M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Transactions on Image Processing 20(3), 681–695 (2011).

[Crossref]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Transactions on Image Processing 19(9), 2345–2356 (2010).

[Crossref]
[PubMed]

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).

[Crossref]
[PubMed]

S. R. Arridge and J. C. Schotland, “Optical tomography: Forward and inverse problems,” Inverse Problems 25(12), 123010 (2009).

[Crossref]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Physics in Medicine and Biology 50(4), R1–R43 (2005).

[Crossref]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Medical Physics 22(11), 1779–1792 (1995).

[Crossref]
[PubMed]

S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34(34), 8026–8037 (1995).

[Crossref]
[PubMed]

J. Ashburner and K. J. Friston, “Image segmentation,” in Human Brain Function2nd ed., R.S.J. Frackowiak, K.J. Friston, C. Frith, R. Dolan, K.J. Friston, C.J. Price, S. Zeki, J. Ashburner, and W.D. Penny, eds. (Academic, 2003).

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Mathematical Methods in the Applied Sciences 39, 4208–4233 (2016).

[Crossref]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, N. N. Samani, and L. Bai, “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomedical Signal Processing and Control 24, 120–127 (2016).

[Crossref]

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digital Signal Processing 49, 162–181 (2016).

[Crossref]

J-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Transactions on Medical Imaging 30(5), 1143–1153 (2011).

[Crossref]
[PubMed]

H. R. A. Basevi, K. M. Tichauer, F. Leblond, H. Dehghani, J. A. Guggenheim, R. W. Holt, and I. B. Styles, “Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise,” Biomedical Optics Express 3(9), 2131–2141 (2012).

[Crossref]
[PubMed]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM Journal on Imaging Sciences 2(1), 183–202 (2009).

[Crossref]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Transactions on Image Processing 20(3), 681–695 (2011).

[Crossref]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Transactions on Image Processing 19(9), 2345–2356 (2010).

[Crossref]
[PubMed]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Optics Letters 29(13), 1506–1508 (2004).

[Crossref]
[PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).

[Crossref]
[PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Magazine 18(6), 57–75 (2001).

[Crossref]

J. C. Ye, S. Y. Lee, and Y. Bresler, “Exact reconstruction formula for diffuse optical tomography using simultaneous sparse representation,” in 5th International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2008), pp. 1621–1624.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Magazine 18(6), 57–75 (2001).

[Crossref]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4(5), 513–526, 2005.

[Crossref]
[PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30(15), 1968–1970 (2005).

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42(16), 3117–3128 (2003).

[Crossref]
[PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Physics in Medicine and Biology 48(16), 2713 (2003).

[Crossref]
[PubMed]

J-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Transactions on Medical Imaging 30(5), 1143–1153 (2011).

[Crossref]
[PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Communications in Numerical Methods in Engineering 25(6), 711–732 (2009).

[Crossref]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).

[Crossref]
[PubMed]

A. Chambolle, R. A. De Vore, N-Y. Lee, and B. J. Lucier, “Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage,” IEEE Transactions on Image Processing 7(3), 319–335 (1998).

[Crossref]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Medical Physics 30(2), 235–247 (2003).

[Crossref]
[PubMed]

X. Li, D. N. Pattanayak, T. Durduran, J. P. Culver, B. Chance, and A. G. Yodh, “Near-field diffraction tomography with diffuse photon density waves,” Phys. Rev. E 61(4), 4295 (2000).

[Crossref]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fmri cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Optics Letters 29(13), 1506–1508 (2004).

[Crossref]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Medical Physics 30(2), 235–247 (2003).

[Crossref]
[PubMed]

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomedical Optics Express 5(11), 3882–3900 (2014).

[Crossref]
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nature Photonics 8, 448–454 (2014).

[Crossref]
[PubMed]

Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Singular value decomposition based regularization prior to spectral mixing improves crosstalk in dynamic imaging using spectral diffuse optical tomography,” Biomed. Opt. Express 3(9), 2036–2049 (2012).

[Crossref]
[PubMed]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fmri cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).

[Crossref]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proceedings of the National Academy of Sciences 104(29), 12169–12174 (2007).

[Crossref]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Medical Physics 30(2), 235–247 (2003).

[Crossref]
[PubMed]

X. Li, D. N. Pattanayak, T. Durduran, J. P. Culver, B. Chance, and A. G. Yodh, “Near-field diffraction tomography with diffuse photon density waves,” Phys. Rev. E 61(4), 4295 (2000).

[Crossref]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).

[Crossref]
[PubMed]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively reweighted least squares minimization for sparse recovery,” Communications on Pure and Applied Mathematics 63(1), 1–38 (2010).

[Crossref]

I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Communications on Pure and Applied Mathematics 57(11), 1413–1457 (2004).

[Crossref]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Communications in Numerical Methods in Engineering 25(6), 711–732 (2009).

[Crossref]

I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Communications on Pure and Applied Mathematics 57(11), 1413–1457 (2004).

