Abstract

For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin

Mooseok Jang, Haowen Ruan, Ivo M. Vellekoop, Benjamin Judkewitz, Euiheon Chung, and Changhuei Yang
Biomed. Opt. Express 6(1) 72-85 (2015)

Focusing through dynamic tissue with millisecond digital optical phase conjugation

Daifa Wang, Edward Haojiang Zhou, Joshua Brake, Haowen Ruan, Mooseok Jang, and Changhuei Yang
Optica 2(8) 728-735 (2015)

Digital phase conjugate mirror by parallel arrangement of two phase-only spatial light modulators

Atsushi Shibukawa, Atsushi Okamoto, Yuta Goto, Satoshi Honma, and Akihisa Tomita
Opt. Express 22(10) 11918-11929 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2(1), 748 (2012).
    [Crossref] [PubMed]
  2. I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
    [Crossref] [PubMed]
  3. T. Hillman, T. Yamauchi, W. Choi, R. Dasari, Z. Yaqoob, and Y. Park, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” in Asia Communications and Photonics Conference 2013 OSA Technical Digest (Optical Society of America, 2013), paper AF1 J.2.
    [Crossref]
  4. Y. Suzuki, J. W. Tay, Q. Yang, and L. V. Wang, “Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation,” Opt. Lett. 39(12), 3441–3444 (2014).
    [Crossref] [PubMed]
  5. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
    [Crossref] [PubMed]
  6. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
    [Crossref] [PubMed]
  7. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
    [Crossref] [PubMed]
  8. H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative time-reversed ultrasonically encoded light focusing in backscattering mode,” Sci. Rep. 4(1), 7156 (2015).
    [Crossref] [PubMed]
  9. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
    [Crossref] [PubMed]
  10. M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
    [Crossref] [PubMed]
  11. P. Lai, X. Xu, H. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16(8), 080505 (2011).
    [Crossref] [PubMed]
  12. Q. Yang, X. Xu, P. Lai, D. Xu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution,” J. Biomed. Opt. 18(11), 110502 (2013).
    [Crossref] [PubMed]
  13. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
    [Crossref] [PubMed]
  14. E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).
    [Crossref] [PubMed]
  15. C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
    [Crossref] [PubMed]
  16. Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21(8), 085001 (2016).
    [Crossref] [PubMed]
  17. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
    [Crossref] [PubMed]
  18. M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
    [Crossref] [PubMed]
  19. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
    [Crossref] [PubMed]
  20. A. Shibukawa, A. Okamoto, Y. Goto, S. Honma, and A. Tomita, “Digital phase conjugate mirror by parallel arrangement of two phase-only spatial light modulators,” Opt. Express 22(10), 11918–11929 (2014).
    [Crossref] [PubMed]
  21. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [Crossref] [PubMed]
  22. G. Marquez, L. V. Wang, S. P. Lin, J. A. Schwartz, and S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37(4), 798–804 (1998).
    [Crossref] [PubMed]
  23. M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, “Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin,” Biomed. Opt. Express 6(1), 72–85 (2015).
    [Crossref] [PubMed]
  24. A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, and K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express 19(14), 13436–13444 (2011).
    [Crossref] [PubMed]
  25. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20(14), 15086–15092 (2012).
    [Crossref] [PubMed]
  26. T. Laforest, A. Dupret, A. Verdant, F. Ramaz, S. Gigan, G. Tessier, and E. B. A. La Guillaume, “A 4000 Hz CMOS image sensor with in-pixel processing for light measurement and modulation,” New Circuits and Systems Conf. (NEWCAS), IEEE 11th Intl. 1–4 (2013).
  27. D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
    [Crossref] [PubMed]

2016 (1)

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21(8), 085001 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (5)

2013 (2)

Q. Yang, X. Xu, P. Lai, D. Xu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution,” J. Biomed. Opt. 18(11), 110502 (2013).
[Crossref] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

2012 (5)

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2(1), 748 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref] [PubMed]

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20(14), 15086–15092 (2012).
[Crossref] [PubMed]

2011 (3)

A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, and K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express 19(14), 13436–13444 (2011).
[Crossref] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

P. Lai, X. Xu, H. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16(8), 080505 (2011).
[Crossref] [PubMed]

2010 (3)

2008 (1)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

1998 (1)

1997 (1)

Bifano, T.

