Abstract

Microwave ablation is a minimally invasive image guided thermal therapy for cancer that can be adapted to endoscope use in the gastrointestinal (GI) tract. Microwave ablation in the GI tract requires precise control over the ablation zone that could be guided by high resolution imaging with quantitative contrast. Optical coherence tomography (OCT) provides ideal imaging resolution and allows for the quantification of tissue scattering properties to characterize ablated tissue. Visible and near-infrared OCT image analysis demonstrated increased scattering coefficients (μs) in ablated versus normal tissues (Vis: 347.8%, NIR: 415.0%) and shows the potential for both wavelength ranges to provide quantitative contrast. These data suggest OCT could provide quantitative image guidance and valuable information about antenna performance in vivo.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence-guided optical coherence tomography imaging for colon cancer screening: a preliminary mouse study

Nicusor Iftimia, Arun K. Iyer, Daniel X. Hammer, Niyom Lue, Mircea Mujat, Martha Pitman, R. Daniel Ferguson, and Mansoor Amiji
Biomed. Opt. Express 3(1) 178-191 (2012)

Automated segmentation and characterization of esophageal wall in vivo by tethered capsule optical coherence tomography endomicroscopy

Giovanni J. Ughi, Michalina J. Gora, Anne-Fré Swager, Amna Soomro, Catriona Grant, Aubrey Tiernan, Mireille Rosenberg, Jenny S. Sauk, Norman S. Nishioka, and Guillermo J. Tearney
Biomed. Opt. Express 7(2) 409-419 (2016)

Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues

Yu Chen, Aaron D. Aguirre, Pei-Lin Hsiung, Shu-Wei Huang, Hiroshi Mashimo, Joseph M. Schmitt, and James G. Fujimoto
Opt. Express 16(4) 2469-2485 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Eloubeidi, A. C. Mason, R. A. Desmond, and H. B. El-Serag, “Temporal trends (1973-1997) in survival of patients with esophageal adenocarcinoma in the United States: a glimmer of hope?” Am. J. Gastroenterol. 98(7), 1627–1633 (2003).
  2. J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).
  3. K. Belghazi, I. Cipollone, J. J. G. H. M. Bergman, and R. E. Pouw, “Current Controversies in Radiofrequency Ablation Therapy for Barrett’s Esophagus,” Curr. Treat. Options Gastroenterol. 14(1), 1–18 (2016).
  4. R. Tuttle, S. J. Nurkin, and S. N. Hochwald, “Ablative therapy for esophageal dysplasia and early malignancy: focus on RFA,” BioMed Res. Int. 2014, 642063 (2014).
  5. C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).
  6. A.-F. Swager, D. F. Boerwinkel, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, B. L. Weusten, S. L. Meijer, J. J. Bergman, and W. L. Curvers, “Detection of buried Barrett’s glands after radiofrequency ablation with volumetric laser endomicroscopy,” Gastrointest. Endosc. 83(1), 80–88 (2016).
  7. C. Hancock, N. Dharmasiri, C. I. Duff, and M. White, “New microwave antenna structures for treating gastro-oesophageal reflux disease (GERD),” IEEE Trans. Microw. Theory Tech. 61(5), 2242–2252 (2013).
  8. C. L. Brace, “Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney, and Bone: What Are the Differences?” Curr. Probl. Diagn. Radiol. 38(3), 135–143 (2009).
  9. B. J. Dunkin, J. Martinez, P. A. Bejarano, C. D. Smith, K. Chang, A. S. Livingstone, and W. S. Melvin, “Thin-layer ablation of human esophageal epithelium using a bipolar radiofrequency balloon device,” Surg. Endosc. 20(1), 125–130 (2006).
  10. R. A. Ganz, D. S. Utley, R. A. Stern, J. Jackson, K. P. Batts, and P. Termin, “Complete ablation of esophageal epithelium with a balloon-based bipolar electrode: a phased evaluation in the porcine and in the human esophagus,” Gastrointest. Endosc. 60(6), 1002–1010 (2004).
  11. R. M. Eisele, “Advances in local ablation of malignant liver lesions,” World J. Gastroenterol. 22(15), 3885–3891 (2016).
  12. M. W. Stier, V. J. Konda, J. Hart, and I. Waxman, “Post-ablation surveillance in Barrett’s esophagus: A review of the literature,” World J. Gastroenterol. 22(17), 4297–4306 (2016).
  13. A. Das, M. V. Sivak, A. Chak, R. C. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointest. Endosc. 54(2), 219–224 (2001).
  14. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
  15. J. Yi and V. Backman, “Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography,” Opt. Lett. 37(21), 4443–4445 (2012).
  16. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
  17. J. Yi, A. J. Radosevich, J. D. Rogers, S. C. Norris, İ. R. Çapoğlu, A. Taflove, and V. Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?” Opt. Express 21(7), 9043–9059 (2013).
  18. K. A. Vermeer, J. Mo, J. J. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
  19. D. Faber, F. van der Meer, M. Aalders, and T. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
  20. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).
  21. R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt. 13, 041309 (2008).
  22. V. Backman and H. K. Roy, “Advances in biophotonics detection of field carcinogenesis for colon cancer risk stratification,” J. Cancer 4(3), 251–261 (2013).
  23. S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
  24. S. G. Demos and S. Sharareh, “Real time assessment of RF cardiac tissue ablation with optical spectroscopy,” Opt. Express 16(19), 15286–15296 (2008).
  25. J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).
  26. J. K. Barton, “Dynamic changes in optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue (Springer, 2010), pp. 321–349.
  27. D. N. Wheatley, C. Kerr, and D. W. Gregory, “Heat-induced damage to HeLa-S3 cells: correlation of viability, permeability, osmosensitivity, phase-contrast light-, scanning electron- and transmission electron-microscopical findings,” Int. J. Hyperthermia 5(2), 145–162 (1989).
  28. M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of Focal Heat Destruction of Liver Tumors,” J. Surg. Res. 127(2), 208–223 (2005).
  29. H.-C. Lee, O. O. Ahsen, J. J. Liu, T.-H. Tsai, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography,” J. Biomed. Opt. 22(7), 076001 (2017).
  30. I. Ahmad, A. Gribble, I. Murtza, M. Ikram, M. Pop, and A. Vitkin, “Polarization image segmentation of radiofrequency ablated porcine myocardial tissue,” PLoS One 12(4), e0175173 (2017).
  31. A.-F. Swager, D. J. Faber, D. M. de Bruin, B. L. Weusten, S. L. Meijer, J. J. Bergman, W. L. Curvers, and T. G. van Leeuwen, “Quantitative attenuation analysis for identification of early Barrett’s neoplasia in volumetric laser endomicroscopy,” J. Biomed. Opt. 22(8), 086001 (2017).
  32. W. J. Brown, S. Kim, and A. Wax, “Noise characterization of supercontinuum sources for low-coherence interferometry applications,” J. Opt. Soc. Am. A 31(12), 2703–2710 (2014).
  33. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
  34. G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
  35. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003).
  36. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 1980).
  37. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2015).
  38. C. Mätzler, “MATLAB functions for Mie scattering and absorption, version 2,” IAP Res. Rep 8, 1–24 (2002).
  39. T. Ozaki, K. Tabuse, T. Tsuji, Y. Nakamura, K. Kakudo, and I. Mori, “Microwave cell death: Enzyme histochemical evaluation for metastatic carcinoma of the liver,” Pathol. Int. 53(12), 837–845 (2003).
  40. J. D. Rogers, İ. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34(12), 1891–1893 (2009).
  41. M. S. Wall, X.-H. Deng, P. A. Torzilli, S. B. Doty, S. J. O’Brien, and R. F. Warren, “Thermal modification of collagen,” J. Shoulder Elbow Surg. 8(4), 339–344 (1999).
  42. G. L. Spicer, S. M. Azarin, J. Yi, S. T. Young, R. Ellis, G. M. Bauer, L. D. Shea, and V. Backman, “Detection of extracellular matrix modification in cancer models with inverse spectroscopic optical coherence tomography,” Phys. Med. Biol. 61(19), 6892–6904 (2016).
  43. W. A. Welge and J. K. Barton, “Optical coherence tomography imaging of colonic crypts in a mouse model of colorectal cancer,” in SPIE BiOS (International Society for Optics and Photonics2016), pp. 96910V–96910V–96916.