[Crossref]

A. Chambolle, R. A. De Vore, N-Y. Lee, and B. J. Lucier, “Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage,” IEEE Transactions on Image Processing 7(3), 319–335 (1998).

[Crossref]

I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Communications on Pure and Applied Mathematics 57(11), 1413–1457 (2004).

[Crossref]

D. Lighter, A. Filer, and H. Dehghani, “Multispectral diffuse optical tomography of finger joints,” Proc. SPIE 10412, 104120N (2017).

H-Y. Wu, A. Filer, I. B. Styles, and H. Dehghani, “Development of a multi-wavelength diffuse optical tomography system for early diagnosis of rheumatoid arthritis: simulation, phantoms and healthy human studies,” Biomedical Optics Express 7(11), 4769–4786 (2016).

[Crossref]
[PubMed]

J. A. Guggenheim, I. Bargigia, A. Farina, A. Pifferi, and H. Dehghani, “Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery,” Biomed. Opt. Express 7(9), 3784–3794 (2016).

[Crossref]
[PubMed]

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomedical Optics Express 5(11), 3882–3900 (2014).

[Crossref]
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nature Photonics 8, 448–454 (2014).

[Crossref]
[PubMed]

H. R. A. Basevi, K. M. Tichauer, F. Leblond, H. Dehghani, J. A. Guggenheim, R. W. Holt, and I. B. Styles, “Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise,” Biomedical Optics Express 3(9), 2131–2141 (2012).

[Crossref]
[PubMed]

Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Singular value decomposition based regularization prior to spectral mixing improves crosstalk in dynamic imaging using spectral diffuse optical tomography,” Biomed. Opt. Express 3(9), 2036–2049 (2012).

[Crossref]
[PubMed]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fmri cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).

[Crossref]
[PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Communications in Numerical Methods in Engineering 25(6), 711–732 (2009).

[Crossref]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proceedings of the National Academy of Sciences 104(29), 12169–12174 (2007).

[Crossref]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).

[Crossref]
[PubMed]

X. Heng, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “Magnetic-resonance-imaging–coupled broadband near-infrared tomography system for small animal brain studies,” Appl. Opt. 44(11), 2177–2188 (2005).

[Crossref]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30(15), 1968–1970 (2005).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Applied Optics 44(10), 1858–1869 (2005).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4(5), 513–526, 2005.

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Applied Optics 42(1), 135–145 (2003).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proceedings of the National Academy of Sciences 100(21), 12349–12354 (2003).

[Crossref]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Physics in Medicine and Biology 48(16), 2713 (2003).

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42(16), 3117–3128 (2003).

[Crossref]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Medical Physics 22(11), 1779–1792 (1995).

[Crossref]
[PubMed]

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively reweighted least squares minimization for sparse recovery,” Communications on Pure and Applied Mathematics 63(1), 1–38 (2010).

[Crossref]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Magazine 18(6), 57–75 (2001).

[Crossref]

D. Kong and C. H. Q. Ding, “Non-convex feature learning via Lp,∞ operator,” In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI Press, 2014) pp. 1918–1924.

D. L. Donoho, “For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution,” Communications on Pure and Applied Mathematics 59(6), 797–829 (2006).

[Crossref]

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Mathematical Methods in the Applied Sciences 39, 4208–4233 (2016).

[Crossref]

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digital Signal Processing 49, 162–181 (2016).

[Crossref]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, N. N. Samani, and L. Bai, “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomedical Signal Processing and Control 24, 120–127 (2016).

[Crossref]

J. Duan, Z. Pan, B. Zhang, W. Liu, and X. Tai, “Fast algorithm for color texture image inpainting using the non-local CTV model,” Journal of Global Optimization 62(4), 853–876 (2015).

[Crossref]

J. Duan, Z. Pan, X. Yin, W. Wei, and G. Wang, “Some fast projection methods based on Chan-Vese model for image segmentation,” EURASIP Journal on Image and Video Processing 2014(1), 1–16 (2014).

[Crossref]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Medical Physics 30(2), 235–247 (2003).

[Crossref]
[PubMed]

X. Li, D. N. Pattanayak, T. Durduran, J. P. Culver, B. Chance, and A. G. Yodh, “Near-field diffraction tomography with diffuse photon density waves,” Phys. Rev. E 61(4), 4295 (2000).

[Crossref]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Communications in Numerical Methods in Engineering 25(6), 711–732 (2009).

[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nature Photonics 8, 448–454 (2014).

[Crossref]
[PubMed]

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomedical Optics Express 5(11), 3882–3900 (2014).

[Crossref]
[PubMed]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fmri cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Singular value decomposition based regularization prior to spectral mixing improves crosstalk in dynamic imaging using spectral diffuse optical tomography,” Biomed. Opt. Express 3(9), 2036–2049 (2012).

[Crossref]
[PubMed]

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomedical Optics Express 5(11), 3882–3900 (2014).

[Crossref]
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nature Photonics 8, 448–454 (2014).

[Crossref]
[PubMed]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fmri cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Transactions on Image Processing 20(3), 681–695 (2011).

