, D. O’Quinn, C. Weaver, K. Dugger, D. Lamar, R. A. Kesterson, X. Wang, and S. J. Frank, “Noninvasive bioluminescence imaging in small animals,” ILAR J. 49(1), 103–115 (2008).
[Crossref] [PubMed]

Wei, G. W.

Wu, P.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photonics Rev. 8(1), 94–114 (2014).
[Crossref]

Xu, H.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

Xu, T.

D. M. Close, T. Xu, G. S. Sayler, and S. Ripp, “In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals,” Sensors (Basel) 11(1), 180–206 (2010).
[Crossref] [PubMed]

Yalavarthy, P. K.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Zhang, F.

N. T. Huynh, B. R. Hayes-Gill, F. Zhang, and S. P. Morgan, “Ultrasound modulated imaging of luminescence generated within a scattering medium,” J. Biomed. Opt. 18(2), 020505 (2013).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, M. L. Mather, and S. P. Morgan, “Numerical investigation of the mechanisms of ultrasound-modulated bioluminescence tomography,” IEEE Trans. Biomed. Eng. 62(9), 2135–2143 (2015).
[Crossref] [PubMed]

Zhao, H.

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

Zhao, S.

Zhong, J.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photonics Rev. 8(1), 94–114 (2014).
[Crossref]

Zhu, S.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photonics Rev. 8(1), 94–114 (2014).
[Crossref]

Zinn, K. R.

K. R. Zinn, T. R. Chaudhuri, A. A. Szafran, D. O’Quinn, C. Weaver, K. Dugger, D. Lamar, R. A. Kesterson, X. Wang, and S. J. Frank, “Noninvasive bioluminescence imaging in small animals,” ILAR J. 49(1), 103–115 (2008).
[Crossref] [PubMed]

Adv. Eng. Tech. Appl. (1)

S. D. Vikas and A. Grover, “Fabrication and applications of fiber bragg grating - A Review,” Adv. Eng. Tech. Appl. 4(2), 15–25 (2015).

Anal. Biochem. (1)

H. Fujii, K. Noda, Y. Asami, A. Kuroda, M. Sakata, and A. Tokida, “Increase in bioluminescence intensity of firefly luciferase using genetic modification,” Anal. Biochem. 366(2), 131–136 (2007).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

A. Roda, M. Guardigli, P. Pasini, M. Mirasoli, E. Michelini, and M. Musiani, “Bio- and chemiluminescence imaging in analytical chemistry,” Anal. Chim. Acta 541(1–2), 25–35 (2005).
[Crossref]

Appl. Opt. (1)

Biotechnol. Lett. (1)

K. Noda, T. Matsuno, H. Fujii, T. Kogure, M. Urata, Y. Asami, and A. Kuroda, “Single bacterial cell detection using a mutant luciferase,” Biotechnol. Lett. 30(6), 1051–1054 (2008).
[Crossref] [PubMed]

Blood (1)

D. M. Barrett, A. E. Seif, C. Carpenito, D. T. Teachey, J. D. Fish, C. H. June, S. A. Grupp, and G. S. D. Reid, “Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling,” Blood 118(15), e112–e117 (2011).
[Crossref] [PubMed]

Chin. Phys. B (1)

Z. Li-Li and L. Hui, “Mechanisms of ultrasonic modulation of multiply scattered incoherent light based on diffusion theory,” Chin. Phys. B 24(1), 018701 (2015).
[Crossref]

Clin. Chem. (1)

L. J. Kricka, “Chemiluminescent and bioluminescent techniques,” Clin. Chem. 37(9), 1472–1481 (1991).
[PubMed]

Commun. Numer. Methods Eng. (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Eur. J. Nucl. Med. Mol. Imaging (1)

F. Berger, R. Paulmurugan, S. Bhaumik, and S. S. Gambhir, “Uptake kinetics and biodistribution of 14C-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging,” Eur. J. Nucl. Med. Mol. Imaging 35(12), 2275–2285 (2008).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

Q. Zhang, M. L. Mather, and S. P. Morgan, “Numerical investigation of the mechanisms of ultrasound-modulated bioluminescence tomography,” IEEE Trans. Biomed. Eng. 62(9), 2135–2143 (2015).
[Crossref] [PubMed]

ILAR J. (1)

K. R. Zinn, T. R. Chaudhuri, A. A. Szafran, D. O’Quinn, C. Weaver, K. Dugger, D. Lamar, R. A. Kesterson, X. Wang, and S. J. Frank, “Noninvasive bioluminescence imaging in small animals,” ILAR J. 49(1), 103–115 (2008).
[Crossref] [PubMed]

Interface Focus (1)

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

M. R. Myers, “Transient temperature rise due to ultrasound absorption at a bone/soft-tissue interface,” J. Acoust. Soc. Am. 115(6), 2887–2891 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (6)

N. T. Huynh, B. R. Hayes-Gill, F. Zhang, and S. P. Morgan, “Ultrasound modulated imaging of luminescence generated within a scattering medium,” J. Biomed. Opt. 18(2), 020505 (2013).
[Crossref] [PubMed]

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[Crossref] [PubMed]

B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001).
[Crossref] [PubMed]

S. G. Resink, A. C. Boccara, and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt. 17(4), 040901 (2012).
[Crossref] [PubMed]

N. T. Huynh, H. Ruan, D. He, B. R. Hayes-Gill, and S. P. Morgan, “Effect of object size and acoustic wavelength on pulsed ultrasound modulated fluorescence signals,” J. Biomed. Opt. 17(7), 0760081 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Pharmacol. Pharmacother. (1)

J. Singh, “The national centre for the replacement, refinement, and reduction of animals in research,” J. Pharmacol. Pharmacother. 3(1), 87–89 (2012).
[PubMed]

