Abstract

A robust modelling method was proposed to extract chromophore information in multi-layered skin tissue with spatially-resolved diffuse reflectance spectroscopy. Artificial neural network models trained with a pre-simulated database were first built to map geometric and optical parameters into diffuse reflectance spectra. Nine fitting parameters including chromophore concentrations and oxygen saturation were then determined by solving the inverse problem of fitting spectral measurements from three different parts of the skin. Compared to the Monte Carlo simulation accelerated by a graphics processing unit, the proposed modelling method not only reduced the computation time, but also achieved a better fitting performance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Portable handheld diffuse reflectance spectroscopy system for clinical evaluation of skin: a pilot study in psoriasis patients

Shih-Yu Tzeng, Jean-Yan Guo, Chao-Chun Yang, Chao-Kai Hsu, Hung Ji Huang, Shih-Jie Chou, Chi-Hung Hwang, and Sheng-Hao Tseng
Biomed. Opt. Express 7(2) 616-628 (2016)

Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling

Dmitry Yudovsky and Anthony J. Durkin
Appl. Opt. 50(21) 4237-4245 (2011)

Toward reliable retrieval of functional information of papillary dermis using spatially resolved diffuse reflectance spectroscopy

Yu-Wen Chen, Jun-Yen Guo, Shih-Yu Tzeng, Ting-Chun Chou, Ming-Jen Lin, Lynn Ling-Huei Huang, Chao-Chun Yang, Chao-Kai Hsu, and Sheng-Hao Tseng
Biomed. Opt. Express 7(2) 542-558 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42(5), 803–814 (1997).
    [Crossref] [PubMed]
  2. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
    [Crossref] [PubMed]
  3. I. J. Bigio and S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3(3), 259–267 (2004).
    [Crossref] [PubMed]
  4. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
    [Crossref] [PubMed]
  5. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2015).
  6. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: theory,” Appl. Opt. 22(16), 2456–2462 (1983).
    [Crossref] [PubMed]
  7. L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  8. C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 50902 (2013).
    [Crossref] [PubMed]
  9. D. Yudovsky and L. Pilon, “Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media,” Appl. Opt. 48(35), 6670–6683 (2009).
    [Crossref] [PubMed]
  10. D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010).
    [Crossref] [PubMed]
  11. I. Fredriksson, M Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
    [Crossref] [PubMed]
  12. X. Zhong, X. Wen, and D. Zhu, “Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments,” Opt. Express 22(2), 1852–1864 (2014).
    [Crossref] [PubMed]
  13. M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40–53 (2014).
    [Crossref] [PubMed]
  14. Q. Wang, D. Le, J. Ramella-Roman, and J. Pfefer, “Broadband ultraviolet-visible optical property measurement in layered turbid media,” Biomed. Opt. Express 3(6), 1226–1240 (2012).
    [Crossref] [PubMed]
  15. D. Yudovsky and A. J. Durkin, “Spatial frequency domain spectroscopy of two layer media,” J. Biomed. Opt. 16(10), 107005 (2011).
    [Crossref] [PubMed]
  16. D. Yudovsky, J. Q. Nguyen, and A. J. Durkin, “In vivo spatial frequency domain spectroscopy of two layer media,” J. Biomed. Opt. 17(10), 107006 (2012).
    [Crossref] [PubMed]
  17. Y. H. Liao, S. Y. Chen, S. Y. Chou, P. H. Wang, M. R. Tsai, and C. K. Sun, “Determination of chronological aging parameters in epidermal keratinocytes by in vivo harmonic generation microscopy,” Biomed. Opt. Express 4(1), 77–88 (2013).
    [Crossref] [PubMed]
  18. Y. H. Hsiao, G. H. Tien, M. J. Chuang, F. W. Hsu, H. P. Hsieh, and K. B. Sung, “Development of a movable diffuse reflectance spectroscopy system for clinical study of esophageal precancer,” Proc. SPIE 9537, 95371Q (2015).
    [Crossref]
  19. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
    [Crossref]
  20. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  21. K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
    [Crossref] [PubMed]
  22. L. Wang and S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C (Anderson Cancer Center, University of Texas M. P. Anderson Cancer Center, Houston, Texas, 1992).