[Crossref]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Transactions on Image Processing 19(9), 2345–2356 (2010).

[Crossref]
[PubMed]

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse reconstruction by separable approximation,” IEEE Transactions on Signal Processing 57(7), 2479–2493 (2009).

[Crossref]

M. A. T. Figueiredo and R. D. Nowak, “An Em algorithm for wavelet-based image restoration,” IEEE Transactions on Image Processing 12(8), 906–916 (2003).

[Crossref]

D. Lighter, A. Filer, and H. Dehghani, “Multispectral diffuse optical tomography of finger joints,” Proc. SPIE 10412, 104120N (2017).

H-Y. Wu, A. Filer, I. B. Styles, and H. Dehghani, “Development of a multi-wavelength diffuse optical tomography system for early diagnosis of rheumatoid arthritis: simulation, phantoms and healthy human studies,” Biomedical Optics Express 7(11), 4769–4786 (2016).

[Crossref]
[PubMed]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively reweighted least squares minimization for sparse recovery,” Communications on Pure and Applied Mathematics 63(1), 1–38 (2010).

[Crossref]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).

[Crossref]
[PubMed]

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Optics Letters 29(13), 1506–1508 (2004).

[Crossref]
[PubMed]

J. Ashburner and K. J. Friston, “Image segmentation,” in Human Brain Function2nd ed., R.S.J. Frackowiak, K.J. Friston, C. Frith, R. Dolan, K.J. Friston, C.J. Price, S. Zeki, J. Ashburner, and W.D. Penny, eds. (Academic, 2003).

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Magazine 18(6), 57–75 (2001).

[Crossref]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Physics in Medicine and Biology 50(4), R1–R43 (2005).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proceedings of the National Academy of Sciences 100(21), 12349–12354 (2003).

[Crossref]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, N. N. Samani, and L. Bai, “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomedical Signal Processing and Control 24, 120–127 (2016).

[Crossref]

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Optics Letters 29(13), 1506–1508 (2004).

[Crossref]
[PubMed]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

J. A. Guggenheim, I. Bargigia, A. Farina, A. Pifferi, and H. Dehghani, “Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery,” Biomed. Opt. Express 7(9), 3784–3794 (2016).

[Crossref]
[PubMed]

H. R. A. Basevi, K. M. Tichauer, F. Leblond, H. Dehghani, J. A. Guggenheim, R. W. Holt, and I. B. Styles, “Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise,” Biomedical Optics Express 3(9), 2131–2141 (2012).

[Crossref]
[PubMed]

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively reweighted least squares minimization for sparse recovery,” Communications on Pure and Applied Mathematics 63(1), 1–38 (2010).

[Crossref]

E. T. Hale, W. Yin, and Y. Zhang, “A fixed-point continuation method for L1-regularized minimization with applications to compressed sensing,” CAAM TR07-07, Rice University (2007).

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Transactions on Medical Imaging 18(3), 262–271 (1999).

[Crossref]
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nature Photonics 8, 448–454 (2014).

[Crossref]
[PubMed]

J-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Transactions on Medical Imaging 30(5), 1143–1153 (2011).

[Crossref]
[PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Physics in Medicine and Biology 50(4), R1–R43 (2005).

[Crossref]
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nature Photonics 8, 448–454 (2014).

[Crossref]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Transactions on Medical Imaging 18(3), 262–271 (1999).

[Crossref]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Medical Physics 22(11), 1779–1792 (1995).

[Crossref]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Medical Physics 30(2), 235–247 (2003).

[Crossref]
[PubMed]

H. R. A. Basevi, K. M. Tichauer, F. Leblond, H. Dehghani, J. A. Guggenheim, R. W. Holt, and I. B. Styles, “Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise,” Biomedical Optics Express 3(9), 2131–2141 (2012).

[Crossref]
[PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).

[Crossref]
[PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30(15), 1968–1970 (2005).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4(5), 513–526, 2005.

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Applied Optics 44(10), 1858–1869 (2005).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proceedings of the National Academy of Sciences 100(21), 12349–12354 (2003).

[Crossref]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42(16), 3117–3128 (2003).

[Crossref]
[PubMed]

J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction,” IEEE J. Sel. Top. Quantum Electron. 20(2), 74–82 (2014).

[Crossref]

H. Niu, S. Khadka, F. Tian, Z. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Magazine 18(6), 57–75 (2001).

[Crossref]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Transactions on Medical Imaging 18(3), 262–271 (1999).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4(5), 513–526, 2005.

[Crossref]
[PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30(15), 1968–1970 (2005).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proceedings of the National Academy of Sciences 100(21), 12349–12354 (2003).

[Crossref]

D. Kong and C. H. Q. Ding, “Non-convex feature learning via Lp,∞ operator,” In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI Press, 2014) pp. 1918–1924.

H. R. A. Basevi, K. M. Tichauer, F. Leblond, H. Dehghani, J. A. Guggenheim, R. W. Holt, and I. B. Styles, “Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise,” Biomedical Optics Express 3(9), 2131–2141 (2012).

