Abstract

We present a swept-wavelength optical coherence tomography (OCT) system with a 19 MHz laser source and electronic phase-locking of the source, acquisition clock, and beam scanning mirrors. The laser is based on stretched-pulse active mode-locking using an electro-optic modulator. Beam scanning in the fast axis uses a resonant micro-electromechanical systems (MEMS) -based mirror at ~23.8 kHz. Acquisition is performed at 1.78 Gigasamples per second using an external fixed clock. Phase sensitive imaging without need for k-clocking, A-line triggers, or phase-calibration methods is demonstrated. The system was used to demonstrate inter-frame and inter-volume Doppler imaging in the mouse ear and brain at 4D acquisition rates of 1, 30, 60 and 100 volumes/sec (V-scans/s). Angiography based on inter-frame and inter-volume methods are presented. The platform offers extremely fast and phase-stable measurements that can be used in preclinical angiographic and Doppler investigations of perfusion dynamics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems

Gangjun Liu, Lidek Chou, Wangcun Jia, Wenjuan Qi, Bernard Choi, and Zhongping Chen
Opt. Express 19(12) 11429-11440 (2011)

Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source

Jingjiang Xu, Shaozhen Song, Wei Wei, and Ruikang K. Wang
Biomed. Opt. Express 8(1) 420-435 (2017)

Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT

WooJhon Choi, Bernhard Baumann, Jonathan J. Liu, Allen C. Clermont, Edward P. Feener, Jay S. Duker, and James G. Fujimoto
Biomed. Opt. Express 3(5) 1047-1061 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
    [Crossref] [PubMed]
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  4. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [Crossref] [PubMed]
  5. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  6. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  7. X. Wei, J. Xu, Y. Xu, L. Yu, J. Xu, B. Li, A. K. S. Lau, X. Wang, C. Zhang, K. K. Tsia, and K. K. Y. Wong, “Breathing laser as an inertia-free swept source for high-quality ultrafast optical bioimaging,” Opt. Lett. 39(23), 6593–6596 (2014).
    [Crossref] [PubMed]
  8. J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6(4), 1340–1350 (2015).
    [Crossref] [PubMed]
  9. T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
    [Crossref] [PubMed]
  10. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [Crossref] [PubMed]
  11. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
    [Crossref] [PubMed]
  12. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
    [Crossref] [PubMed]
  13. D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett. 33(12), 1318–1320 (2008).
    [Crossref] [PubMed]
  14. D. H. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express 3(12), 3067–3086 (2012).
    [Crossref] [PubMed]
  15. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
    [Crossref]
  16. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
    [Crossref] [PubMed]
  17. R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
    [Crossref] [PubMed]
  18. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [Crossref] [PubMed]
  19. Z. Zhi, W. Qin, J. Wang, W. Wei, and R. K. Wang, “4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source,” Opt. Lett. 40(8), 1779–1782 (2015).
    [Crossref] [PubMed]
  20. H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
    [Crossref] [PubMed]
  21. S. Wang, M. Singh, A. L. Lopez, C. Wu, R. Raghunathan, A. Schill, J. Li, K. V. Larin, and I. V. Larina, “Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography,” Opt. Lett. 40(20), 4791–4794 (2015).
    [Crossref] [PubMed]
  22. W. Wei, J. Xu, U. Baran, S. Song, W. Qin, X. Qi, and R. K. Wang, “Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow,” J. Biomed. Opt. 21(3), 036005 (2016).
    [Crossref] [PubMed]
  23. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
    [Crossref] [PubMed]
  24. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
    [Crossref] [PubMed]
  25. B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express 19(21), 20886–20903 (2011).
    [Crossref] [PubMed]
  26. S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22(3), 3414–3424 (2014).
    [Crossref] [PubMed]
  27. E. Brown, L. L. Munn, D. Fukumura, and R. K. Jain, “In vivo imaging of tumors,” Cold Spring Harbor Protoc. 2010(7), pdb.prot5452, (2010).
  28. B. H. Park, M. C. Pierce, B. Cense.SH. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005).
    [Crossref] [PubMed]
  29. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
    [Crossref] [PubMed]
  30. D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-Variance Optical Coherence Tomography: A Technique for Noninvasive Angiography,” Ophthalmology 121(1), 180–187 (2014).
    [Crossref] [PubMed]
  31. R. E. Meyer and R. E. Fish, “WIII. Anesthetic Combinations” in Chap. 2. in Anesthesia and Analgesia in Laboratory Animals, R. Fish, P. J. Danneman, M. Brown, and A. Karas ed. (Academic Press, 1997).
  32. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
    [Crossref]