  23. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
    [Crossref]
  24. J. W. Su, W. C. Hsu, J. W. Tjiu, C. P. Chiang, C. W. Huang, and K. B. Sung, “Investigation of influences of the paraformaldehyde fixation and paraffin embedding removal process on refractive indices and scattering properties of epithelial cells,” J. Biomed. Opt. 19(7), 75007 (2014).
    [Crossref] [PubMed]
  25. I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
    [Crossref] [PubMed]
  26. J. Qu, C. Macaulay, S. Lam, and B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33(31), 7397–7405 (1994).
    [Crossref] [PubMed]
  27. S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
    [Crossref] [PubMed]
  28. A. S. Nunez, “A physical model of human skin and its application for search and rescue,” (DTIC Document, 2009).
  29. H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
    [Crossref]
  30. S. Prahl, “Optical absorption of hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/hemestruct/index.html .
  31. S. L. Jacques, “Origins of tissue optical properties in the UVA, visible, and NIR regions,” OSA TOPS on Advances in Optical Imaging and Photon Migration, Vol. 2, R. R. Alfano and James G. Fujimoto, eds. (Optical Society of America, 1996), pp. 364–371.
  32. K. B. Sung and H. H. Chen, “Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study,” J. Biomed. Opt. 17(10), 107003 (2012).
    [Crossref] [PubMed]
  33. K. B. Sung, K. W. Shih, F. W. Hsu, H. P. Hsieh, M. J. Chuang, Y. H. Hsiao, Y. H. Su, and G. H. Tien, “Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra,” J. Biomed. Opt. 19(7), 077002 (2014).
    [Crossref]
  34. T. Y. Tseng, C. Y. Chen, Y. S. Li, and K. B. Sung, “Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy,” Biomed. Opt. Express 2(4), 901–914 (2011).
    [Crossref] [PubMed]
  35. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
    [Crossref] [PubMed]
  36. R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
    [Crossref] [PubMed]
  37. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
    [Crossref] [PubMed]
  38. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
    [Crossref] [PubMed]
  39. D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
    [Crossref] [PubMed]
  40. D. Warncke, E. Lewis, S. Lochmann, and M. Leahy, “A neural network based approach for determination of optical scattering and absorption coefficients of biological tissue,” J. Phys.: Conf. Ser. 178, 012047 (2009).
  41. L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
    [Crossref]
  42. Q. Wang, K. Shastri, and T. J. Pfefer, “Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue,” Appl. Opt. 49(28), 5309–5320 (2010).
    [Crossref] [PubMed]
  43. Y. W. Chen and S. H. Tseng, “Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties,” Biomed. Opt. Express 6(3), 747–760 (2015).
    [Crossref] [PubMed]
  44. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
    [Crossref] [PubMed]
  45. G. Zonios and A. Dimou, “Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study,” Biomed. Opt. Express 2(12), 3284–3294 (2011).
    [Crossref] [PubMed]
  46. G. Mantis and G. Zonios, “Simple two-layer reflectance model for biological tissue applications,” Appl. Opt. 48(18), 3490–3496 (2009).
    [Crossref] [PubMed]
  47. G. Zonios and A. Dimou, “Simple two-layer reflectance model for biological tissue applications: lower absorbing layer,” Appl. Opt. 49(27), 5026–5031 (2010).
    [Crossref] [PubMed]
  48. Y. W. Chen, C. C. Chen, P. J. Huang, and S. H. Tseng, “Artificial neural networks for retrieving absorption and reduced scattering spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation,” Biomed. Opt. Express 7(4), 1496–1510 (2016).
    [Crossref] [PubMed]
  49. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
    [Crossref] [PubMed]
  50. N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4(6), 938–949 (2013).
    [Crossref] [PubMed]

2016 (1)

2015 (3)

Y. W. Chen and S. H. Tseng, “Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties,” Biomed. Opt. Express 6(3), 747–760 (2015).
[Crossref] [PubMed]

Y. H. Hsiao, G. H. Tien, M. J. Chuang, F. W. Hsu, H. P. Hsieh, and K. B. Sung, “Development of a movable diffuse reflectance spectroscopy system for clinical study of esophageal precancer,” Proc. SPIE 9537, 95371Q (2015).
[Crossref]