[Crossref]
[PubMed]

A. Chambolle, R. A. De Vore, N-Y. Lee, and B. J. Lucier, “Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage,” IEEE Transactions on Image Processing 7(3), 319–335 (1998).

[Crossref]

J. C. Ye, S. Y. Lee, and Y. Bresler, “Exact reconstruction formula for diffuse optical tomography using simultaneous sparse representation,” in 5th International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2008), pp. 1621–1624.

X. Li, D. N. Pattanayak, T. Durduran, J. P. Culver, B. Chance, and A. G. Yodh, “Near-field diffraction tomography with diffuse photon density waves,” Phys. Rev. E 61(4), 4295 (2000).

[Crossref]

D. Lighter, A. Filer, and H. Dehghani, “Multispectral diffuse optical tomography of finger joints,” Proc. SPIE 10412, 104120N (2017).

Q. Lyu, Z. Lin, Y. She, and C. Zhang, “A comparison of typical lp minimization algorithms,” Neurocomputing 119, 413–424 (2013).

[Crossref]

V. C. Kavuri, Z. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3(5), 943–957 (2012).

[Crossref]
[PubMed]

H. Niu, S. Khadka, F. Tian, Z. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

V. C. Kavuri, Z. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3(5), 943–957 (2012).

[Crossref]
[PubMed]

H. Niu, S. Khadka, F. Tian, Z. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Mathematical Methods in the Applied Sciences 39, 4208–4233 (2016).

[Crossref]

J. Duan, Z. Pan, B. Zhang, W. Liu, and X. Tai, “Fast algorithm for color texture image inpainting using the non-local CTV model,” Journal of Global Optimization 62(4), 853–876 (2015).

[Crossref]

H. Niu, S. Khadka, F. Tian, Z. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Mathematical Methods in the Applied Sciences 39, 4208–4233 (2016).

[Crossref]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, N. N. Samani, and L. Bai, “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomedical Signal Processing and Control 24, 120–127 (2016).

[Crossref]

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digital Signal Processing 49, 162–181 (2016).

[Crossref]

A. Chambolle, R. A. De Vore, N-Y. Lee, and B. J. Lucier, “Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage,” IEEE Transactions on Image Processing 7(3), 319–335 (1998).

[Crossref]

Q. Lyu, Z. Lin, Y. She, and C. Zhang, “A comparison of typical lp minimization algorithms,” Neurocomputing 119, 413–424 (2013).

[Crossref]

J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction,” IEEE J. Sel. Top. Quantum Electron. 20(2), 74–82 (2014).

[Crossref]

B. Martinet, “Régularisation d’inéquations variationelles par approximations successives,” RIRO 4, 154–159 (1970).

[Crossref]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Magazine 18(6), 57–75 (2001).

[Crossref]

H. Niu, S. Khadka, F. Tian, Z. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse reconstruction by separable approximation,” IEEE Transactions on Signal Processing 57(7), 2479–2493 (2009).

[Crossref]

M. A. T. Figueiredo and R. D. Nowak, “An Em algorithm for wavelet-based image restoration,” IEEE Transactions on Image Processing 12(8), 906–916 (2003).

[Crossref]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Medical Physics 30(2), 235–247 (2003).

[Crossref]
[PubMed]

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digital Signal Processing 49, 162–181 (2016).

[Crossref]

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Mathematical Methods in the Applied Sciences 39, 4208–4233 (2016).

[Crossref]

J. Duan, Z. Pan, B. Zhang, W. Liu, and X. Tai, “Fast algorithm for color texture image inpainting using the non-local CTV model,” Journal of Global Optimization 62(4), 853–876 (2015).

[Crossref]

J. Duan, Z. Pan, X. Yin, W. Wei, and G. Wang, “Some fast projection methods based on Chan-Vese model for image segmentation,” EURASIP Journal on Image and Video Processing 2014(1), 1–16 (2014).

[Crossref]

X. Li, D. N. Pattanayak, T. Durduran, J. P. Culver, B. Chance, and A. G. Yodh, “Near-field diffraction tomography with diffuse photon density waves,” Phys. Rev. E 61(4), 4295 (2000).

[Crossref]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).

[Crossref]
[PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Communications in Numerical Methods in Engineering 25(6), 711–732 (2009).

[Crossref]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).

[Crossref]
[PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30(15), 1968–1970 (2005).

[Crossref]
[PubMed]

X. Heng, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “Magnetic-resonance-imaging–coupled broadband near-infrared tomography system for small animal brain studies,” Appl. Opt. 44(11), 2177–2188 (2005).

[Crossref]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Applied Optics 44(10), 1858–1869 (2005).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4(5), 513–526, 2005.

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Applied Optics 42(1), 135–145 (2003).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proceedings of the National Academy of Sciences 100(21), 12349–12354 (2003).

[Crossref]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Physics in Medicine and Biology 48(16), 2713 (2003).

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42(16), 3117–3128 (2003).

