Abstract

Super-resolution microscopy has become a powerful tool for biological research. However, its spatial resolution and imaging depth are limited, largely due to background light. Interferometric temporal focusing (ITF) microscopy, which combines structured illumination microscopy and three-photon excitation fluorescence microscopy, can overcome these limitations. Here, we demonstrate ITF microscopy using three-photon excitation fluorescence, which has a spatial resolution of 106 nm at an imaging depth of 100 µm with an excitation wavelength of 1060 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temporal focusing microscopy using three-photon excitation fluorescence with a 92-fs Yb-fiber chirped pulse amplifier

Keisuke Toda, Keisuke Isobe, Kana Namiki, Hiroyuki Kawano, Atsushi Miyawaki, and Katsumi Midorikawa
Biomed. Opt. Express 8(6) 2796-2806 (2017)

Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination

Keisuke Isobe, Takanori Takeda, Kyohei Mochizuki, Qiyuan Song, Akira Suda, Fumihiko Kannari, Hiroyuki Kawano, Akiko Kumagai, Atsushi Miyawaki, and Katsumi Midorikawa
Biomed. Opt. Express 4(11) 2396-2410 (2013)

Super-resolution fluorescence microscopy by stepwise optical saturation

Yide Zhang, Prakash D. Nallathamby, Genevieve D. Vigil, Aamir A. Khan, Devon E. Mason, Joel D. Boerckel, Ryan K. Roeder, and Scott S. Howard
Biomed. Opt. Express 9(4) 1613-1629 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
    [Crossref]
  2. S. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref]
  3. E. Betzig, “Proposed method for molecular optical imaging,” Opt. Lett. 20(3), 237–239 (1995).
    [Crossref]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref]
  5. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [Crossref]
  6. M. J. Rust, M. Bates, and X. Zhauang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref]
  7. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref]
  8. J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
    [Crossref]
  9. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy–a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002).
    [Crossref]
  10. G. Moneron and S. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
    [Crossref]
  11. J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion 2-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
    [Crossref]
  12. K. Otomo, T. Hibi, Y. Kozawa, M. Kurihara, N. Hashimoto, H. Yokoyama, S. Sato, and T. Nemoto, “Two-photon excitation STED microscopy by utilizing transmissive liquid crystal devices,” Opt. Express 22(23), 28215–28221 (2014).
    [Crossref]
  13. V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
    [Crossref]
  14. M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroffa, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
    [Crossref]
  15. A. Vaziri, J. Y. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
    [Crossref]
  16. K. Isobe, T. Takeda, K. Mochizuki, Q. Song, A. Suda, F. Kannari, H. Kawano, A. Kumagai, A. Miyawaki, and K. Midorikawa, “Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination,” Biomed. Opt. Express 4(11), 2396–2410 (2013).
    [Crossref]
  17. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref]
  18. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
    [Crossref]
  19. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
    [Crossref]
  20. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
    [Crossref]
  21. K. Toda, K. Isobe, K. Namiki, H. Kawano, A. Miyawaki, and K. Midorikawa, “Temporal focusing microscopy using three-photon excitation fluorescence with a 92-fs Yb-fiber chirped pulse amplifier,” Biomed. Opt. Express 8(6), 2796–2806 (2017).
    [Crossref]
  22. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref]
  23. D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
    [Crossref]
  24. O. D. Therrien, B. Aubé, S. Pagès, P. De Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express 2(3), 696–704 (2011).
    [Crossref]
  25. L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939–8948 (2012).
    [Crossref]
  26. K. Isobe, K. Toda, Q. Song, F. Kannari, H. Kawano, A. Miyawaki, and K. Midorikawa, “Temporal focusing microscopy combined with three-dimensional structured illumination,” Jpn. J. Appl. Phys. 56(5), 052501 (2017).
    [Crossref]
  27. K. Isobe, K. Mochizuki, Q. Song, A. Suda, F. Kannari, H. Kawano, A. Kumagai, A. Miyawaki, and K. Midorikawa, “Temporal focusing microscopy with structured illumination for super-resolution deep imaging,” in Conference on Lasers and Electro-Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper AW3L.5.
    [Crossref]
  28. K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
    [Crossref]
  29. J. Kapuscinski and K. Yanagi, “Selective staining by 4′-6-diamidine-2-phenylindole of nano-gram quantities of DNA in the presence of RNA on gels,” Nucleic Acids Res. 6(11), 3535–3542 (1979).
    [Crossref]
  30. A. T. Szczurek, K. Prakash, H.-K. Lee, D. J. Żurek-Biesiada, G. Best, M. Hagmann, J. W. Dobrucki, C. Cremer, and U. Birk, “Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes,” Nucleus 5(4), 331–340 (2014).
    [Crossref]
  31. R. Kawakami, K. Sawada, Y. Kusama, Y.-C. Fang, S. Kanazawa, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “In vivo two-photon imaging of mouse hippocampal neurons in dentate gyrus using a light source based on a high-peak power gain-switched laser diode,” Biomed. Opt. Express 6(3), 891–901 (2015).
    [Crossref]
  32. G. Olivié, D. Giguère, F. Vidal, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, “Wavelength dependence of femtosecond laser ablation threshold of corneal stroma,” Opt. Express 16(6), 4121–4129 (2008).
    [Crossref]