2017 (3)

H.-C. Lee, O. O. Ahsen, J. J. Liu, T.-H. Tsai, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography,” J. Biomed. Opt. 22(7), 076001 (2017).

I. Ahmad, A. Gribble, I. Murtza, M. Ikram, M. Pop, and A. Vitkin, “Polarization image segmentation of radiofrequency ablated porcine myocardial tissue,” PLoS One 12(4), e0175173 (2017).

A.-F. Swager, D. J. Faber, D. M. de Bruin, B. L. Weusten, S. L. Meijer, J. J. Bergman, W. L. Curvers, and T. G. van Leeuwen, “Quantitative attenuation analysis for identification of early Barrett’s neoplasia in volumetric laser endomicroscopy,” J. Biomed. Opt. 22(8), 086001 (2017).

2016 (6)

J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).

K. Belghazi, I. Cipollone, J. J. G. H. M. Bergman, and R. E. Pouw, “Current Controversies in Radiofrequency Ablation Therapy for Barrett’s Esophagus,” Curr. Treat. Options Gastroenterol. 14(1), 1–18 (2016).

A.-F. Swager, D. F. Boerwinkel, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, B. L. Weusten, S. L. Meijer, J. J. Bergman, and W. L. Curvers, “Detection of buried Barrett’s glands after radiofrequency ablation with volumetric laser endomicroscopy,” Gastrointest. Endosc. 83(1), 80–88 (2016).

R. M. Eisele, “Advances in local ablation of malignant liver lesions,” World J. Gastroenterol. 22(15), 3885–3891 (2016).

M. W. Stier, V. J. Konda, J. Hart, and I. Waxman, “Post-ablation surveillance in Barrett’s esophagus: A review of the literature,” World J. Gastroenterol. 22(17), 4297–4306 (2016).

G. L. Spicer, S. M. Azarin, J. Yi, S. T. Young, R. Ellis, G. M. Bauer, L. D. Shea, and V. Backman, “Detection of extracellular matrix modification in cancer models with inverse spectroscopic optical coherence tomography,” Phys. Med. Biol. 61(19), 6892–6904 (2016).

2015 (1)

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).

2014 (3)

2013 (3)

C. Hancock, N. Dharmasiri, C. I. Duff, and M. White, “New microwave antenna structures for treating gastro-oesophageal reflux disease (GERD),” IEEE Trans. Microw. Theory Tech. 61(5), 2242–2252 (2013).

J. Yi, A. J. Radosevich, J. D. Rogers, S. C. Norris, İ. R. Çapoğlu, A. Taflove, and V. Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?” Opt. Express 21(7), 9043–9059 (2013).

V. Backman and H. K. Roy, “Advances in biophotonics detection of field carcinogenesis for colon cancer risk stratification,” J. Cancer 4(3), 251–261 (2013).

2012 (2)

J. Yi and V. Backman, “Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography,” Opt. Lett. 37(21), 4443–4445 (2012).

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

2009 (2)

C. L. Brace, “Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney, and Bone: What Are the Differences?” Curr. Probl. Diagn. Radiol. 38(3), 135–143 (2009).

J. D. Rogers, İ. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34(12), 1891–1893 (2009).

2008 (2)

S. G. Demos and S. Sharareh, “Real time assessment of RF cardiac tissue ablation with optical spectroscopy,” Opt. Express 16(19), 15286–15296 (2008).

R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt. 13, 041309 (2008).

2006 (2)

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).

B. J. Dunkin, J. Martinez, P. A. Bejarano, C. D. Smith, K. Chang, A. S. Livingstone, and W. S. Melvin, “Thin-layer ablation of human esophageal epithelium using a bipolar radiofrequency balloon device,” Surg. Endosc. 20(1), 125–130 (2006).

2005 (1)

M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of Focal Heat Destruction of Liver Tumors,” J. Surg. Res. 127(2), 208–223 (2005).

2004 (3)

2003 (5)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

M. A. Eloubeidi, A. C. Mason, R. A. Desmond, and H. B. El-Serag, “Temporal trends (1973-1997) in survival of patients with esophageal adenocarcinoma in the United States: a glimmer of hope?” Am. J. Gastroenterol. 98(7), 1627–1633 (2003).

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).

T. Ozaki, K. Tabuse, T. Tsuji, Y. Nakamura, K. Kakudo, and I. Mori, “Microwave cell death: Enzyme histochemical evaluation for metastatic carcinoma of the liver,” Pathol. Int. 53(12), 837–845 (2003).

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003).

2002 (1)

C. Mätzler, “MATLAB functions for Mie scattering and absorption, version 2,” IAP Res. Rep 8, 1–24 (2002).

2001 (1)

A. Das, M. V. Sivak, A. Chak, R. C. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointest. Endosc. 54(2), 219–224 (2001).

1999 (2)

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).

M. S. Wall, X.-H. Deng, P. A. Torzilli, S. B. Doty, S. J. O’Brien, and R. F. Warren, “Thermal modification of collagen,” J. Shoulder Elbow Surg. 8(4), 339–344 (1999).

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

1989 (1)

D. N. Wheatley, C. Kerr, and D. W. Gregory, “Heat-induced damage to HeLa-S3 cells: correlation of viability, permeability, osmosensitivity, phase-contrast light-, scanning electron- and transmission electron-microscopical findings,” Int. J. Hyperthermia 5(2), 145–162 (1989).