Brake, J.

Chung, E.

Cui, M.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2(1), 748 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
[Crossref] [PubMed]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[Crossref] [PubMed]

Dimarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref] [PubMed]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2(1), 748 (2012).
[Crossref] [PubMed]

Goto, Y.

Grange, R.

Hoffman, S.

Honma, S.

Horstmeyer, R.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Hsieh, C. L.

Jang, M.

Judkewitz, B.

M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, “Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin,” Biomed. Opt. Express 6(1), 72–85 (2015).
[Crossref] [PubMed]

H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative time-reversed ultrasonically encoded light focusing in backscattering mode,” Sci. Rep. 4(1), 7156 (2015).
[Crossref] [PubMed]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).
[Crossref] [PubMed]

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref] [PubMed]

Kunori, K.

Lai, P.

Q. Yang, X. Xu, P. Lai, D. Xu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution,” J. Biomed. Opt. 18(11), 110502 (2013).
[Crossref] [PubMed]

P. Lai, X. Xu, H. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16(8), 080505 (2011).
[Crossref] [PubMed]

Lin, S. P.

Liu, H.

P. Lai, X. Xu, H. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16(8), 080505 (2011).
[Crossref] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Liu, Y.

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21(8), 085001 (2016).
[Crossref] [PubMed]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref] [PubMed]

Lu, Y.

Ma, C.

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21(8), 085001 (2016).
[Crossref] [PubMed]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref] [PubMed]

Marquez, G.

Mathy, A.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

McDowell, E. J.

Moore, J.

Okamoto, A.

Paxman, R.

Psaltis, D.

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Pu, Y.

Ruan, H.

Sato, K.

Schwartz, J. A.

Shen, Y.

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21(8), 085001 (2016).
[Crossref] [PubMed]

Shibukawa, A.

Si, K.

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2(1), 748 (2012).
[Crossref] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

Stockbridge, C.

Suzuki, Y.

Y. Suzuki, J. W. Tay, Q. Yang, and L. V. Wang, “Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation,” Opt. Lett. 39(12), 3441–3444 (2014).
[Crossref] [PubMed]

P. Lai, X. Xu, H. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16(8), 080505 (2011).
[Crossref] [PubMed]

Takabayashi, M.

Tay, J. W.

Thomsen, S. L.

Tomita, A.

Toussaint, K.

Vellekoop, I. M.

Wang, D.

Wang, L. V.

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21(8), 085001 (2016).
[Crossref] [PubMed]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref] [PubMed]

Y. Suzuki, J. W. Tay, Q. Yang, and L. V. Wang, “Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation,” Opt. Lett. 39(12), 3441–3444 (2014).
[Crossref] [PubMed]

Q. Yang, X. Xu, P. Lai, D. Xu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution,” J. Biomed. Opt. 18(11), 110502 (2013).
[Crossref] [PubMed]

P. Lai, X. Xu, H. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16(8), 080505 (2011).
[Crossref] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

G. Marquez, L. V. Wang, S. P. Lin, J. A. Schwartz, and S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37(4), 798–804 (1998).
[Crossref] [PubMed]

Wang, Y. M.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref] [PubMed]

Xu, D.

Q. Yang, X. Xu, P. Lai, D. Xu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution,” J. Biomed. Opt. 18(11), 110502 (2013).
[Crossref] [PubMed]

Xu, X.

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref] [PubMed]

Q. Yang, X. Xu, P. Lai, D. Xu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution,” J. Biomed. Opt. 18(11), 110502 (2013).
[Crossref] [PubMed]

P. Lai, X. Xu, H. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16(8), 080505 (2011).
[Crossref] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Yamaguchi, I.

Yang, C.

H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative time-reversed ultrasonically encoded light focusing in backscattering mode,” Sci. Rep. 4(1), 7156 (2015).
[Crossref] [PubMed]

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
[Crossref] [PubMed]

M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, “Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin,” Biomed. Opt. Express 6(1), 72–85 (2015).
[Crossref] [PubMed]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).
[Crossref] [PubMed]

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
[Crossref] [PubMed]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yang, Q.