2017 (3)

K. Toda, K. Isobe, K. Namiki, H. Kawano, A. Miyawaki, and K. Midorikawa, “Temporal focusing microscopy using three-photon excitation fluorescence with a 92-fs Yb-fiber chirped pulse amplifier,” Biomed. Opt. Express 8(6), 2796–2806 (2017).
[Crossref]

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref]

K. Isobe, K. Toda, Q. Song, F. Kannari, H. Kawano, A. Miyawaki, and K. Midorikawa, “Temporal focusing microscopy combined with three-dimensional structured illumination,” Jpn. J. Appl. Phys. 56(5), 052501 (2017).
[Crossref]

2015 (2)

2014 (3)

A. T. Szczurek, K. Prakash, H.-K. Lee, D. J. Żurek-Biesiada, G. Best, M. Hagmann, J. W. Dobrucki, C. Cremer, and U. Birk, “Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes,” Nucleus 5(4), 331–340 (2014).
[Crossref]

K. Otomo, T. Hibi, Y. Kozawa, M. Kurihara, N. Hashimoto, H. Yokoyama, S. Sato, and T. Nemoto, “Two-photon excitation STED microscopy by utilizing transmissive liquid crystal devices,” Opt. Express 22(23), 28215–28221 (2014).
[Crossref]

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroffa, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref]

2013 (3)

K. Isobe, T. Takeda, K. Mochizuki, Q. Song, A. Suda, F. Kannari, H. Kawano, A. Kumagai, A. Miyawaki, and K. Midorikawa, “Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination,” Biomed. Opt. Express 4(11), 2396–2410 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref]

2012 (2)

L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939–8948 (2012).
[Crossref]

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

2011 (1)

2009 (2)

G. Moneron and S. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
[Crossref]

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion 2-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref]

2008 (2)

A. Vaziri, J. Y. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
[Crossref]

G. Olivié, D. Giguère, F. Vidal, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, “Wavelength dependence of femtosecond laser ablation threshold of corneal stroma,” Opt. Express 16(6), 4121–4129 (2008).
[Crossref]

2007 (1)

S. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref]

2006 (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

M. J. Rust, M. Bates, and X. Zhauang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

2005 (2)

2002 (1)

2000 (2)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref]

1995 (1)

1994 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

1979 (1)

J. Kapuscinski and K. Yanagi, “Selective staining by 4′-6-diamidine-2-phenylindole of nano-gram quantities of DNA in the presence of RNA on gels,” Nucleic Acids Res. 6(11), 3535–3542 (1979).
[Crossref]

Andresen, V.

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

Aubé, B.

Bates, M.

M. J. Rust, M. Bates, and X. Zhauang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Best, G.

A. T. Szczurek, K. Prakash, H.-K. Lee, D. J. Żurek-Biesiada, G. Best, M. Hagmann, J. W. Dobrucki, C. Cremer, and U. Birk, “Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes,” Nucleus 5(4), 331–340 (2014).
[Crossref]

Betzig, E.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

E. Betzig, “Proposed method for molecular optical imaging,” Opt. Lett. 20(3), 237–239 (1995).
[Crossref]

Birk, U.

A. T. Szczurek, K. Prakash, H.-K. Lee, D. J. Żurek-Biesiada, G. Best, M. Hagmann, J. W. Dobrucki, C. Cremer, and U. Birk, “Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes,” Nucleus 5(4), 331–340 (2014).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Brunette, I.

Chang, C.-Y.

Chang, N.-S.

Chen, S.-J.

Cheng, L.-C.

Cheng, Y.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref]

Cho, K.-C.