Aalders, M.

Adler, D. C.

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

Ahmad, I.

I. Ahmad, A. Gribble, I. Murtza, M. Ikram, M. Pop, and A. Vitkin, “Polarization image segmentation of radiofrequency ablated porcine myocardial tissue,” PLoS One 12(4), e0175173 (2017).

Ahsen, O. O.

H.-C. Lee, O. O. Ahsen, J. J. Liu, T.-H. Tsai, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography,” J. Biomed. Opt. 22(7), 076001 (2017).

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

Akiyama, J. I.

J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).

Andersson-Engels, S.

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).

Azarin, S. M.

G. L. Spicer, S. M. Azarin, J. Yi, S. T. Young, R. Ellis, G. M. Bauer, L. D. Shea, and V. Backman, “Detection of extracellular matrix modification in cancer models with inverse spectroscopic optical coherence tomography,” Phys. Med. Biol. 61(19), 6892–6904 (2016).

Backman, V.

G. L. Spicer, S. M. Azarin, J. Yi, S. T. Young, R. Ellis, G. M. Bauer, L. D. Shea, and V. Backman, “Detection of extracellular matrix modification in cancer models with inverse spectroscopic optical coherence tomography,” Phys. Med. Biol. 61(19), 6892–6904 (2016).

J. Yi, A. J. Radosevich, J. D. Rogers, S. C. Norris, İ. R. Çapoğlu, A. Taflove, and V. Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?” Opt. Express 21(7), 9043–9059 (2013).

V. Backman and H. K. Roy, “Advances in biophotonics detection of field carcinogenesis for colon cancer risk stratification,” J. Cancer 4(3), 251–261 (2013).

J. Yi and V. Backman, “Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography,” Opt. Lett. 37(21), 4443–4445 (2012).

J. D. Rogers, İ. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34(12), 1891–1893 (2009).

Batts, K. P.

R. A. Ganz, D. S. Utley, R. A. Stern, J. Jackson, K. P. Batts, and P. Termin, “Complete ablation of esophageal epithelium with a balloon-based bipolar electrode: a phased evaluation in the porcine and in the human esophagus,” Gastrointest. Endosc. 60(6), 1002–1010 (2004).

Bauer, G. M.

G. L. Spicer, S. M. Azarin, J. Yi, S. T. Young, R. Ellis, G. M. Bauer, L. D. Shea, and V. Backman, “Detection of extracellular matrix modification in cancer models with inverse spectroscopic optical coherence tomography,” Phys. Med. Biol. 61(19), 6892–6904 (2016).

Bejarano, P. A.

B. J. Dunkin, J. Martinez, P. A. Bejarano, C. D. Smith, K. Chang, A. S. Livingstone, and W. S. Melvin, “Thin-layer ablation of human esophageal epithelium using a bipolar radiofrequency balloon device,” Surg. Endosc. 20(1), 125–130 (2006).

Belghazi, K.

K. Belghazi, I. Cipollone, J. J. G. H. M. Bergman, and R. E. Pouw, “Current Controversies in Radiofrequency Ablation Therapy for Barrett’s Esophagus,” Curr. Treat. Options Gastroenterol. 14(1), 1–18 (2016).

Bergman, J. J.

A.-F. Swager, D. J. Faber, D. M. de Bruin, B. L. Weusten, S. L. Meijer, J. J. Bergman, W. L. Curvers, and T. G. van Leeuwen, “Quantitative attenuation analysis for identification of early Barrett’s neoplasia in volumetric laser endomicroscopy,” J. Biomed. Opt. 22(8), 086001 (2017).

A.-F. Swager, D. F. Boerwinkel, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, B. L. Weusten, S. L. Meijer, J. J. Bergman, and W. L. Curvers, “Detection of buried Barrett’s glands after radiofrequency ablation with volumetric laser endomicroscopy,” Gastrointest. Endosc. 83(1), 80–88 (2016).

Bergman, J. J. G. H. M.

K. Belghazi, I. Cipollone, J. J. G. H. M. Bergman, and R. E. Pouw, “Current Controversies in Radiofrequency Ablation Therapy for Barrett’s Esophagus,” Curr. Treat. Options Gastroenterol. 14(1), 1–18 (2016).

Boerwinkel, D. F.

A.-F. Swager, D. F. Boerwinkel, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, B. L. Weusten, S. L. Meijer, J. J. Bergman, and W. L. Curvers, “Detection of buried Barrett’s glands after radiofrequency ablation with volumetric laser endomicroscopy,” Gastrointest. Endosc. 83(1), 80–88 (2016).

Boppart, S. A.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).

Bouma, B.

Brace, C. L.

C. L. Brace, “Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney, and Bone: What Are the Differences?” Curr. Probl. Diagn. Radiol. 38(3), 135–143 (2009).

Brezinski, M. E.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).

Brown, W. J.

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).

Campagnola, P.

R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt. 13, 041309 (2008).

Capoglu, I. R.

Çapoglu, I. R.

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).

Chak, A.

A. Das, M. V. Sivak, A. Chak, R. C. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointest. Endosc. 54(2), 219–224 (2001).

Chang, K.

B. J. Dunkin, J. Martinez, P. A. Bejarano, C. D. Smith, K. Chang, A. S. Livingstone, and W. S. Melvin, “Thin-layer ablation of human esophageal epithelium using a bipolar radiofrequency balloon device,” Surg. Endosc. 20(1), 125–130 (2006).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Christophi, C.

M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of Focal Heat Destruction of Liver Tumors,” J. Surg. Res. 127(2), 208–223 (2005).

Cipollone, I.

K. Belghazi, I. Cipollone, J. J. G. H. M. Bergman, and R. E. Pouw, “Current Controversies in Radiofrequency Ablation Therapy for Barrett’s Esophagus,” Curr. Treat. Options Gastroenterol. 14(1), 1–18 (2016).

Curvers, W. L.

A.-F. Swager, D. J. Faber, D. M. de Bruin, B. L. Weusten, S. L. Meijer, J. J. Bergman, W. L. Curvers, and T. G. van Leeuwen, “Quantitative attenuation analysis for identification of early Barrett’s neoplasia in volumetric laser endomicroscopy,” J. Biomed. Opt. 22(8), 086001 (2017).

A.-F. Swager, D. F. Boerwinkel, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, B. L. Weusten, S. L. Meijer, J. J. Bergman, and W. L. Curvers, “Detection of buried Barrett’s glands after radiofrequency ablation with volumetric laser endomicroscopy,” Gastrointest. Endosc. 83(1), 80–88 (2016).

Das, A.

A. Das, M. V. Sivak, A. Chak, R. C. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointest. Endosc. 54(2), 219–224 (2001).

de Boer, J.

de Boer, J. F.

de Bruin, D. M.