[Crossref]
[PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Communications in Numerical Methods in Engineering 25(6), 711–732 (2009).

[Crossref]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).

[Crossref]
[PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).

[Crossref]
[PubMed]

X. Heng, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “Magnetic-resonance-imaging–coupled broadband near-infrared tomography system for small animal brain studies,” Appl. Opt. 44(11), 2177–2188 (2005).

[Crossref]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30(15), 1968–1970 (2005).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Applied Optics 44(10), 1858–1869 (2005).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4(5), 513–526, 2005.

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Applied Optics 42(1), 135–145 (2003).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proceedings of the National Academy of Sciences 100(21), 12349–12354 (2003).

[Crossref]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42(16), 3117–3128 (2003).

[Crossref]
[PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Physics in Medicine and Biology 48(16), 2713 (2003).

[Crossref]
[PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30(15), 1968–1970 (2005).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4(5), 513–526, 2005.

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Applied Optics 42(1), 135–145 (2003).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proceedings of the National Academy of Sciences 100(21), 12349–12354 (2003).

[Crossref]

J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction,” IEEE J. Sel. Top. Quantum Electron. 20(2), 74–82 (2014).

[Crossref]

J. Prakash and P. K. Yalavarthy, “A LSQR-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography,” Medical Physics 40(3), 033101 (2013).

[Crossref]
[PubMed]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, N. N. Samani, and L. Bai, “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomedical Signal Processing and Control 24, 120–127 (2016).

[Crossref]

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digital Signal Processing 49, 162–181 (2016).

[Crossref]

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Mathematical Methods in the Applied Sciences 39, 4208–4233 (2016).

[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nature Photonics 8, 448–454 (2014).

[Crossref]
[PubMed]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, N. N. Samani, and L. Bai, “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomedical Signal Processing and Control 24, 120–127 (2016).

[Crossref]

J-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Transactions on Medical Imaging 30(5), 1143–1153 (2011).

[Crossref]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proceedings of the National Academy of Sciences 104(29), 12169–12174 (2007).

[Crossref]

S. R. Arridge and J. C. Schotland, “Optical tomography: Forward and inverse problems,” Inverse Problems 25(12), 123010 (2009).

[Crossref]

V. A. Markel, V. Mital, and J. C. Schotland, “Inverse problem in optical diffusion tomography. iii. inversion formulas and singular-value decomposition,” J. Opt. Soc. Am. A 20(5), 890–902 (2003).

[Crossref]

V. A. Markel and J. C. Schotland, “Inverse problem in optical diffusion tomography. i. Fourier–Laplace inversion formulas,” J. Opt. Soc. Am. A 18(6), 1336–1347 (2001).

[Crossref]

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).

[Crossref]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Medical Physics 22(11), 1779–1792 (1995).

[Crossref]
[PubMed]

S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34(34), 8026–8037 (1995).

[Crossref]
[PubMed]

C. B. Shaw and P. K. Yalavarthy, “Performance evaluation of typical approximation algorithms for nonconvex lp-minimization in diffuse optical tomography,” J. Opt. Soc. Am. A 31(4), 852–862 (2014).

[Crossref]

J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction,” IEEE J. Sel. Top. Quantum Electron. 20(2), 74–82 (2014).

[Crossref]

C. B. Shaw and P. K. Yalavarthy, “Effective contrast recovery in rapid dynamic near-infrared diffuse optical tomography using L1-norm-based linear image reconstruction method,” J. Biomed. Opt. 17(8), 0860091 (2012).

[Crossref]

Q. Lyu, Z. Lin, Y. She, and C. Zhang, “A comparison of typical lp minimization algorithms,” Neurocomputing 119, 413–424 (2013).

[Crossref]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Medical Physics 30(2), 235–247 (2003).

[Crossref]
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nature Photonics 8, 448–454 (2014).

[Crossref]
[PubMed]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fmri cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proceedings of the National Academy of Sciences 100(21), 12349–12354 (2003).

[Crossref]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Communications in Numerical Methods in Engineering 25(6), 711–732 (2009).

[Crossref]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4(5), 513–526, 2005.

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Applied Optics 44(10), 1858–1869 (2005).

[Crossref]
[PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30(15), 1968–1970 (2005).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proceedings of the National Academy of Sciences 100(21), 12349–12354 (2003).

[Crossref]

H-Y. Wu, A. Filer, I. B. Styles, and H. Dehghani, “Development of a multi-wavelength diffuse optical tomography system for early diagnosis of rheumatoid arthritis: simulation, phantoms and healthy human studies,” Biomedical Optics Express 7(11), 4769–4786 (2016).

[Crossref]
[PubMed]

H. R. A. Basevi, K. M. Tichauer, F. Leblond, H. Dehghani, J. A. Guggenheim, R. W. Holt, and I. B. Styles, “Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise,” Biomedical Optics Express 3(9), 2131–2141 (2012).

[Crossref]
[PubMed]

J. Duan, Z. Pan, B. Zhang, W. Liu, and X. Tai, “Fast algorithm for color texture image inpainting using the non-local CTV model,” Journal of Global Optimization 62(4), 853–876 (2015).