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Côté, D.

Cremer, C.

A. T. Szczurek, K. Prakash, H.-K. Lee, D. J. Żurek-Biesiada, G. Best, M. Hagmann, J. W. Dobrucki, C. Cremer, and U. Birk, “Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes,” Nucleus 5(4), 331–340 (2014).
[Crossref]

R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy–a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002).
[Crossref]

Cruz-Hernández, J.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref]

Cseresnyes, Z.

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

De Koninck, P.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Ding, J. B.

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion 2-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref]

Dobrucki, J. W.

A. T. Szczurek, K. Prakash, H.-K. Lee, D. J. Żurek-Biesiada, G. Best, M. Hagmann, J. W. Dobrucki, C. Cremer, and U. Birk, “Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes,” Nucleus 5(4), 331–340 (2014).
[Crossref]

Dong, C. Y.

Durst, M.

Fang, Y.-C.

Feng, D.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref]

Frohn, J. T.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref]

Gerhard, J.

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

Giguère, D.

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

Günther, R.

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

Hagmann, M.

A. T. Szczurek, K. Prakash, H.-K. Lee, D. J. Żurek-Biesiada, G. Best, M. Hagmann, J. W. Dobrucki, C. Cremer, and U. Birk, “Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes,” Nucleus 5(4), 331–340 (2014).
[Crossref]

Harvey, B. K.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Hashimoto, N.

Hauser, A. E.

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

Heintzmann, R.

Hell, S.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

Hibi, T.

Hong, A.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroffa, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref]

Hoover, E. E.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref]

Horton, N.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Ingaramo, M.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroffa, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref]

Isobe, K.

Ji, N.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Jovin, T. M.

Kanazawa, S.

Kannari, F.

Kapuscinski, J.

J. Kapuscinski and K. Yanagi, “Selective staining by 4′-6-diamidine-2-phenylindole of nano-gram quantities of DNA in the presence of RNA on gels,” Nucleic Acids Res. 6(11), 3535–3542 (1979).
[Crossref]

Kawakami, R.

Kawano, H.

Kieffer, J.-C.

Knapp, H. F.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Kozawa, Y.

Kumagai, A.

Kurihara, M.

Kusama, Y.

Lee, H.-K.

A. T. Szczurek, K. Prakash, H.-K. Lee, D. J. Żurek-Biesiada, G. Best, M. Hagmann, J. W. Dobrucki, C. Cremer, and U. Birk, “Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes,” Nucleus 5(4), 331–340 (2014).
[Crossref]

Lin, C.-Y.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

Midorikawa, K.

Milberg, O.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroffa, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref]

Miyawaki, A.

Mochizuki, K.

Moneron, G.

Nada, O.

Namiki, K.

Nemoto, T.

Niesner, R.

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

Nishimura, N.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref]

Oehme, L.

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Olivié, G.

Oron, D.

Otomo, K.

Ouzounov, D.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref]

Ozaki, T.

Pagès, S.

Patterson, G. H.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroffa, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Pollok, K.

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

Prakash, K.

A. T. Szczurek, K. Prakash, H.-K. Lee, D. J. Żurek-Biesiada, G. Best, M. Hagmann, J. W. Dobrucki, C. Cremer, and U. Birk, “Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes,” Nucleus 5(4), 331–340 (2014).
[Crossref]

Radbruch, H.

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

Reimer, J.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref]

Richie, C. T.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Rinnenthal, J.

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhauang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Sabatini, B. L.

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion 2-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref]

Sato, S.

Sawada, K.

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Shank, C. V.

A. Vaziri, J. Y. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
[Crossref]

Shroff, H.

A. Vaziri, J. Y. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
[Crossref]

Shroffa, H.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroffa, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref]

Silberberg, Y.

Song, Q.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Spiecker, H.

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

Sporbert, A.

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

Squier, J. A.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref]

Stemmer, A.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Suda, A.

Sun, W.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Szczurek, A. T.

A. T. Szczurek, K. Prakash, H.-K. Lee, D. J. Żurek-Biesiada, G. Best, M. Hagmann, J. W. Dobrucki, C. Cremer, and U. Birk, “Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes,” Nucleus 5(4), 331–340 (2014).
[Crossref]

Takasaki, K. T.

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion 2-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref]

Takeda, T.

Tal, E.

Tang, J. Y.

A. Vaziri, J. Y. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
[Crossref]

Therrien, O. D.