A.-F. Swager, D. J. Faber, D. M. de Bruin, B. L. Weusten, S. L. Meijer, J. J. Bergman, W. L. Curvers, and T. G. van Leeuwen, “Quantitative attenuation analysis for identification of early Barrett’s neoplasia in volumetric laser endomicroscopy,” J. Biomed. Opt. 22(8), 086001 (2017).

A.-F. Swager, D. F. Boerwinkel, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, B. L. Weusten, S. L. Meijer, J. J. Bergman, and W. L. Curvers, “Detection of buried Barrett’s glands after radiofrequency ablation with volumetric laser endomicroscopy,” Gastrointest. Endosc. 83(1), 80–88 (2016).

Demos, S. G.

Deng, X.-H.

M. S. Wall, X.-H. Deng, P. A. Torzilli, S. B. Doty, S. J. O’Brien, and R. F. Warren, “Thermal modification of collagen,” J. Shoulder Elbow Surg. 8(4), 339–344 (1999).

Desmond, R. A.

M. A. Eloubeidi, A. C. Mason, R. A. Desmond, and H. B. El-Serag, “Temporal trends (1973-1997) in survival of patients with esophageal adenocarcinoma in the United States: a glimmer of hope?” Am. J. Gastroenterol. 98(7), 1627–1633 (2003).

Dharmasiri, N.

C. Hancock, N. Dharmasiri, C. I. Duff, and M. White, “New microwave antenna structures for treating gastro-oesophageal reflux disease (GERD),” IEEE Trans. Microw. Theory Tech. 61(5), 2242–2252 (2013).

Doty, S. B.

M. S. Wall, X.-H. Deng, P. A. Torzilli, S. B. Doty, S. J. O’Brien, and R. F. Warren, “Thermal modification of collagen,” J. Shoulder Elbow Surg. 8(4), 339–344 (1999).

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

Duff, C. I.

C. Hancock, N. Dharmasiri, C. I. Duff, and M. White, “New microwave antenna structures for treating gastro-oesophageal reflux disease (GERD),” IEEE Trans. Microw. Theory Tech. 61(5), 2242–2252 (2013).

Duker, J.

Dunkin, B. J.

B. J. Dunkin, J. Martinez, P. A. Bejarano, C. D. Smith, K. Chang, A. S. Livingstone, and W. S. Melvin, “Thin-layer ablation of human esophageal epithelium using a bipolar radiofrequency balloon device,” Surg. Endosc. 20(1), 125–130 (2006).

Durkin, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).

Dwork, N.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).

Eisele, R. M.

R. M. Eisele, “Advances in local ablation of malignant liver lesions,” World J. Gastroenterol. 22(15), 3885–3891 (2016).

Ellerbee, A. K.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).

Ellis, R.

G. L. Spicer, S. M. Azarin, J. Yi, S. T. Young, R. Ellis, G. M. Bauer, L. D. Shea, and V. Backman, “Detection of extracellular matrix modification in cancer models with inverse spectroscopic optical coherence tomography,” Phys. Med. Biol. 61(19), 6892–6904 (2016).

Eloubeidi, M. A.

M. A. Eloubeidi, A. C. Mason, R. A. Desmond, and H. B. El-Serag, “Temporal trends (1973-1997) in survival of patients with esophageal adenocarcinoma in the United States: a glimmer of hope?” Am. J. Gastroenterol. 98(7), 1627–1633 (2003).

El-Serag, H. B.

M. A. Eloubeidi, A. C. Mason, R. A. Desmond, and H. B. El-Serag, “Temporal trends (1973-1997) in survival of patients with esophageal adenocarcinoma in the United States: a glimmer of hope?” Am. J. Gastroenterol. 98(7), 1627–1633 (2003).

Faber, D.

Faber, D. J.

A.-F. Swager, D. J. Faber, D. M. de Bruin, B. L. Weusten, S. L. Meijer, J. J. Bergman, W. L. Curvers, and T. G. van Leeuwen, “Quantitative attenuation analysis for identification of early Barrett’s neoplasia in volumetric laser endomicroscopy,” J. Biomed. Opt. 22(8), 086001 (2017).

A.-F. Swager, D. F. Boerwinkel, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, B. L. Weusten, S. L. Meijer, J. J. Bergman, and W. L. Curvers, “Detection of buried Barrett’s glands after radiofrequency ablation with volumetric laser endomicroscopy,” Gastrointest. Endosc. 83(1), 80–88 (2016).

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

Figueiredo, M.

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Fujimoto, J.

Fujimoto, J. G.

H.-C. Lee, O. O. Ahsen, J. J. Liu, T.-H. Tsai, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography,” J. Biomed. Opt. 22(7), 076001 (2017).

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).

Furnari, M.

J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).

Ganz, R. A.

R. A. Ganz, D. S. Utley, R. A. Stern, J. Jackson, K. P. Batts, and P. Termin, “Complete ablation of esophageal epithelium with a balloon-based bipolar electrode: a phased evaluation in the porcine and in the human esophagus,” Gastrointest. Endosc. 60(6), 1002–1010 (2004).

Goense, L.

J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).

Gregory, D. W.

D. N. Wheatley, C. Kerr, and D. W. Gregory, “Heat-induced damage to HeLa-S3 cells: correlation of viability, permeability, osmosensitivity, phase-contrast light-, scanning electron- and transmission electron-microscopical findings,” Int. J. Hyperthermia 5(2), 145–162 (1989).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Gribble, A.

I. Ahmad, A. Gribble, I. Murtza, M. Ikram, M. Pop, and A. Vitkin, “Polarization image segmentation of radiofrequency ablated porcine myocardial tissue,” PLoS One 12(4), e0175173 (2017).

Hancock, C.

C. Hancock, N. Dharmasiri, C. I. Duff, and M. White, “New microwave antenna structures for treating gastro-oesophageal reflux disease (GERD),” IEEE Trans. Microw. Theory Tech. 61(5), 2242–2252 (2013).

Hart, J.

M. W. Stier, V. J. Konda, J. Hart, and I. Waxman, “Post-ablation surveillance in Barrett’s esophagus: A review of the literature,” World J. Gastroenterol. 22(17), 4297–4306 (2016).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Herrmann, J.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

Hochwald, S. N.

R. Tuttle, S. J. Nurkin, and S. N. Hochwald, “Ablative therapy for esophageal dysplasia and early malignancy: focus on RFA,” BioMed Res. Int. 2014, 642063 (2014).

Hsiang, D.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Huang, Q.

H.-C. Lee, O. O. Ahsen, J. J. Liu, T.-H. Tsai, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography,” J. Biomed. Opt. 22(7), 076001 (2017).

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

Ikram, M.

I. Ahmad, A. Gribble, I. Murtza, M. Ikram, M. Pop, and A. Vitkin, “Polarization image segmentation of radiofrequency ablated porcine myocardial tissue,” PLoS One 12(4), e0175173 (2017).

Isenberg, G.