[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM Journal on Imaging Sciences 2(1), 183–202 (2009).

[Crossref]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, N. N. Samani, and L. Bai, “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomedical Signal Processing and Control 24, 120–127 (2016).

[Crossref]

V. C. Kavuri, Z. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3(5), 943–957 (2012).

[Crossref]
[PubMed]

H. Niu, S. Khadka, F. Tian, Z. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

H. R. A. Basevi, K. M. Tichauer, F. Leblond, H. Dehghani, J. A. Guggenheim, R. W. Holt, and I. B. Styles, “Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise,” Biomedical Optics Express 3(9), 2131–2141 (2012).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proceedings of the National Academy of Sciences 100(21), 12349–12354 (2003).

[Crossref]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

J-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Transactions on Medical Imaging 30(5), 1143–1153 (2011).

[Crossref]
[PubMed]

C. Vonesch and M. Unser, “A fast iterative thresholding algorithm for wavelet-regularized deconvolution,” Proc. SPIE 6701, 1–5 (2007).

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Physics in Medicine and Biology 48(16), 2713 (2003).

[Crossref]
[PubMed]

C. Vonesch and M. Unser, “A fast iterative thresholding algorithm for wavelet-regularized deconvolution,” Proc. SPIE 6701, 1–5 (2007).

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digital Signal Processing 49, 162–181 (2016).

[Crossref]

J. Duan, Z. Pan, X. Yin, W. Wei, and G. Wang, “Some fast projection methods based on Chan-Vese model for image segmentation,” EURASIP Journal on Image and Video Processing 2014(1), 1–16 (2014).

[Crossref]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30(15), 1968–1970 (2005).

[Crossref]
[PubMed]

J. Duan, Z. Pan, X. Yin, W. Wei, and G. Wang, “Some fast projection methods based on Chan-Vese model for image segmentation,” EURASIP Journal on Image and Video Processing 2014(1), 1–16 (2014).

[Crossref]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4(5), 513–526, 2005.

[Crossref]
[PubMed]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fmri cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).

[Crossref]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proceedings of the National Academy of Sciences 104(29), 12169–12174 (2007).

[Crossref]

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse reconstruction by separable approximation,” IEEE Transactions on Signal Processing 57(7), 2479–2493 (2009).

[Crossref]

H-Y. Wu, A. Filer, I. B. Styles, and H. Dehghani, “Development of a multi-wavelength diffuse optical tomography system for early diagnosis of rheumatoid arthritis: simulation, phantoms and healthy human studies,” Biomedical Optics Express 7(11), 4769–4786 (2016).

[Crossref]
[PubMed]

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomedical Optics Express 5(11), 3882–3900 (2014).

[Crossref]
[PubMed]

C. B. Shaw and P. K. Yalavarthy, “Performance evaluation of typical approximation algorithms for nonconvex lp-minimization in diffuse optical tomography,” J. Opt. Soc. Am. A 31(4), 852–862 (2014).

[Crossref]

J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction,” IEEE J. Sel. Top. Quantum Electron. 20(2), 74–82 (2014).

[Crossref]

R. P. K. Jagannath and P. K. Yalavarthy, “Nonquadratic penalization improves near-infrared diffuse optical tomography,” J. Opt. Soc. Am. A 30(8), 1516–1523 (2013).

[Crossref]

J. Prakash and P. K. Yalavarthy, “A LSQR-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography,” Medical Physics 40(3), 033101 (2013).

[Crossref]
[PubMed]

C. B. Shaw and P. K. Yalavarthy, “Effective contrast recovery in rapid dynamic near-infrared diffuse optical tomography using L1-norm-based linear image reconstruction method,” J. Biomed. Opt. 17(8), 0860091 (2012).

[Crossref]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Communications in Numerical Methods in Engineering 25(6), 711–732 (2009).

[Crossref]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).

[Crossref]
[PubMed]

J. C. Ye, S. Y. Lee, and Y. Bresler, “Exact reconstruction formula for diffuse optical tomography using simultaneous sparse representation,” in 5th International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2008), pp. 1621–1624.

E. T. Hale, W. Yin, and Y. Zhang, “A fixed-point continuation method for L1-regularized minimization with applications to compressed sensing,” CAAM TR07-07, Rice University (2007).

J. Duan, Z. Pan, X. Yin, W. Wei, and G. Wang, “Some fast projection methods based on Chan-Vese model for image segmentation,” EURASIP Journal on Image and Video Processing 2014(1), 1–16 (2014).

[Crossref]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Medical Physics 30(2), 235–247 (2003).

[Crossref]
[PubMed]

X. Li, D. N. Pattanayak, T. Durduran, J. P. Culver, B. Chance, and A. G. Yodh, “Near-field diffraction tomography with diffuse photon density waves,” Phys. Rev. E 61(4), 4295 (2000).

[Crossref]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).

[Crossref]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proceedings of the National Academy of Sciences 104(29), 12169–12174 (2007).