Y. Suzuki, J. W. Tay, Q. Yang, and L. V. Wang, “Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation,” Opt. Lett. 39(12), 3441–3444 (2014).
[Crossref] [PubMed]

Q. Yang, X. Xu, P. Lai, D. Xu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution,” J. Biomed. Opt. 18(11), 110502 (2013).
[Crossref] [PubMed]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Zhang, T.

Zhou, E. H.

Zhou, H.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

J. Biomed. Opt. (3)

P. Lai, X. Xu, H. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16(8), 080505 (2011).
[Crossref] [PubMed]

Q. Yang, X. Xu, P. Lai, D. Xu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution,” J. Biomed. Opt. 18(11), 110502 (2013).
[Crossref] [PubMed]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21(8), 085001 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref] [PubMed]

Nat. Photonics (5)

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (2)

Optica (2)

Sci. Rep. (2)

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2(1), 748 (2012).
[Crossref] [PubMed]

H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative time-reversed ultrasonically encoded light focusing in backscattering mode,” Sci. Rep. 4(1), 7156 (2015).
[Crossref] [PubMed]

Other (2)

T. Hillman, T. Yamauchi, W. Choi, R. Dasari, Z. Yaqoob, and Y. Park, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” in Asia Communications and Photonics Conference 2013 OSA Technical Digest (Optical Society of America, 2013), paper AF1 J.2.
[Crossref]

T. Laforest, A. Dupret, A. Verdant, F. Ramaz, S. Gigan, G. Tessier, and E. B. A. La Guillaume, “A 4000 Hz CMOS image sensor with in-pixel processing for light measurement and modulation,” New Circuits and Systems Conf. (NEWCAS), IEEE 11th Intl. 1–4 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Digital phase-conjugate light generation system: (a) phase-only modulation and (b) phase and intensity modulation.
Fig. 2
Fig. 2 Principle of phase-conjugate light generation with intensity modulation: (a) intensity recording, (b) phase recording, (c) generation of intensity modulated phase-conjugate light.
Fig. 3
Fig. 3 Experimental system to restore the incident light shape from scattered light: (a) intensity recording, (b) phase recording, and (c) generation of intensity and phase modulated light.
Fig. 4
Fig. 4 Verification for generation of phase-conjugate light: (a) incident light pattern, (b) observed image with no restoration (NoM, SBR = 1.25, CC = 0.27), (c) image with phase-conjugate and intensity modulation (PIM, SBR = 2.09, CC = 0.55), (d)–(f) horizontal profiles at the center of (a)–(c), (g) conjugate phase pattern of P-SLM, and (h) intensity pattern of I-SLM.
Fig. 5
Fig. 5 Contribution of intensity and phase components on scattering suppression using phase-conjugate light: (a) incident light pattern, (b) observed image with phase-conjugate modulation (PM, SBR = 1.62, CC = 0.33), (c) observed image with intensity modulation (IM, SBR = 1.86, CC = 0.46), (d) image with phase-conjugate and intensity modulation (PIM, SBR = 2.72, CC = 0.65), (e)–(h) horizontal profiles at the center of (a)–(d), (i) conjugate phase pattern of P-SLM, and (j) intensity pattern of I-SLM.
Fig. 6
Fig. 6 Dependence of restored image on reduced scattering coefficient of a turbid medium: (a) incident light pattern, (b)–(e) observed images with phase-conjugate and no intensity modulation (PM), and (f)–(j) observed images with phase-conjugate and intensity modulation (PIM).
Fig. 7
Fig. 7 Animal tissue sample (chicken breast meat): (a) front view of sample structure, (b) side view of sample structure, and (c) appearance.
Fig. 8
Fig. 8 Verification for the influence of the intensity component on an animal sample: (a) incident light pattern, (b) observed image with phase-conjugate modulation (PM, SBR = 1.31, CC = 0.18), (c) image with phase-conjugate and intensity modulation (PIM, SBR = 3.28, CC = 0.51), (d)–(f) horizontal profiles at the center of (a)–(c).

Metrics