Toda, K.

K. Isobe, K. Toda, Q. Song, F. Kannari, H. Kawano, A. Miyawaki, and K. Midorikawa, “Temporal focusing microscopy combined with three-dimensional structured illumination,” Jpn. J. Appl. Phys. 56(5), 052501 (2017).
[Crossref]

K. Toda, K. Isobe, K. Namiki, H. Kawano, A. Miyawaki, and K. Midorikawa, “Temporal focusing microscopy using three-photon excitation fluorescence with a 92-fs Yb-fiber chirped pulse amplifier,” Biomed. Opt. Express 8(6), 2796–2806 (2017).
[Crossref]

Tolias, A.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref]

van Howe, J.

Vaziri, A.

A. Vaziri, J. Y. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
[Crossref]

Vidal, F.

Wang, K.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Wang, M.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref]

Wang, T.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref]

Wawrzusin, P.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroffa, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Weigert, R.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroffa, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref]

Wichmann, J.

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Xu, C.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939–8948 (2012).
[Crossref]

G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
[Crossref]

Yanagi, K.

J. Kapuscinski and K. Yanagi, “Selective staining by 4′-6-diamidine-2-phenylindole of nano-gram quantities of DNA in the presence of RNA on gels,” Nucleic Acids Res. 6(11), 3535–3542 (1979).
[Crossref]

Yen, W.-C.

Yokoyama, H.

York, A. G.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroffa, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref]

Zhauang, X.

M. J. Rust, M. Bates, and X. Zhauang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Zhu, G.

Zipfel, W.

Zurek-Biesiada, D. J.

A. T. Szczurek, K. Prakash, H.-K. Lee, D. J. Żurek-Biesiada, G. Best, M. Hagmann, J. W. Dobrucki, C. Cremer, and U. Birk, “Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes,” Nucleus 5(4), 331–340 (2014).
[Crossref]

Biomed. Opt. Express (4)

Biophys. J. (1)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

K. Isobe, K. Toda, Q. Song, F. Kannari, H. Kawano, A. Miyawaki, and K. Midorikawa, “Temporal focusing microscopy combined with three-dimensional structured illumination,” Jpn. J. Appl. Phys. 56(5), 052501 (2017).
[Crossref]

Nat. Commun. (1)

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Nat. Methods (2)

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-Hernández, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref]

M. J. Rust, M. Bates, and X. Zhauang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Nat. Photonics (2)

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Neuron (1)

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion 2-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref]

Nucleic Acids Res. (1)

J. Kapuscinski and K. Yanagi, “Selective staining by 4′-6-diamidine-2-phenylindole of nano-gram quantities of DNA in the presence of RNA on gels,” Nucleic Acids Res. 6(11), 3535–3542 (1979).
[Crossref]

Nucleus (1)

A. T. Szczurek, K. Prakash, H.-K. Lee, D. J. Żurek-Biesiada, G. Best, M. Hagmann, J. W. Dobrucki, C. Cremer, and U. Birk, “Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes,” Nucleus 5(4), 331–340 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

PLoS One (1)

V. Andresen, K. Pollok, J. Rinnenthal, L. Oehme, R. Günther, H. Spiecker, H. Radbruch, J. Gerhard, A. Sporbert, Z. Cseresnyes, A. E. Hauser, and R. Niesner, “High-resolution intravital microscopy,” PLoS One 7(12), e50915 (2012).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (3)

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroffa, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref]

A. Vaziri, J. Y. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
[Crossref]

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref]

Science (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

S. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref]

Other (1)