2016 (1)

W. Wei, J. Xu, U. Baran, S. Song, W. Qin, X. Qi, and R. K. Wang, “Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow,” J. Biomed. Opt. 21(3), 036005 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (5)

2013 (1)

2012 (2)

D. H. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express 3(12), 3067–3086 (2012).
[Crossref] [PubMed]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

2011 (1)

2010 (1)

2008 (1)

2007 (1)

2006 (2)

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref] [PubMed]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

2005 (3)

2003 (5)

1995 (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ai, S.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Baran, U.

W. Wei, J. Xu, U. Baran, S. Song, W. Qin, X. Qi, and R. K. Wang, “Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow,” J. Biomed. Opt. 21(3), 036005 (2016).
[Crossref] [PubMed]

Biedermann, B. R.

Blatter, C.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Boppart, S. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Bouma, B.

Bouma, B. E.

Braaf, B.

Brezinski, M. E.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Cable, A. E.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[Crossref] [PubMed]

Cense, B.

Cense.SH. Yun, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, T.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[Crossref] [PubMed]

Choi, D.

Choi, D. H.

Choma, M.

de Boer, J.

de Boer, J. F.

Draxinger, W.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Eigenwillig, C. M.

Fercher, A.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Fingler, J.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-Variance Optical Coherence Tomography: A Technique for Noninvasive Angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Franke, G.

Fraser, S. E.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-Variance Optical Coherence Tomography: A Technique for Noninvasive Angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
[Crossref] [PubMed]

Fujimoto, J. G.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Furukawa, H.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hain, C.

Hee, M. R.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heim, P. J. S.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Hillmann, D.

Hiro-Oka, H.

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Hong, Y.

Hsieh, J. C.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huber, R.

Huo, T.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Hüttmann, G.

Iftimia, N.

Izatt, J.

Jayaraman, V.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Jiang, J.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Jiang, J. Y.

Kampik, A.

Karpf, S.

Kim, D. Y.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-Variance Optical Coherence Tomography: A Technique for Noninvasive Angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

Kirkpatrick, S. J.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

Klein, T.

Larin, K. V.

Larina, I. V.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Lau, A. K. S.

Leitgeb, R.

Leitgeb, R. A.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Li, B.

Li, J.

Liao, W.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lopez, A. L.

Ma, Z.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

Makita, S.

Morse, L. S.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-Variance Optical Coherence Tomography: A Technique for Noninvasive Angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

Mujat, M.

Nakanishi, M.

Nassif, N.

Neubauer, A.

Ohbayashi, K.

Park, B.

Park, B. H.

Park, S. S.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-Variance Optical Coherence Tomography: A Technique for Noninvasive Angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

Pfäffle, C.

Pfeiffer, T.

Pierce, M.

Pierce, M. C.

Potsaid, B.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qi, X.

W. Wei, J. Xu, U. Baran, S. Song, W. Qin, X. Qi, and R. K. Wang, “Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow,” J. Biomed. Opt. 21(3), 036005 (2016).
[Crossref] [PubMed]

Qin, W.

W. Wei, J. Xu, U. Baran, S. Song, W. Qin, X. Qi, and R. K. Wang, “Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow,” J. Biomed. Opt. 21(3), 036005 (2016).
[Crossref] [PubMed]

Z. Zhi, W. Qin, J. Wang, W. Wei, and R. K. Wang, “4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source,” Opt. Lett. 40(8), 1779–1782 (2015).
[Crossref] [PubMed]

Raghunathan, R.