K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
[Crossref] [PubMed]

2014 (4)

J. W. Su, W. C. Hsu, J. W. Tjiu, C. P. Chiang, C. W. Huang, and K. B. Sung, “Investigation of influences of the paraformaldehyde fixation and paraffin embedding removal process on refractive indices and scattering properties of epithelial cells,” J. Biomed. Opt. 19(7), 75007 (2014).
[Crossref] [PubMed]

K. B. Sung, K. W. Shih, F. W. Hsu, H. P. Hsieh, M. J. Chuang, Y. H. Hsiao, Y. H. Su, and G. H. Tien, “Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra,” J. Biomed. Opt. 19(7), 077002 (2014).
[Crossref]

X. Zhong, X. Wen, and D. Zhu, “Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments,” Opt. Express 22(2), 1852–1864 (2014).
[Crossref] [PubMed]

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40–53 (2014).
[Crossref] [PubMed]

2013 (5)

Y. H. Liao, S. Y. Chen, S. Y. Chou, P. H. Wang, M. R. Tsai, and C. K. Sun, “Determination of chronological aging parameters in epidermal keratinocytes by in vivo harmonic generation microscopy,” Biomed. Opt. Express 4(1), 77–88 (2013).
[Crossref] [PubMed]

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 50902 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4(6), 938–949 (2013).
[Crossref] [PubMed]

2012 (4)

K. B. Sung and H. H. Chen, “Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study,” J. Biomed. Opt. 17(10), 107003 (2012).
[Crossref] [PubMed]

D. Yudovsky, J. Q. Nguyen, and A. J. Durkin, “In vivo spatial frequency domain spectroscopy of two layer media,” J. Biomed. Opt. 17(10), 107006 (2012).
[Crossref] [PubMed]

I. Fredriksson, M Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[Crossref] [PubMed]

Q. Wang, D. Le, J. Ramella-Roman, and J. Pfefer, “Broadband ultraviolet-visible optical property measurement in layered turbid media,” Biomed. Opt. Express 3(6), 1226–1240 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (4)

2009 (4)

D. Yudovsky and L. Pilon, “Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media,” Appl. Opt. 48(35), 6670–6683 (2009).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

D. Warncke, E. Lewis, S. Lochmann, and M. Leahy, “A neural network based approach for determination of optical scattering and absorption coefficients of biological tissue,” J. Phys.: Conf. Ser. 178, 012047 (2009).

G. Mantis and G. Zonios, “Simple two-layer reflectance model for biological tissue applications,” Appl. Opt. 48(18), 3490–3496 (2009).
[Crossref] [PubMed]

2008 (3)

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[Crossref]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
[Crossref] [PubMed]

2004 (1)

I. J. Bigio and S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3(3), 259–267 (2004).
[Crossref] [PubMed]

2003 (2)

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[Crossref] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

2002 (1)

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

1997 (1)

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42(5), 803–814 (1997).
[Crossref] [PubMed]

1996 (1)

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1994 (2)

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

J. Qu, C. Macaulay, S. Lam, and B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33(31), 7397–7405 (1994).
[Crossref] [PubMed]

1991 (1)

S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[Crossref] [PubMed]

1983 (1)

A’Amar, O.

Agrawal, A.

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
[Crossref] [PubMed]

Alerstam, E.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[Crossref]

Andersson-Engels, S.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[Crossref]

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Banda, A.

K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

Bassukas, I.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Bedard, N.

Bennett, C. L.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Bhattar, V.

Bigio, I. J.

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
[Crossref] [PubMed]

I. J. Bigio and S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3(3), 259–267 (2004).
[Crossref] [PubMed]

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42(5), 803–814 (1997).
[Crossref] [PubMed]

Bown, S. G.

I. J. Bigio and S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3(3), 259–267 (2004).
[Crossref] [PubMed]

Buiteveld, H.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

Calva, D.

K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
[Crossref] [PubMed]

Chaudhry, M. R.

K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
[Crossref] [PubMed]

Chen, C. C.

Chen, C. Y.

Chen, H. H.

K. B. Sung and H. H. Chen, “Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study,” J. Biomed. Opt. 17(10), 107003 (2012).
[Crossref] [PubMed]

Chen, S. Y.