[Crossref]

Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Singular value decomposition based regularization prior to spectral mixing improves crosstalk in dynamic imaging using spectral diffuse optical tomography,” Biomed. Opt. Express 3(9), 2036–2049 (2012).

[Crossref]
[PubMed]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fmri cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

J. Duan, Z. Pan, B. Zhang, W. Liu, and X. Tai, “Fast algorithm for color texture image inpainting using the non-local CTV model,” Journal of Global Optimization 62(4), 853–876 (2015).

[Crossref]

Q. Lyu, Z. Lin, Y. She, and C. Zhang, “A comparison of typical lp minimization algorithms,” Neurocomputing 119, 413–424 (2013).

[Crossref]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Magazine 18(6), 57–75 (2001).

[Crossref]

E. T. Hale, W. Yin, and Y. Zhang, “A fixed-point continuation method for L1-regularized minimization with applications to compressed sensing,” CAAM TR07-07, Rice University (2007).

H. Niu, S. Khadka, F. Tian, Z. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Medical Physics 30(2), 235–247 (2003).

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42(16), 3117–3128 (2003).

[Crossref]
[PubMed]

X. Heng, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “Magnetic-resonance-imaging–coupled broadband near-infrared tomography system for small animal brain studies,” Appl. Opt. 44(11), 2177–2188 (2005).

[Crossref]

S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34(34), 8026–8037 (1995).

[Crossref]
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Applied Optics 42(1), 135–145 (2003).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Applied Optics 44(10), 1858–1869 (2005).

[Crossref]
[PubMed]

V. C. Kavuri, Z. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3(5), 943–957 (2012).

[Crossref]
[PubMed]

S. Okawa, Y. Hoshi, and Y. Yamada, “Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization,” Biomed. Opt. Express 2(12), 3334–3348 (2011).

[Crossref]
[PubMed]

J. A. Guggenheim, I. Bargigia, A. Farina, A. Pifferi, and H. Dehghani, “Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery,” Biomed. Opt. Express 7(9), 3784–3794 (2016).

[Crossref]
[PubMed]

Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Singular value decomposition based regularization prior to spectral mixing improves crosstalk in dynamic imaging using spectral diffuse optical tomography,” Biomed. Opt. Express 3(9), 2036–2049 (2012).

[Crossref]
[PubMed]

H-Y. Wu, A. Filer, I. B. Styles, and H. Dehghani, “Development of a multi-wavelength diffuse optical tomography system for early diagnosis of rheumatoid arthritis: simulation, phantoms and healthy human studies,” Biomedical Optics Express 7(11), 4769–4786 (2016).

[Crossref]
[PubMed]

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomedical Optics Express 5(11), 3882–3900 (2014).

[Crossref]
[PubMed]

H. R. A. Basevi, K. M. Tichauer, F. Leblond, H. Dehghani, J. A. Guggenheim, R. W. Holt, and I. B. Styles, “Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise,” Biomedical Optics Express 3(9), 2131–2141 (2012).

[Crossref]
[PubMed]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, N. N. Samani, and L. Bai, “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomedical Signal Processing and Control 24, 120–127 (2016).

[Crossref]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Communications in Numerical Methods in Engineering 25(6), 711–732 (2009).

[Crossref]

D. L. Donoho, “For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution,” Communications on Pure and Applied Mathematics 59(6), 797–829 (2006).

[Crossref]

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively reweighted least squares minimization for sparse recovery,” Communications on Pure and Applied Mathematics 63(1), 1–38 (2010).

[Crossref]

I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Communications on Pure and Applied Mathematics 57(11), 1413–1457 (2004).

[Crossref]

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digital Signal Processing 49, 162–181 (2016).

[Crossref]

J. Duan, Z. Pan, X. Yin, W. Wei, and G. Wang, “Some fast projection methods based on Chan-Vese model for image segmentation,” EURASIP Journal on Image and Video Processing 2014(1), 1–16 (2014).

[Crossref]

J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction,” IEEE J. Sel. Top. Quantum Electron. 20(2), 74–82 (2014).

[Crossref]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Magazine 18(6), 57–75 (2001).

[Crossref]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Transactions on Image Processing 20(3), 681–695 (2011).

[Crossref]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Transactions on Image Processing 19(9), 2345–2356 (2010).

[Crossref]
[PubMed]

M. A. T. Figueiredo and R. D. Nowak, “An Em algorithm for wavelet-based image restoration,” IEEE Transactions on Image Processing 12(8), 906–916 (2003).

[Crossref]

A. Chambolle, R. A. De Vore, N-Y. Lee, and B. J. Lucier, “Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage,” IEEE Transactions on Image Processing 7(3), 319–335 (1998).

[Crossref]

J-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Transactions on Medical Imaging 30(5), 1143–1153 (2011).

[Crossref]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Transactions on Medical Imaging 18(3), 262–271 (1999).

[Crossref]
[PubMed]

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse reconstruction by separable approximation,” IEEE Transactions on Signal Processing 57(7), 2479–2493 (2009).