Reznicek, L.

Sarunic, M.

Schill, A.

Schmetterer, L.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schwartz, D.

Schwartz, D. M.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-Variance Optical Coherence Tomography: A Technique for Noninvasive Angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

Shimizu, K.

Sicam, V. A. D. P.

Siddiqui, M.

Singh, M.

Song, S.

W. Wei, J. Xu, U. Baran, S. Song, W. Qin, X. Qi, and R. K. Wang, “Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow,” J. Biomed. Opt. 21(3), 036005 (2016).
[Crossref] [PubMed]

Southern, J. F.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Spahr, H.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sudkamp, H.

Swanson, E. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G.

Tearney, G. J.

B. H. Park, M. C. Pierce, B. Cense.SH. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Tozburun, S.

Tsia, K. K.

Vakoc, B.

Vakoc, B. J.

van Meurs, J. C.

van Zeeburg, E.

Vermeer, K. A.

Wang, C.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Wang, J.

Wang, R. K.

W. Wei, J. Xu, U. Baran, S. Song, W. Qin, X. Qi, and R. K. Wang, “Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow,” J. Biomed. Opt. 21(3), 036005 (2016).
[Crossref] [PubMed]

Z. Zhi, W. Qin, J. Wang, W. Wei, and R. K. Wang, “4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source,” Opt. Lett. 40(8), 1779–1782 (2015).
[Crossref] [PubMed]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

Wang, S.

Wang, X.

Wei, W.

W. Wei, J. Xu, U. Baran, S. Song, W. Qin, X. Qi, and R. K. Wang, “Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow,” J. Biomed. Opt. 21(3), 036005 (2016).
[Crossref] [PubMed]

Z. Zhi, W. Qin, J. Wang, W. Wei, and R. K. Wang, “4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source,” Opt. Lett. 40(8), 1779–1782 (2015).
[Crossref] [PubMed]

Wei, X.

Werkmeister, R. M.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Werner, J. S.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-Variance Optical Coherence Tomography: A Technique for Noninvasive Angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

White, B.

Wieser, W.

Wojtkowski, M.

Wong, K. K. Y.

Wu, C.

Xu, J.

Xu, Y.

Xue, P.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Yamanari, M.

Yang, C.

Yasuno, Y.

Yatagai, T.

Yoshimura, R.

Yu, L.

Yun, S.

Zawadzki, R. J.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-Variance Optical Coherence Tomography: A Technique for Noninvasive Angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

Zhang, C.

Zhang, W.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Zhang, X.

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

Zhi, Z.

Appl. Phys. Lett. (1)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

Biomed. Opt. Express (4)

J. Biomed. Opt. (2)

T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J. C. Hsieh, and P. Xue, “Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source,” J. Biomed. Opt. 20(3), 030503 (2015).
[Crossref] [PubMed]

W. Wei, J. Xu, U. Baran, S. Song, W. Qin, X. Qi, and R. K. Wang, “Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow,” J. Biomed. Opt. 21(3), 036005 (2016).
[Crossref] [PubMed]

Nat. Med. (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Ophthalmology (1)

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-Variance Optical Coherence Tomography: A Technique for Noninvasive Angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

Opt. Express (12)

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[Crossref] [PubMed]

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[Crossref] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

B. H. Park, M. C. Pierce, B. Cense.SH. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005).
[Crossref] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[Crossref] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref] [PubMed]

J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
[Crossref] [PubMed]

S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22(3), 3414–3424 (2014).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express 19(21), 20886–20903 (2011).
[Crossref] [PubMed]

Opt. Lett. (5)

Proc. SPIE (1)

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Prog. Retin. Eye Res. (1)

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (2)

R. E. Meyer and R. E. Fish, “WIII. Anesthetic Combinations” in Chap. 2. in Anesthesia and Analgesia in Laboratory Animals, R. Fish, P. J. Danneman, M. Brown, and A. Karas ed. (Academic Press, 1997).