Chen, Y. W.

Chiang, C. P.

J. W. Su, W. C. Hsu, J. W. Tjiu, C. P. Chiang, C. W. Huang, and K. B. Sung, “Investigation of influences of the paraformaldehyde fixation and paraffin embedding removal process on refractive indices and scattering properties of epithelial cells,” J. Biomed. Opt. 19(7), 75007 (2014).
[Crossref] [PubMed]

Chopra, K

K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
[Crossref] [PubMed]

Chou, S. Y.

Christy, M. R.

K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
[Crossref] [PubMed]

Chuang, M. J.

Y. H. Hsiao, G. H. Tien, M. J. Chuang, F. W. Hsu, H. P. Hsieh, and K. B. Sung, “Development of a movable diffuse reflectance spectroscopy system for clinical study of esophageal precancer,” Proc. SPIE 9537, 95371Q (2015).
[Crossref]

K. B. Sung, K. W. Shih, F. W. Hsu, H. P. Hsieh, M. J. Chuang, Y. H. Hsiao, Y. H. Su, and G. H. Tien, “Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra,” J. Biomed. Opt. 19(7), 077002 (2014).
[Crossref]

Cuccia, D. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

De La Cruz, C.

K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
[Crossref] [PubMed]

Dimou, A.

Donze, M.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

Drachenberg, C. B.

K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
[Crossref] [PubMed]

Durkin, A. J.

D. Yudovsky, J. Q. Nguyen, and A. J. Durkin, “In vivo spatial frequency domain spectroscopy of two layer media,” J. Biomed. Opt. 17(10), 107006 (2012).
[Crossref] [PubMed]

D. Yudovsky and A. J. Durkin, “Spatial frequency domain spectroscopy of two layer media,” J. Biomed. Opt. 16(10), 107005 (2011).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

Ediger, M. N.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

Ferwerda, H. A.

Fredriksson, I.

I. Fredriksson, M Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[Crossref] [PubMed]

Galaris, D.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Gall, J. A.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

Gillenwater, A. M.

Groenhuis, R. A. J.

Hakvoort, J. H. M.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

Hennessy, R.

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40–53 (2014).
[Crossref] [PubMed]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

Hibst, R.

Howe, J.

Hsiao, Y. H.

Y. H. Hsiao, G. H. Tien, M. J. Chuang, F. W. Hsu, H. P. Hsieh, and K. B. Sung, “Development of a movable diffuse reflectance spectroscopy system for clinical study of esophageal precancer,” Proc. SPIE 9537, 95371Q (2015).
[Crossref]

K. B. Sung, K. W. Shih, F. W. Hsu, H. P. Hsieh, M. J. Chuang, Y. H. Hsiao, Y. H. Su, and G. H. Tien, “Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra,” J. Biomed. Opt. 19(7), 077002 (2014).
[Crossref]

Hsieh, H. P.

Y. H. Hsiao, G. H. Tien, M. J. Chuang, F. W. Hsu, H. P. Hsieh, and K. B. Sung, “Development of a movable diffuse reflectance spectroscopy system for clinical study of esophageal precancer,” Proc. SPIE 9537, 95371Q (2015).
[Crossref]

K. B. Sung, K. W. Shih, F. W. Hsu, H. P. Hsieh, M. J. Chuang, Y. H. Hsiao, Y. H. Su, and G. H. Tien, “Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra,” J. Biomed. Opt. 19(7), 077002 (2014).
[Crossref]

Hsu, F. W.

Y. H. Hsiao, G. H. Tien, M. J. Chuang, F. W. Hsu, H. P. Hsieh, and K. B. Sung, “Development of a movable diffuse reflectance spectroscopy system for clinical study of esophageal precancer,” Proc. SPIE 9537, 95371Q (2015).
[Crossref]

K. B. Sung, K. W. Shih, F. W. Hsu, H. P. Hsieh, M. J. Chuang, Y. H. Hsiao, Y. H. Su, and G. H. Tien, “Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra,” J. Biomed. Opt. 19(7), 077002 (2014).
[Crossref]

Hsu, W. C.