K. Isobe, K. Mochizuki, Q. Song, A. Suda, F. Kannari, H. Kawano, A. Kumagai, A. Miyawaki, and K. Midorikawa, “Temporal focusing microscopy with structured illumination for super-resolution deep imaging,” in Conference on Lasers and Electro-Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper AW3L.5.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       The z-stack of 3PEF and 2PEF images of a fixed mouse brain stained with DAPI and SYTO83, acquired using (top left) 3PEF-TF, (top right) 3PEF-ITF, (bottom left) 2PEF-TF and (bottom right) 2PEF-ITF microscopies.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram for interferometric temporal focusing microscopy using three-photon excitation fluorescence.
Fig. 2
Fig. 2 Signal distribution of one layer of 100-nm fluorescent beads measured with 3PEF-TF and 3PEF-ITF microscopies.
Fig. 3
Fig. 3 (a) Signal distributions of a fluorescent bead along the lateral direction, acquired using 3PEF-TF and 3PEF-ITF microscopies. (b, c) Cross-sectional images of 100-nm fluorescent beads acquired using (b) 3PEF-TF and (c) 3PEF-ITF microscopies, respectively. (d) Signal distributions along the yellow solid lines shown in panels (b) and (c). Scale bars in (b) and (c) both correspond to 1 µm.
Fig. 4
Fig. 4 (a-d) 3PEF and 2PEF images of a fixed mouse brain stained with DAPI and SYTO83, acquired using (a) 3PEF-TF, (b) 3PEF-ITF, (c) 2PEF-TF, and (d) 2PEF-ITF microscopies. (e, f) Magnified views of the red squares indicated in (e) panel a and (f) panel b. (h, i) Magnified views of yellow squares in (h) panel a and (i) panel b. (g, j) Signal distributions of the dashed lines in (g) panels e and f, and in (i) panels h and i, respectively. (k, l) 3PEF images of a fixed mouse brain stained with DAPI, obtained using (k) 3PEF-TF and (l) 3PEF-ITF microscopies. (a-d) and (k, l) were acquired at depths of 20 µm and 18 µm from the position where the fluorescence signal was detected for the first time, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A T F ( z ) 1 1 + ( z / z R ) 2 .
D ( x , y , z ) = S ( x ' , y ' , z ' ) I 3 ( x ' , y ' , z z ' ) × A T F ( z z ' ) h ( x x ' , y y ' , z z ' ) d x ' d y ' d z ' ,
E e x ( x , y , z ) = E 0 [ e i k 0 z + α e i { k 0 ( y sin θ + z cos θ ) + ϕ m } + α e i { k 0 ( y sin θ + z cos θ ) + ϕ m } ] ,
I e x 3 ( x , y , z ) = ( | E 0 | 2 ) 3 j = 6 6 A j ( 3 ) ( z ) e i { j ( k y 0 + z cos θ ) } ,
A 0 ( 3 ) ( z ) = 1 + 3 { 7 + 4 cos ( 2 k z 0 z ) } α 2 + 3 { 11 + 8 cos ( 2 k z 0 z ) } α 4 + α 6 A ± 1 ( 3 ) ( z ) = 6 cos ( k z 0 z ) α + 2 { 15 cos ( k z 0 z ) + cos ( 3 k z 0 z ) } α 3 + 30 cos ( k z 0 z ) α 5 A ± 2 ( 3 ) ( z ) = 3 { 3 + 2 cos ( 2 k z 0 z ) } α 2 + 6 { 4 + 3 cos ( 2 k z 0 z ) } α 4 + 6 α 6 A ± 3 ( 3 ) ( z ) = 2 { 9 cos ( k z 0 z ) + cos ( 3 k z 0 z ) } α 3 + 18 cos ( k z 0 z ) α 5 A ± 4 ( 3 ) ( z ) = 3 { 3 + 2 cos ( 2 k z 0 z ) } α 4 + 3 α 6 A ± 5 ( 3 ) ( z ) = 6 cos ( k z 0 z ) α 5 A ± 6 ( 3 ) ( z ) = α 6 k y 0 = k 0 sin θ k z 0 = k 0 ( 1 cos θ ) .
D m ( x , y , z ) = ( | E 0 | 2 ) 3 j = 6 6 S ( x ' , y ' , z ' ) e i { j ( k y 0 + ϕ m ) } [ A T F ( z ) A j ( 3 ) ( z ) h ( x , y , z ) ] ,
D ˜ m ( k x , k y , k z ) = ( | E 0 | 2 ) 3 j = 6 6 S ˜ ( k x , k y j k y 0 , k z ) e i j ϕ m × [ A ˜ T F ( k z ) A ˜ j ( 3 ) ( k z ) h ˜ ( k x , k y , k z ) ] = j = 6 6 F ˜ j ( k x , k y , k z ) e i j ϕ m ,
F ˜ j ( k x , k y , k z ) = ( | E 0 | 2 ) 3 S ˜ ( k x , k y j k y 0 , k z ) e i j ϕ m × [ A ˜ T F ( k z ) A ˜ j ( 3 ) ( k z ) h ˜ ( k x , k y , k z ) ] .
H j ( k x , k y , k z ) = 1 13 m = 0 12 D ˜ m ( k x , k y , k z ) e i j m φ s = F ˜ j ( k x , k y , k z ) e i j φ o f f s e t ,

Metrics