E. Brown, L. L. Munn, D. Fukumura, and R. K. Jain, “In vivo imaging of tumors,” Cold Spring Harbor Protoc. 2010(7), pdb.prot5452, (2010).

Supplementary Material (2)

NameDescription
» Visualization 1       A depth projected video of inter-volume phase variance OCT angiography in an in vivo mouse ear at 30 V-scans/s.
» Visualization 2       A depth projected video of the axial displacement calculated from Doppler shift in an in vivo mouse brain at 60 V-scans/s.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A schematic of the phase stable OCT system. (A) 19-MHz stretched-pulse mode-locked (SPML) laser source. (B) Interferometer and scanner. (C) Data acquisition system. PC: polarization controller; SOA: semiconductor optical amplifier; ISO: isolator; FRM: Faraday rotating mirror; C1: collimator (f = 11 mm); C2: collimator (f = 3.9 mm); L1: lens (f = 50 mm); L2: lens (f = 50 mm); f: focusing lens (f = 10 mm). LPF: low pass filter (780 MHz); BD: balanced detector (1.6 GHz); DAQ: data acquisition card (~1.78 GS/s); MEMS1: slow-axis MEMS-based scanner (at rates of 1, 30, 60 and 100 volumes per second); MEMS2: fast-axis MEMS-based scanner (at the B-scan rate of 23.786 kHz).

Fig. 2
Fig. 2

A schematic of the electronic clocks and synchronization scheme.

Fig. 3
Fig. 3

(A) Representative fringe signals of selected A-scans. The corresponding phase values as a function of consecutive A-scans at the single depth that has the peak signal estimated from OCT amplitude information are shown in panel B. The measured phase noise at peak signal (SNR = 31 dB) was ± 0.019 rad.

Fig. 4
Fig. 4

Inter-volume coherent averaging of 4D images acquired in an in vivo mouse ear. Cross-sectional and en face OCT images of the tissue for N coherently averaged volumes: N = 1 (panel A,B), N = 9 (panel C,D), and N = 81 (panel E,F). Dash-dot red lines show the depth of en face presentations and dash-dot blue lines show the location of cross-sectional images. Panels G-I show relative intensity along the x-axis. Scale bar = 500 μm.

Fig. 5
Fig. 5

En face inter-frame Doppler OCT image at a depth of 180 μm in the mouse ear. Color bar shows the phase difference ranging from −0.01 to 0.01 rad. Scale bar = 500 μm.

Fig. 6
Fig. 6

Angiography performed across volumes using a method of inter-volume phase variance angiography. The frames in panels A (7.70 s), B (7.77 s), and C (7.83 s) were obtained from Visualization 1 at 30 fps. Enlarged views of the circle area from the panels highlight the morphology of microvascular structure and also change in morphology in time (panels D, E, and F). Panel G shows the changes of intensity along the time and panel H shows the corresponding relative grey values as a function of time after resampling the selected data. The total number of beats were measured to be ~160 bpm. Dash-dot yellow boxes indicate locations of the selected data. Scale bar = 500 μm.

Fig. 7
Fig. 7

(A) Projected image of inter-volume phase variance OCT angiography in an in vivo mouse brain to visualize the vasculature structure in the scanning area at the depths from 40 μm to 460 μm. Panels B, C, and D present en face Doppler OCT images extracted from Visualization 2 at time points of 2.85 s, 2.98 s, and 3.10 s. The calculated axial displacement in red-blue color map scaling from −570 nm to 570 nm demonstrates Doppler shift information within the adjacent tissue during imaging. (E) A projected image of the amplitude and phase of the Doppler signal at 102 bpm. Scale bar = 500 μm.

Tables (2)

Tables Icon

Table 1 The relations between all electronic components phase-locked to a master clock.

Tables Icon

Table 2 Specifications of V-scans and data sets.