J. W. Su, W. C. Hsu, J. W. Tjiu, C. P. Chiang, C. W. Huang, and K. B. Sung, “Investigation of influences of the paraformaldehyde fixation and paraffin embedding removal process on refractive indices and scattering properties of epithelial cells,” J. Biomed. Opt. 19(7), 75007 (2014).
[Crossref] [PubMed]

Hu, A.

Huang, C. W.

J. W. Su, W. C. Hsu, J. W. Tjiu, C. P. Chiang, C. W. Huang, and K. B. Sung, “Investigation of influences of the paraformaldehyde fixation and paraffin embedding removal process on refractive indices and scattering properties of epithelial cells,” J. Biomed. Opt. 19(7), 75007 (2014).
[Crossref] [PubMed]

Huang, P. J.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[Crossref] [PubMed]

L. Wang and S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C (Anderson Cancer Center, University of Texas M. P. Anderson Cancer Center, Houston, Texas, 1992).

S. L. Jacques, “Origins of tissue optical properties in the UVA, visible, and NIR regions,” OSA TOPS on Advances in Optical Imaging and Photon Migration, Vol. 2, R. R. Alfano and James G. Fujimoto, eds. (Optical Society of America, 1996), pp. 364–371.

Kaxiras, E.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Kienle, A.

Lam, S.

Larsson, M

I. Fredriksson, M Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[Crossref] [PubMed]

Le, D.

Leahy, M.

D. Warncke, E. Lewis, S. Lochmann, and M. Leahy, “A neural network based approach for determination of optical scattering and absorption coefficients of biological tissue,” J. Phys.: Conf. Ser. 178, 012047 (2009).

Legesse, T.

K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
[Crossref] [PubMed]

Lewis, E.

D. Warncke, E. Lewis, S. Lochmann, and M. Leahy, “A neural network based approach for determination of optical scattering and absorption coefficients of biological tissue,” J. Phys.: Conf. Ser. 178, 012047 (2009).

Li, Y. S.

Liao, Y. H.

Lilge, L.

Lim, S. L.

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

Liu, Q.

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 50902 (2013).
[Crossref] [PubMed]

Lochmann, S.

D. Warncke, E. Lewis, S. Lochmann, and M. Leahy, “A neural network based approach for determination of optical scattering and absorption coefficients of biological tissue,” J. Phys.: Conf. Ser. 178, 012047 (2009).

Macaulay, C.

Manson, P. N.

K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
[Crossref] [PubMed]

Mantis, G.

Markey, M. K.

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40–53 (2014).
[Crossref] [PubMed]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

Matcher, S. J.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

Matchette, L. S.

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
[Crossref] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

McAuliffe, D. J.

S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[Crossref] [PubMed]

Meglinski, I. V.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

Mourant, J. R.

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42(5), 803–814 (1997).
[Crossref] [PubMed]

Nguyen, J. Q.

D. Yudovsky, J. Q. Nguyen, and A. J. Durkin, “In vivo spatial frequency domain spectroscopy of two layer media,” J. Biomed. Opt. 17(10), 107006 (2012).
[Crossref] [PubMed]

Nguyen, T. H.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Nunez, A. S.

A. S. Nunez, “A physical model of human skin and its application for search and rescue,” (DTIC Document, 2009).

Palcic, B.

Patterson, M. S.

Pfefer, J.

Pfefer, T. J.

Q. Wang, K. Shastri, and T. J. Pfefer, “Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue,” Appl. Opt. 49(28), 5309–5320 (2010).
[Crossref] [PubMed]

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
[Crossref] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

Pilon, L.

Qu, J.

Rajaram, N.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Ramella-Roman, J.

Reif, R.

Richards-Kortum, R.

Richards-Kortum, R. R.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[Crossref] [PubMed]

Schwarz, R. A.

Sharma, D.

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
[Crossref] [PubMed]

Sharma, M.

Shastri, K.

Shih, K. W.

K. B. Sung, K. W. Shih, F. W. Hsu, H. P. Hsieh, M. J. Chuang, Y. H. Hsiao, Y. H. Su, and G. H. Tien, “Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra,” J. Biomed. Opt. 19(7), 077002 (2014).
[Crossref]

Sosin, M.

K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
[Crossref] [PubMed]

Steiner, R.

Strömberg, T.