Laser Photonics Rev. (1)

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photonics Rev. 8(1), 94–114 (2014).
[Crossref]

Med. Phys. (1)

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Med. Biol. (2)

C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59(1), R1–R64 (2014).
[Crossref] [PubMed]

H. Morris, I. Rivens, A. Shaw, and G. T. Haar, “Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field,” Phys. Med. Biol. 53(17), 4759–4776 (2008).
[Crossref] [PubMed]

Sensors (Basel) (1)

D. M. Close, T. Xu, G. S. Sayler, and S. Ripp, “In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals,” Sensors (Basel) 11(1), 180–206 (2010).
[Crossref] [PubMed]

Subsurf. Sens. Technol. Appl. (1)

C. A. DiMarzio and T. W. Murray, “Medical imaging techniques combining light and ultrasound,” Subsurf. Sens. Technol. Appl. 4(4), 289–309 (2003).
[Crossref]

Trends Biotechnol. (1)

C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
[Crossref] [PubMed]

Ultrason. Sonochem. (1)

M. Kobayashi, N. Kikuchi, and A. Sato, “Ultrasound-enhanced chemiluminescence tomography in biological tissue,” Ultrason. Sonochem. 31, 1–6 (2016).
[Crossref] [PubMed]

Ultrasound Med. Biol. (2)

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
[Crossref] [PubMed]

J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
[Crossref] [PubMed]

Other (6)

S. Whitaker, P. J. Herring, A. K. Campbell, P. J. Hill, and Rees, “Characterization of a fish symbiont of photobacterium phosphoreum with altered spectral properties,” in Bioluminescence and Chemiluminescence: Chemistry, Biology and Applications, A. A. Szalay, P. J. Hill, L. J. Kricka, and P.E. Stanley, eds. (World Scientific Publications, 2006), pp. 35–38.

J. Ahmad, B. Jayet, P. J. Hill, M. L. Mather, H. Dehghani, and S. P. Morgan, “Ultrasound modulation of bioluminescence generated inside a turbid medium,” Proc. SPIE BiOS 10064, Photons Plus Ultrasound: Imaging and Sensing, 2017.

H. Ruan, “Pulsed ultrasound modulated optical tomography with parallel speckle detection,” PhD thesis, The Univ. of Nottingham UK, 1–192 (2012).

C. Staveley, “Smart scan Interrogators for fiber Bragg Grating sensors,” Smart fibres, technical Datasheet 12 June 2012, http://www.smartfibres.com/FBG-interrogators (12 June 2012).

American Institute of Ultrasound in Medicine, (2017), “Statement on mammalian biological effects of ultrasound in vivo,” http://www.aium.org .

PerkinElmer, “IVIS spectrum in vivo imaging system,” www.perkinelmer.com , part no. 124262 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of acousto-optic platform for imaging incoherent low-level luminescent reporters (UST – ultrasound transducer, PMT – photomultiplier tube, TIA – transimpedance amplifier, LIA – lock-in amplifier, OSC – oscilloscope).
Fig. 2
Fig. 2 (a) Phantom gel with XYZ dimension 65 mm × 65 mm × 50 mm, scattering coefficient (µs) of 5.65 mm−1, g = 0.93; (b) Chemiluminescent sources encapsulated inside a FEP transparent tube using a parafilm; (c) Slab of a chicken breast; (d) Position of the source in the phantom and; (e) Schematic of the setup circulating glowing BL bacteria through the tissue phantom.
Fig. 3
Fig. 3 Heating water inside the glass tank to heat the small-scale CL source having 3 mm long FBG sensor inside the plastic tube to record the temperature and intensity of light using a PMT detector.
Fig. 4
Fig. 4 Influence of varying UST pressure on light source inside the phantom increases (a) Acousto-optic (AC) signals and intensity of light source (DC) and; (b) Modulation depth and SNR of the received AC and DC signals.
Fig. 5
Fig. 5 Amplitude of the detected AC signal vs reference frequency of the lock-in amplifier.
Fig. 6
Fig. 6 Relationship between CL intensity (DC) and temperature when: (a) heating the CL sample manually; (b) employing acoustic pressure 960 kPa from 3.5 MHz UST and; (c) fitting each of the two data sets (for manual and US heating) using linear regression to compare their respective slopes.
Fig. 7
Fig. 7 UST that uses 30% duty cycle of quasi-continuous acoustic bursts to mitigate the temperature rise up to ~1°C, while maintaining a significant increase in SNR for DC and AC from the CL source.
Fig. 8
Fig. 8 (a) Normalized CCD optical image of luminescence pattern formed at the surface of scattering tissue phantom for one CL target; (b) comparison of 1D cross-section of CCD image with 1D AC and DC profiles; (c) CCD image of two CL targets separated by ~10 mm implanted inside the turbid phantom and; (d) its respective 1D cross-section, AC and DC profiles.
Fig. 9
Fig. 9 SNR traces of AC and DC, where UST scans (10 to 40 mm, step size = 0.75 mm) to resolve two CL targets separated by ~10 mm deep inside a slab of chicken breast.
Fig. 10
Fig. 10 Acousto-optic system forming (a) DC and AC profiles resulting from circulation of BL assay through a single FEP plastic pipe passing through center of a tissue phantom and; (b) DC and AC signals for two FEP pipes separated by ~10 mm inside phantom.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I AC = 2 V AC Z TIA G PMT G TIA ( A )
I DC = V DC Z TIA G PMT G TIA ( A )
I sht = 2q I DC B LIA ( A )
SN R AC (dB)=20 log 10 ( I AC I sht )
SN R DC (dB)=20 log 10 ( V DC σ noise )
L DC = V DC hν S PMT E Ano Z TIA G TIA Ω

Metrics