A. Das, M. V. Sivak, A. Chak, R. C. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointest. Endosc. 54(2), 219–224 (2001).

Izatt, J. A.

A. Das, M. V. Sivak, A. Chak, R. C. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointest. Endosc. 54(2), 219–224 (2001).

Jackson, J.

R. A. Ganz, D. S. Utley, R. A. Stern, J. Jackson, K. P. Batts, and P. Termin, “Complete ablation of esophageal epithelium with a balloon-based bipolar electrode: a phased evaluation in the porcine and in the human esophagus,” Gastrointest. Endosc. 60(6), 1002–1010 (2004).

Jacques, S. L.

R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt. 13, 041309 (2008).

Kakudo, K.

T. Ozaki, K. Tabuse, T. Tsuji, Y. Nakamura, K. Kakudo, and I. Mori, “Microwave cell death: Enzyme histochemical evaluation for metastatic carcinoma of the liver,” Pathol. Int. 53(12), 837–845 (2003).

Kerr, C.

D. N. Wheatley, C. Kerr, and D. W. Gregory, “Heat-induced damage to HeLa-S3 cells: correlation of viability, permeability, osmosensitivity, phase-contrast light-, scanning electron- and transmission electron-microscopical findings,” Int. J. Hyperthermia 5(2), 145–162 (1989).

Kim, S.

Kirtane, T.

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

Ko, T.

Konda, V. J.

M. W. Stier, V. J. Konda, J. Hart, and I. Waxman, “Post-ablation surveillance in Barrett’s esophagus: A review of the literature,” World J. Gastroenterol. 22(17), 4297–4306 (2016).

Kowalczyk, A.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

Lee, H.-C.

H.-C. Lee, O. O. Ahsen, J. J. Liu, T.-H. Tsai, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography,” J. Biomed. Opt. 22(7), 076001 (2017).

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

Lemij, H. G.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Liu, J. J.

H.-C. Lee, O. O. Ahsen, J. J. Liu, T.-H. Tsai, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography,” J. Biomed. Opt. 22(7), 076001 (2017).

Livingstone, A. S.

B. J. Dunkin, J. Martinez, P. A. Bejarano, C. D. Smith, K. Chang, A. S. Livingstone, and W. S. Melvin, “Thin-layer ablation of human esophageal epithelium using a bipolar radiofrequency balloon device,” Surg. Endosc. 20(1), 125–130 (2006).

Lurie, K. L.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).

Martínek, J.

J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).

Martinez, J.

B. J. Dunkin, J. Martinez, P. A. Bejarano, C. D. Smith, K. Chang, A. S. Livingstone, and W. S. Melvin, “Thin-layer ablation of human esophageal epithelium using a bipolar radiofrequency balloon device,” Surg. Endosc. 20(1), 125–130 (2006).

Mashimo, H.

H.-C. Lee, O. O. Ahsen, J. J. Liu, T.-H. Tsai, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography,” J. Biomed. Opt. 22(7), 076001 (2017).

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

Mason, A. C.

M. A. Eloubeidi, A. C. Mason, R. A. Desmond, and H. B. El-Serag, “Temporal trends (1973-1997) in survival of patients with esophageal adenocarcinoma in the United States: a glimmer of hope?” Am. J. Gastroenterol. 98(7), 1627–1633 (2003).

Mätzler, C.

C. Mätzler, “MATLAB functions for Mie scattering and absorption, version 2,” IAP Res. Rep 8, 1–24 (2002).

Meijer, S. L.

A.-F. Swager, D. J. Faber, D. M. de Bruin, B. L. Weusten, S. L. Meijer, J. J. Bergman, W. L. Curvers, and T. G. van Leeuwen, “Quantitative attenuation analysis for identification of early Barrett’s neoplasia in volumetric laser endomicroscopy,” J. Biomed. Opt. 22(8), 086001 (2017).

A.-F. Swager, D. F. Boerwinkel, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, B. L. Weusten, S. L. Meijer, J. J. Bergman, and W. L. Curvers, “Detection of buried Barrett’s glands after radiofrequency ablation with volumetric laser endomicroscopy,” Gastrointest. Endosc. 83(1), 80–88 (2016).

Melvin, W. S.

B. J. Dunkin, J. Martinez, P. A. Bejarano, C. D. Smith, K. Chang, A. S. Livingstone, and W. S. Melvin, “Thin-layer ablation of human esophageal epithelium using a bipolar radiofrequency balloon device,” Surg. Endosc. 20(1), 125–130 (2006).

Mo, J.

Mori, I.

T. Ozaki, K. Tabuse, T. Tsuji, Y. Nakamura, K. Kakudo, and I. Mori, “Microwave cell death: Enzyme histochemical evaluation for metastatic carcinoma of the liver,” Pathol. Int. 53(12), 837–845 (2003).

Muralidharan, V.

M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of Focal Heat Destruction of Liver Tumors,” J. Surg. Res. 127(2), 208–223 (2005).

Murtza, I.

I. Ahmad, A. Gribble, I. Murtza, M. Ikram, M. Pop, and A. Vitkin, “Polarization image segmentation of radiofrequency ablated porcine myocardial tissue,” PLoS One 12(4), e0175173 (2017).

Nakamura, Y.

T. Ozaki, K. Tabuse, T. Tsuji, Y. Nakamura, K. Kakudo, and I. Mori, “Microwave cell death: Enzyme histochemical evaluation for metastatic carcinoma of the liver,” Pathol. Int. 53(12), 837–845 (2003).

Nikfarjam, M.

M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of Focal Heat Destruction of Liver Tumors,” J. Surg. Res. 127(2), 208–223 (2005).

Norris, S. C.

Nurkin, S. J.

R. Tuttle, S. J. Nurkin, and S. N. Hochwald, “Ablative therapy for esophageal dysplasia and early malignancy: focus on RFA,” BioMed Res. Int. 2014, 642063 (2014).

O’Brien, S. J.

M. S. Wall, X.-H. Deng, P. A. Torzilli, S. B. Doty, S. J. O’Brien, and R. F. Warren, “Thermal modification of collagen,” J. Shoulder Elbow Surg. 8(4), 339–344 (1999).

O’Connor, D.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).

Olsson, S. B.

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).

Ozaki, T.

T. Ozaki, K. Tabuse, T. Tsuji, Y. Nakamura, K. Kakudo, and I. Mori, “Microwave cell death: Enzyme histochemical evaluation for metastatic carcinoma of the liver,” Pathol. Int. 53(12), 837–845 (2003).

Pålsson, S.

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).

Park, B.

Pauly, J. M.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).

Pitris, C.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).

Platonov, P.

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).

Pop, M.

I. Ahmad, A. Gribble, I. Murtza, M. Ikram, M. Pop, and A. Vitkin, “Polarization image segmentation of radiofrequency ablated porcine myocardial tissue,” PLoS One 12(4), e0175173 (2017).

Pouw, R. E.