[Crossref]

S. R. Arridge and J. C. Schotland, “Optical tomography: Forward and inverse problems,” Inverse Problems 25(12), 123010 (2009).

[Crossref]

H. Niu, S. Khadka, F. Tian, Z. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

C. B. Shaw and P. K. Yalavarthy, “Effective contrast recovery in rapid dynamic near-infrared diffuse optical tomography using L1-norm-based linear image reconstruction method,” J. Biomed. Opt. 17(8), 0860091 (2012).

[Crossref]

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).

[Crossref]
[PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).

[Crossref]
[PubMed]

C. B. Shaw and P. K. Yalavarthy, “Performance evaluation of typical approximation algorithms for nonconvex lp-minimization in diffuse optical tomography,” J. Opt. Soc. Am. A 31(4), 852–862 (2014).

[Crossref]

V. A. Markel and J. C. Schotland, “Inverse problem in optical diffusion tomography. i. Fourier–Laplace inversion formulas,” J. Opt. Soc. Am. A 18(6), 1336–1347 (2001).

[Crossref]

V. A. Markel, V. Mital, and J. C. Schotland, “Inverse problem in optical diffusion tomography. iii. inversion formulas and singular-value decomposition,” J. Opt. Soc. Am. A 20(5), 890–902 (2003).

[Crossref]

R. P. K. Jagannath and P. K. Yalavarthy, “Nonquadratic penalization improves near-infrared diffuse optical tomography,” J. Opt. Soc. Am. A 30(8), 1516–1523 (2013).

[Crossref]

J. Duan, Z. Pan, B. Zhang, W. Liu, and X. Tai, “Fast algorithm for color texture image inpainting using the non-local CTV model,” Journal of Global Optimization 62(4), 853–876 (2015).

[Crossref]

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Mathematical Methods in the Applied Sciences 39, 4208–4233 (2016).

[Crossref]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Medical Physics 22(11), 1779–1792 (1995).

[Crossref]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Medical Physics 30(2), 235–247 (2003).

[Crossref]
[PubMed]

J. Prakash and P. K. Yalavarthy, “A LSQR-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography,” Medical Physics 40(3), 033101 (2013).

[Crossref]
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nature Photonics 8, 448–454 (2014).

[Crossref]
[PubMed]

Q. Lyu, Z. Lin, Y. She, and C. Zhang, “A comparison of typical lp minimization algorithms,” Neurocomputing 119, 413–424 (2013).

[Crossref]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).

[Crossref]
[PubMed]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fmri cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30(15), 1968–1970 (2005).

[Crossref]
[PubMed]

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Optics Letters 29(13), 1506–1508 (2004).

[Crossref]
[PubMed]

X. Li, D. N. Pattanayak, T. Durduran, J. P. Culver, B. Chance, and A. G. Yodh, “Near-field diffraction tomography with diffuse photon density waves,” Phys. Rev. E 61(4), 4295 (2000).

[Crossref]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Physics in Medicine and Biology 48(16), 2713 (2003).

[Crossref]
[PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Physics in Medicine and Biology 50(4), R1–R43 (2005).

[Crossref]
[PubMed]

C. Vonesch and M. Unser, “A fast iterative thresholding algorithm for wavelet-regularized deconvolution,” Proc. SPIE 6701, 1–5 (2007).

D. Lighter, A. Filer, and H. Dehghani, “Multispectral diffuse optical tomography of finger joints,” Proc. SPIE 10412, 104120N (2017).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proceedings of the National Academy of Sciences 100(21), 12349–12354 (2003).

[Crossref]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proceedings of the National Academy of Sciences 104(29), 12169–12174 (2007).

[Crossref]

B. Martinet, “Régularisation d’inéquations variationelles par approximations successives,” RIRO 4, 154–159 (1970).

[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM Journal on Imaging Sciences 2(1), 183–202 (2009).

[Crossref]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4(5), 513–526, 2005.

[Crossref]
[PubMed]

T. Goldstein, C. Studer, and R. Baraniuk, “A field guide to forward-backward splitting with a FASTA implementation,” https://arxiv.org/abs/1411.3406 .

D. Kong and C. H. Q. Ding, “Non-convex feature learning via Lp,∞ operator,” In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI Press, 2014) pp. 1918–1924.

J. C. Ye, S. Y. Lee, and Y. Bresler, “Exact reconstruction formula for diffuse optical tomography using simultaneous sparse representation,” in 5th International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2008), pp. 1621–1624.

E. T. Hale, W. Yin, and Y. Zhang, “A fixed-point continuation method for L1-regularized minimization with applications to compressed sensing,” CAAM TR07-07, Rice University (2007).

J. Ashburner and K. J. Friston, “Image segmentation,” in Human Brain Function2nd ed., R.S.J. Frackowiak, K.J. Friston, C. Frith, R. Dolan, K.J. Friston, C.J. Price, S. Zeki, J. Ashburner, and W.D. Penny, eds. (Academic, 2003).