I. Fredriksson, M Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[Crossref] [PubMed]

Su, J. W.

J. W. Su, W. C. Hsu, J. W. Tjiu, C. P. Chiang, C. W. Huang, and K. B. Sung, “Investigation of influences of the paraformaldehyde fixation and paraffin embedding removal process on refractive indices and scattering properties of epithelial cells,” J. Biomed. Opt. 19(7), 75007 (2014).
[Crossref] [PubMed]

Su, Y. H.

K. B. Sung, K. W. Shih, F. W. Hsu, H. P. Hsieh, M. J. Chuang, Y. H. Hsiao, Y. H. Su, and G. H. Tien, “Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra,” J. Biomed. Opt. 19(7), 077002 (2014).
[Crossref]

Sun, C. K.

Sung, K. B.

Y. H. Hsiao, G. H. Tien, M. J. Chuang, F. W. Hsu, H. P. Hsieh, and K. B. Sung, “Development of a movable diffuse reflectance spectroscopy system for clinical study of esophageal precancer,” Proc. SPIE 9537, 95371Q (2015).
[Crossref]

K. B. Sung, K. W. Shih, F. W. Hsu, H. P. Hsieh, M. J. Chuang, Y. H. Hsiao, Y. H. Su, and G. H. Tien, “Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra,” J. Biomed. Opt. 19(7), 077002 (2014).
[Crossref]

J. W. Su, W. C. Hsu, J. W. Tjiu, C. P. Chiang, C. W. Huang, and K. B. Sung, “Investigation of influences of the paraformaldehyde fixation and paraffin embedding removal process on refractive indices and scattering properties of epithelial cells,” J. Biomed. Opt. 19(7), 75007 (2014).
[Crossref] [PubMed]

K. B. Sung and H. H. Chen, “Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study,” J. Biomed. Opt. 17(10), 107003 (2012).
[Crossref] [PubMed]

T. Y. Tseng, C. Y. Chen, Y. S. Li, and K. B. Sung, “Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy,” Biomed. Opt. Express 2(4), 901–914 (2011).
[Crossref] [PubMed]

Svensson, T.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[Crossref]

Tadisina, K. K.

K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
[Crossref] [PubMed]

Ten Bosch, J. J.

Tien, G. H.

Y. H. Hsiao, G. H. Tien, M. J. Chuang, F. W. Hsu, H. P. Hsieh, and K. B. Sung, “Development of a movable diffuse reflectance spectroscopy system for clinical study of esophageal precancer,” Proc. SPIE 9537, 95371Q (2015).
[Crossref]

K. B. Sung, K. W. Shih, F. W. Hsu, H. P. Hsieh, M. J. Chuang, Y. H. Hsiao, Y. H. Su, and G. H. Tien, “Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra,” J. Biomed. Opt. 19(7), 077002 (2014).
[Crossref]

Tjiu, J. W.

J. W. Su, W. C. Hsu, J. W. Tjiu, C. P. Chiang, C. W. Huang, and K. B. Sung, “Investigation of influences of the paraformaldehyde fixation and paraffin embedding removal process on refractive indices and scattering properties of epithelial cells,” J. Biomed. Opt. 19(7), 75007 (2014).
[Crossref] [PubMed]

Tkaczyk, T. S.

Tromberg, B. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Tsai, M. R.

Tseng, S. H.

Tseng, T. Y.

Tsolakidis, A.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2015).

Tunnell, J. W.

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40–53 (2014).
[Crossref] [PubMed]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Utzinger, U.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

L. Wang and S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C (Anderson Cancer Center, University of Texas M. P. Anderson Cancer Center, Houston, Texas, 1992).

Wang, P. H.

Wang, Q.

Wang, Z.

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]

Warncke, D.

D. Warncke, E. Lewis, S. Lochmann, and M. Leahy, “A neural network based approach for determination of optical scattering and absorption coefficients of biological tissue,” J. Phys.: Conf. Ser. 178, 012047 (2009).

Wen, X.

Wilke, J. N.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

Williams, M. D.

Wilson, B. C.

Yudovsky, D.

Zhang, L.

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Zhong, X.

Zhou, M.

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]

Zhu, C.

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 50902 (2013).
[Crossref] [PubMed]

Zhu, D.