K. Belghazi, I. Cipollone, J. J. G. H. M. Bergman, and R. E. Pouw, “Current Controversies in Radiofrequency Ablation Therapy for Barrett’s Esophagus,” Curr. Treat. Options Gastroenterol. 14(1), 1–18 (2016).

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Radosevich, A. J.

Rogers, J. D.

Rollins, A. M.

A. Das, M. V. Sivak, A. Chak, R. C. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointest. Endosc. 54(2), 219–224 (2001).

Roy, H. K.

V. Backman and H. K. Roy, “Advances in biophotonics detection of field carcinogenesis for colon cancer risk stratification,” J. Cancer 4(3), 251–261 (2013).

Ruurda, J. P.

J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).

Samatham, R.

R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt. 13, 041309 (2008).

Savarino, E.

J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).

Schmitt, J. M.

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).

Sharareh, S.

Shea, L. D.

G. L. Spicer, S. M. Azarin, J. Yi, S. T. Young, R. Ellis, G. M. Bauer, L. D. Shea, and V. Backman, “Detection of extracellular matrix modification in cancer models with inverse spectroscopic optical coherence tomography,” Phys. Med. Biol. 61(19), 6892–6904 (2016).

Sikora, U.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).

Sivak, M. V.

A. Das, M. V. Sivak, A. Chak, R. C. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointest. Endosc. 54(2), 219–224 (2001).

Smith, C. D.

B. J. Dunkin, J. Martinez, P. A. Bejarano, C. D. Smith, K. Chang, A. S. Livingstone, and W. S. Melvin, “Thin-layer ablation of human esophageal epithelium using a bipolar radiofrequency balloon device,” Surg. Endosc. 20(1), 125–130 (2006).

Smith, G. T.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).

Spicer, G. L.

G. L. Spicer, S. M. Azarin, J. Yi, S. T. Young, R. Ellis, G. M. Bauer, L. D. Shea, and V. Backman, “Detection of extracellular matrix modification in cancer models with inverse spectroscopic optical coherence tomography,” Phys. Med. Biol. 61(19), 6892–6904 (2016).

Srinivasan, V.

Stamper, D. L.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).

Stern, R. A.

R. A. Ganz, D. S. Utley, R. A. Stern, J. Jackson, K. P. Batts, and P. Termin, “Complete ablation of esophageal epithelium with a balloon-based bipolar electrode: a phased evaluation in the porcine and in the human esophagus,” Gastrointest. Endosc. 60(6), 1002–1010 (2004).

Stier, M. W.

M. W. Stier, V. J. Konda, J. Hart, and I. Waxman, “Post-ablation surveillance in Barrett’s esophagus: A review of the literature,” World J. Gastroenterol. 22(17), 4297–4306 (2016).

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Swager, A.-F.

A.-F. Swager, D. J. Faber, D. M. de Bruin, B. L. Weusten, S. L. Meijer, J. J. Bergman, W. L. Curvers, and T. G. van Leeuwen, “Quantitative attenuation analysis for identification of early Barrett’s neoplasia in volumetric laser endomicroscopy,” J. Biomed. Opt. 22(8), 086001 (2017).

A.-F. Swager, D. F. Boerwinkel, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, B. L. Weusten, S. L. Meijer, J. J. Bergman, and W. L. Curvers, “Detection of buried Barrett’s glands after radiofrequency ablation with volumetric laser endomicroscopy,” Gastrointest. Endosc. 83(1), 80–88 (2016).

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Swartling, J.

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).

Tabuse, K.

T. Ozaki, K. Tabuse, T. Tsuji, Y. Nakamura, K. Kakudo, and I. Mori, “Microwave cell death: Enzyme histochemical evaluation for metastatic carcinoma of the liver,” Pathol. Int. 53(12), 837–845 (2003).

Taflove, A.

Tao, Y. K.

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

Tearney, G.

Termin, P.

R. A. Ganz, D. S. Utley, R. A. Stern, J. Jackson, K. P. Batts, and P. Termin, “Complete ablation of esophageal epithelium with a balloon-based bipolar electrode: a phased evaluation in the porcine and in the human esophagus,” Gastrointest. Endosc. 60(6), 1002–1010 (2004).

Torzilli, P. A.

M. S. Wall, X.-H. Deng, P. A. Torzilli, S. B. Doty, S. J. O’Brien, and R. F. Warren, “Thermal modification of collagen,” J. Shoulder Elbow Surg. 8(4), 339–344 (1999).

Triadafilopoulos, G.

J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).

Tromberg, B. J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).

Tsai, T.-H.

H.-C. Lee, O. O. Ahsen, J. J. Liu, T.-H. Tsai, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography,” J. Biomed. Opt. 22(7), 076001 (2017).

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

Tsuji, T.

T. Ozaki, K. Tabuse, T. Tsuji, Y. Nakamura, K. Kakudo, and I. Mori, “Microwave cell death: Enzyme histochemical evaluation for metastatic carcinoma of the liver,” Pathol. Int. 53(12), 837–845 (2003).

Tuttle, R.

R. Tuttle, S. J. Nurkin, and S. N. Hochwald, “Ablative therapy for esophageal dysplasia and early malignancy: focus on RFA,” BioMed Res. Int. 2014, 642063 (2014).

Utley, D. S.

R. A. Ganz, D. S. Utley, R. A. Stern, J. Jackson, K. P. Batts, and P. Termin, “Complete ablation of esophageal epithelium with a balloon-based bipolar electrode: a phased evaluation in the porcine and in the human esophagus,” Gastrointest. Endosc. 60(6), 1002–1010 (2004).

Vacková, Z.

J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).

Valitova, E.

J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).

van der Horst, S.

J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).

van der Meer, F.

van Leeuwen, T.

van Leeuwen, T. G.

A.-F. Swager, D. J. Faber, D. M. de Bruin, B. L. Weusten, S. L. Meijer, J. J. Bergman, W. L. Curvers, and T. G. van Leeuwen, “Quantitative attenuation analysis for identification of early Barrett’s neoplasia in volumetric laser endomicroscopy,” J. Biomed. Opt. 22(8), 086001 (2017).

A.-F. Swager, D. F. Boerwinkel, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, B. L. Weusten, S. L. Meijer, J. J. Bergman, and W. L. Curvers, “Detection of buried Barrett’s glands after radiofrequency ablation with volumetric laser endomicroscopy,” Gastrointest. Endosc. 83(1), 80–88 (2016).

Vermeer, K. A.

Vitkin, A.

I. Ahmad, A. Gribble, I. Murtza, M. Ikram, M. Pop, and A. Vitkin, “Polarization image segmentation of radiofrequency ablated porcine myocardial tissue,” PLoS One 12(4), e0175173 (2017).

Wall, M. S.

M. S. Wall, X.-H. Deng, P. A. Torzilli, S. B. Doty, S. J. O’Brien, and R. F. Warren, “Thermal modification of collagen,” J. Shoulder Elbow Surg. 8(4), 339–344 (1999).

Warren, R. F.

M. S. Wall, X.-H. Deng, P. A. Torzilli, S. B. Doty, S. J. O’Brien, and R. F. Warren, “Thermal modification of collagen,” J. Shoulder Elbow Surg. 8(4), 339–344 (1999).

Wax, A.

Waxman, I.

M. W. Stier, V. J. Konda, J. Hart, and I. Waxman, “Post-ablation surveillance in Barrett’s esophagus: A review of the literature,” World J. Gastroenterol. 22(17), 4297–4306 (2016).

Weda, J. J.

Weijs, T. J.

J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).

Westphal, V.

A. Das, M. V. Sivak, A. Chak, R. C. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointest. Endosc. 54(2), 219–224 (2001).

Weusten, B. L.

A.-F. Swager, D. J. Faber, D. M. de Bruin, B. L. Weusten, S. L. Meijer, J. J. Bergman, W. L. Curvers, and T. G. van Leeuwen, “Quantitative attenuation analysis for identification of early Barrett’s neoplasia in volumetric laser endomicroscopy,” J. Biomed. Opt. 22(8), 086001 (2017).

A.-F. Swager, D. F. Boerwinkel, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, B. L. Weusten, S. L. Meijer, J. J. Bergman, and W. L. Curvers, “Detection of buried Barrett’s glands after radiofrequency ablation with volumetric laser endomicroscopy,” Gastrointest. Endosc. 83(1), 80–88 (2016).

Wheatley, D. N.

D. N. Wheatley, C. Kerr, and D. W. Gregory, “Heat-induced damage to HeLa-S3 cells: correlation of viability, permeability, osmosensitivity, phase-contrast light-, scanning electron- and transmission electron-microscopical findings,” Int. J. Hyperthermia 5(2), 145–162 (1989).

White, M.

C. Hancock, N. Dharmasiri, C. I. Duff, and M. White, “New microwave antenna structures for treating gastro-oesophageal reflux disease (GERD),” IEEE Trans. Microw. Theory Tech. 61(5), 2242–2252 (2013).

Willis, J.

A. Das, M. V. Sivak, A. Chak, R. C. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointest. Endosc. 54(2), 219–224 (2001).

Wojtkowski, M.

Wong, R. C.

A. Das, M. V. Sivak, A. Chak, R. C. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointest. Endosc. 54(2), 219–224 (2001).

Yi, J.

Young, S. T.

G. L. Spicer, S. M. Azarin, J. Yi, S. T. Young, R. Ellis, G. M. Bauer, L. D. Shea, and V. Backman, “Detection of extracellular matrix modification in cancer models with inverse spectroscopic optical coherence tomography,” Phys. Med. Biol. 61(19), 6892–6904 (2016).

Yun, S.

Zhou, C.

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

Am. J. Gastroenterol. (1)

M. A. Eloubeidi, A. C. Mason, R. A. Desmond, and H. B. El-Serag, “Temporal trends (1973-1997) in survival of patients with esophageal adenocarcinoma in the United States: a glimmer of hope?” Am. J. Gastroenterol. 98(7), 1627–1633 (2003).

Ann. N. Y. Acad. Sci. (1)

J. Martínek, J. I. Akiyama, Z. Vacková, M. Furnari, E. Savarino, T. J. Weijs, E. Valitova, S. van der Horst, J. P. Ruurda, L. Goense, and G. Triadafilopoulos, “Current treatment options for esophageal diseases,” Ann. N. Y. Acad. Sci. 1381(1), 139–151 (2016).

BioMed Res. Int. (1)

R. Tuttle, S. J. Nurkin, and S. N. Hochwald, “Ablative therapy for esophageal dysplasia and early malignancy: focus on RFA,” BioMed Res. Int. 2014, 642063 (2014).

Biomed. Opt. Express (1)

Curr. Probl. Diagn. Radiol. (1)

C. L. Brace, “Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney, and Bone: What Are the Differences?” Curr. Probl. Diagn. Radiol. 38(3), 135–143 (2009).

Curr. Treat. Options Gastroenterol. (1)

K. Belghazi, I. Cipollone, J. J. G. H. M. Bergman, and R. E. Pouw, “Current Controversies in Radiofrequency Ablation Therapy for Barrett’s Esophagus,” Curr. Treat. Options Gastroenterol. 14(1), 1–18 (2016).

Gastrointest. Endosc. (4)

C. Zhou, T.-H. Tsai, H.-C. Lee, T. Kirtane, M. Figueiredo, Y. K. Tao, O. O. Ahsen, D. C. Adler, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos),” Gastrointest. Endosc. 76(1), 32–40 (2012).

A.-F. Swager, D. F. Boerwinkel, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, B. L. Weusten, S. L. Meijer, J. J. Bergman, and W. L. Curvers, “Detection of buried Barrett’s glands after radiofrequency ablation with volumetric laser endomicroscopy,” Gastrointest. Endosc. 83(1), 80–88 (2016).

R. A. Ganz, D. S. Utley, R. A. Stern, J. Jackson, K. P. Batts, and P. Termin, “Complete ablation of esophageal epithelium with a balloon-based bipolar electrode: a phased evaluation in the porcine and in the human esophagus,” Gastrointest. Endosc. 60(6), 1002–1010 (2004).

A. Das, M. V. Sivak, A. Chak, R. C. Wong, V. Westphal, A. M. Rollins, J. Willis, G. Isenberg, and J. A. Izatt, “High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS,” Gastrointest. Endosc. 54(2), 219–224 (2001).

IAP Res. Rep (1)

C. Mätzler, “MATLAB functions for Mie scattering and absorption, version 2,” IAP Res. Rep 8, 1–24 (2002).

IEEE Trans. Med. Imaging (1)

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).

IEEE Trans. Microw. Theory Tech. (1)

C. Hancock, N. Dharmasiri, C. I. Duff, and M. White, “New microwave antenna structures for treating gastro-oesophageal reflux disease (GERD),” IEEE Trans. Microw. Theory Tech. 61(5), 2242–2252 (2013).

Int. J. Hyperthermia (1)

D. N. Wheatley, C. Kerr, and D. W. Gregory, “Heat-induced damage to HeLa-S3 cells: correlation of viability, permeability, osmosensitivity, phase-contrast light-, scanning electron- and transmission electron-microscopical findings,” Int. J. Hyperthermia 5(2), 145–162 (1989).

J. Biomed. Opt. (4)

H.-C. Lee, O. O. Ahsen, J. J. Liu, T.-H. Tsai, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography,” J. Biomed. Opt. 22(7), 076001 (2017).