Zonios, G.

Aesthet. Surg. J. (1)

K Chopra, D. Calva, M. Sosin, K. K. Tadisina, A. Banda, C. De La Cruz, M. R. Chaudhry, T. Legesse, C. B. Drachenberg, P. N. Manson, and M. R. Christy, “A comprehensive examination of topographic thickness of skin in the human face,” Aesthet. Surg. J. 35(8), 1007–1013 (2015).
[Crossref] [PubMed]

Appl. Opt. (9)

J. Qu, C. Macaulay, S. Lam, and B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33(31), 7397–7405 (1994).
[Crossref] [PubMed]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
[Crossref] [PubMed]

D. Yudovsky and L. Pilon, “Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media,” Appl. Opt. 48(35), 6670–6683 (2009).
[Crossref] [PubMed]

D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010).
[Crossref] [PubMed]

R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: theory,” Appl. Opt. 22(16), 2456–2462 (1983).
[Crossref] [PubMed]

Q. Wang, K. Shastri, and T. J. Pfefer, “Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue,” Appl. Opt. 49(28), 5309–5320 (2010).
[Crossref] [PubMed]

G. Mantis and G. Zonios, “Simple two-layer reflectance model for biological tissue applications,” Appl. Opt. 48(18), 3490–3496 (2009).
[Crossref] [PubMed]

G. Zonios and A. Dimou, “Simple two-layer reflectance model for biological tissue applications: lower absorbing layer,” Appl. Opt. 49(27), 5026–5031 (2010).
[Crossref] [PubMed]

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
[Crossref] [PubMed]

Biomed. Eng. Online (1)

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
[Crossref] [PubMed]

Biomed. Opt. Express (8)

Y. W. Chen and S. H. Tseng, “Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties,” Biomed. Opt. Express 6(3), 747–760 (2015).
[Crossref] [PubMed]

Y. W. Chen, C. C. Chen, P. J. Huang, and S. H. Tseng, “Artificial neural networks for retrieving absorption and reduced scattering spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation,” Biomed. Opt. Express 7(4), 1496–1510 (2016).
[Crossref] [PubMed]

G. Zonios and A. Dimou, “Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study,” Biomed. Opt. Express 2(12), 3284–3294 (2011).
[Crossref] [PubMed]

N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4(6), 938–949 (2013).
[Crossref] [PubMed]

Y. H. Liao, S. Y. Chen, S. Y. Chou, P. H. Wang, M. R. Tsai, and C. K. Sun, “Determination of chronological aging parameters in epidermal keratinocytes by in vivo harmonic generation microscopy,” Biomed. Opt. Express 4(1), 77–88 (2013).
[Crossref] [PubMed]

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40–53 (2014).
[Crossref] [PubMed]

Q. Wang, D. Le, J. Ramella-Roman, and J. Pfefer, “Broadband ultraviolet-visible optical property measurement in layered turbid media,” Biomed. Opt. Express 3(6), 1226–1240 (2012).
[Crossref] [PubMed]

T. Y. Tseng, C. Y. Chen, Y. S. Li, and K. B. Sung, “Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy,” Biomed. Opt. Express 2(4), 901–914 (2011).
[Crossref] [PubMed]

Cancer Biol. Ther. (1)

I. J. Bigio and S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3(3), 259–267 (2004).
[Crossref] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

J. Biomed. Opt. (14)

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 50902 (2013).
[Crossref] [PubMed]

D. Yudovsky and A. J. Durkin, “Spatial frequency domain spectroscopy of two layer media,” J. Biomed. Opt. 16(10), 107005 (2011).
[Crossref] [PubMed]

D. Yudovsky, J. Q. Nguyen, and A. J. Durkin, “In vivo spatial frequency domain spectroscopy of two layer media,” J. Biomed. Opt. 17(10), 107006 (2012).
[Crossref] [PubMed]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[Crossref] [PubMed]

I. Fredriksson, M Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

K. B. Sung and H. H. Chen, “Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study,” J. Biomed. Opt. 17(10), 107003 (2012).
[Crossref] [PubMed]

K. B. Sung, K. W. Shih, F. W. Hsu, H. P. Hsieh, M. J. Chuang, Y. H. Hsiao, Y. H. Su, and G. H. Tien, “Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra,” J. Biomed. Opt. 19(7), 077002 (2014).
[Crossref]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[Crossref]