A.-F. Swager, D. J. Faber, D. M. de Bruin, B. L. Weusten, S. L. Meijer, J. J. Bergman, W. L. Curvers, and T. G. van Leeuwen, “Quantitative attenuation analysis for identification of early Barrett’s neoplasia in volumetric laser endomicroscopy,” J. Biomed. Opt. 22(8), 086001 (2017).

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 (2006).

R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt. 13, 041309 (2008).

J. Cancer (1)

V. Backman and H. K. Roy, “Advances in biophotonics detection of field carcinogenesis for colon cancer risk stratification,” J. Cancer 4(3), 251–261 (2013).

J. Opt. Soc. Am. A (1)

J. Shoulder Elbow Surg. (1)

M. S. Wall, X.-H. Deng, P. A. Torzilli, S. B. Doty, S. J. O’Brien, and R. F. Warren, “Thermal modification of collagen,” J. Shoulder Elbow Surg. 8(4), 339–344 (1999).

J. Surg. Res. (2)

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).

M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of Focal Heat Destruction of Liver Tumors,” J. Surg. Res. 127(2), 208–223 (2005).

Med. Biol. Eng. Comput. (1)

J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, “Changes in tissue optical properties due to radio-frequency ablation of myocardium,” Med. Biol. Eng. Comput. 41(4), 403–409 (2003).

Opt. Express (5)

Opt. Lett. (2)

Pathol. Int. (1)

T. Ozaki, K. Tabuse, T. Tsuji, Y. Nakamura, K. Kakudo, and I. Mori, “Microwave cell death: Enzyme histochemical evaluation for metastatic carcinoma of the liver,” Pathol. Int. 53(12), 837–845 (2003).

Phys. Med. Biol. (1)

G. L. Spicer, S. M. Azarin, J. Yi, S. T. Young, R. Ellis, G. M. Bauer, L. D. Shea, and V. Backman, “Detection of extracellular matrix modification in cancer models with inverse spectroscopic optical coherence tomography,” Phys. Med. Biol. 61(19), 6892–6904 (2016).

PLoS One (1)

I. Ahmad, A. Gribble, I. Murtza, M. Ikram, M. Pop, and A. Vitkin, “Polarization image segmentation of radiofrequency ablated porcine myocardial tissue,” PLoS One 12(4), e0175173 (2017).

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Surg. Endosc. (1)

B. J. Dunkin, J. Martinez, P. A. Bejarano, C. D. Smith, K. Chang, A. S. Livingstone, and W. S. Melvin, “Thin-layer ablation of human esophageal epithelium using a bipolar radiofrequency balloon device,” Surg. Endosc. 20(1), 125–130 (2006).

World J. Gastroenterol. (2)

R. M. Eisele, “Advances in local ablation of malignant liver lesions,” World J. Gastroenterol. 22(15), 3885–3891 (2016).

M. W. Stier, V. J. Konda, J. Hart, and I. Waxman, “Post-ablation surveillance in Barrett’s esophagus: A review of the literature,” World J. Gastroenterol. 22(17), 4297–4306 (2016).

Other (4)

J. K. Barton, “Dynamic changes in optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue (Springer, 2010), pp. 321–349.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 1980).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2015).

W. A. Welge and J. K. Barton, “Optical coherence tomography imaging of colonic crypts in a mouse model of colorectal cancer,” in SPIE BiOS (International Society for Optics and Photonics2016), pp. 96910V–96910V–96916.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic illustration of methods: (a): ex-vivo ablation of swine esophagus, OCT B-scans that are acquired with the NIR (b) and visible light OCT systems(c), TTC staining (d) of the sample and the H&E staining of normal and ablated tissues (e).
Fig. 2
Fig. 2 Schematic of the free-space visible OCT system.
Fig. 3
Fig. 3 The image processing procedure begins by subtracting the mean B-scan interferogram from each A-line interferogram (Idet), isolating the desired signal, Iac, from the source spectrum. This subtraction eliminates the DC term in the interference equation (Eq. (1). The A-line image is then calculated by taking the Fourier Transform of Iac. The system noise floor, I(z)noise, is determined by fitting an image of glass, I(z)glass. I(z)noise is subtracted from I(z) before applying fall-off corrections to I(z). The spectrometer fall-off correction (blue) is fixed while the confocal roll-off correction (red) is centered at the focal position, which must be known when imaging. The final image intensity is well-corrected until the noise floor of the image is encountered at the limit of imaging depth.
Fig. 4
Fig. 4 (a) Normal esophagus H&E staining, (c) visible and (e) NIR OCT images from different tissue sites. Ablated tissue imaged by (b) H&E staining, (d) visible and (f) NIR OCT. The ablation zone becomes apparent in OCT due to increased backscattering which displays as higher intensity in the image. All scale bars represent 300 μm in each direction. All zoomed insets are approximately 125 μm axially and 800 μm laterally.
Fig. 5
Fig. 5 OCT image of polystyrene/water phantoms (a) with good uniformity across the sample (b). Measured vs. predicted scattering values for NIR (c) and visible (d) OCT systems showed good agreement and linear trends. Predicted scattering values were computed from Mie theory using polystyrene sphere size and concentration in water.
Fig. 6
Fig. 6 Intensity OCT images of the different scattering phantoms (top). Depth-resolved determination of scattering demonstrates uniform scattering within phantoms throughout the available depth (bottom). Axis of scattering graph in cm−1 and shows good agreement between predicted and measured μs when averaged and adjusted for smoothing.
Fig. 7
Fig. 7 A maximum intensity plot (left) demonstrates the increase in backscattering while a scattering map (right) shows increased attenuation in the leasion which was not found to correlate to surface location. Blue pixels indicate locations where either surface location or fitting failed.
Fig. 8
Fig. 8 OCT intensity images (left) and μs(z) images (right) demonstrates changes in tissue scattering after ablation. In normal OCT B-scan images, pixel intensity is proportional to the backscattering, μb(z), which demonstrates increased backscattering in ablation. Scattering maps of 20 second ablations (b,f) show less contrast between normal and ablated tissue as compared to 40 second ablations (d,h). Visible OCT images (a-d) show grater detail due to increased μs in both normal and ablated tissue, however NIR images had a larger FOV (e-h). Heatmap colorbar scaled between 0 and 800 cm−1.

Tables (2)

Tables Icon

Table 1 OCT system comparison

Tables Icon

Table 2 Optical properties relative to non-ablated tissue (normal) samples.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I det =  | E r + E s | 2  =  E r E r * + E s E s * + E r E s * + E s E r *
I cross =  E r E s * + E s E r * =  n=1 N I R I S [ exp( i2ϕ( k, z ) )+exp( i2ϕ( k, z ) ) ]
I R =  I 0 R
I S =  I 0 μ b ( z )exp( 2zn μ s ( z ) )
I OCT = F( I cross )=2 I 0 R I 0 μ b ( z )exp( 2zn μ s ( z ) )
I 2 ( z )=4 I 0 2 R μ b ( z )exp( 2zn μ s ( z ) )

Metrics