J. W. Su, W. C. Hsu, J. W. Tjiu, C. P. Chiang, C. W. Huang, and K. B. Sung, “Investigation of influences of the paraformaldehyde fixation and paraffin embedding removal process on refractive indices and scattering properties of epithelial cells,” J. Biomed. Opt. 19(7), 75007 (2014).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

J. Mod. Opt. (1)

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]

J. Phys.: Conf. Ser. (1)

D. Warncke, E. Lewis, S. Lochmann, and M. Leahy, “A neural network based approach for determination of optical scattering and absorption coefficients of biological tissue,” J. Phys.: Conf. Ser. 178, 012047 (2009).

Opt. Express (1)

Photochem. Photobiol. (1)

S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42(5), 803–814 (1997).
[Crossref] [PubMed]

Physiol. Meas. (1)

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

Proc. SPIE (2)

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

Y. H. Hsiao, G. H. Tien, M. J. Chuang, F. W. Hsu, H. P. Hsieh, and K. B. Sung, “Development of a movable diffuse reflectance spectroscopy system for clinical study of esophageal precancer,” Proc. SPIE 9537, 95371Q (2015).
[Crossref]

Other (5)

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2015).

S. Prahl, “Optical absorption of hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/hemestruct/index.html .

S. L. Jacques, “Origins of tissue optical properties in the UVA, visible, and NIR regions,” OSA TOPS on Advances in Optical Imaging and Photon Migration, Vol. 2, R. R. Alfano and James G. Fujimoto, eds. (Optical Society of America, 1996), pp. 364–371.

A. S. Nunez, “A physical model of human skin and its application for search and rescue,” (DTIC Document, 2009).

L. Wang and S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C (Anderson Cancer Center, University of Texas M. P. Anderson Cancer Center, Houston, Texas, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The flowchart of the forward modelling and the iterative curve fitting to solve the inverse problem.
Fig. 2
Fig. 2 (a) The error versus the number of training epochs was obtained by modelling the diffuse reflectance at each SDS with the best F-ANN model in Table 3. The training time for each epoch was around 0.15s. (b) The curves of CV versus reflectance and error versus reflectance. (c) The histogram of the reflectance collected at three SDSs in the training set. (d) The histogram of the reflectance collected at three SDSs in the testing set.
Fig. 3
Fig. 3 Curve fitting results of 15 sets of MC-simulated data.
Fig. 4
Fig. 4 (a)(b)(c) The curve fitting results of the optical coefficients and the diffuse reflectance spectra for three different parts of the skin.

Tables (6)

Tables Icon

Table 1 Setting ranges of input geometric and optical parameters.

Tables Icon

Table 2 Lower and upper bounds for fitting parameters.

Tables Icon

Table 3 Mean and standard deviation of the absolute relative error of the F-ANN models.

Tables Icon

Table 4 Errors of the recovered optical coefficients and the estimated chromophore information. The means and the standard deviations (STD) were calculated over all the samples.

Tables Icon

Table 5 The fitting results of the F-ANN and the GPU-MC.

Tables Icon

Table 6 Comparisons of different modelling methods.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

μ s x = C x λ b x 1 g x ( x = 1 , 2 ) ,
μ a 1 = μ a 2 = μ a , e ( λ ) ,
μ a 3 = f m μ a , m ( λ ) + ( 1 f m ) μ a , e ( λ ) ,
μ a , m ( λ ) = 1.7 × 10 12 λ 3.48 ( cm 1 )
μ s 4 = C 3 λ b 3 1 g 4 ,
μ a 4 = f b μ a , b ( λ ) + f w μ a , w ( λ ) + ( 1 f b f w ) μ a , c ( λ ) ,
μ a , oxy ( λ ) = 2.303 ε oxy ( λ ) C heme S / 64 , 532 and
μ a , deoxy ( λ ) = 2.303 ε deoxy ( λ ) C heme ( 1 S ) / 64 , 500 ,
RMSE = j = 1 l i = 1 k [ ( R i , j r i , j r i , j ) × 100 ] 2 l × k % ,

Metrics