Abstract

To evaluate cerebral hemodynamics and spontaneous low-frequency oscillations (SLFOs) of cerebral blood flow in rat brain, we investigated an imaging method using a digital RGB camera. In this method, the RGB values were converted into tristimulus values in the CIE (Commission Internationale de l’Eclairage) XYZ color space, which is compatible with the common RGB working spaces. Monte Carlo simulation for light transport in tissue was then used to specify the relationship among the tristimulus XYZ values and the concentrations of oxygenated hemoglobin (CHbO), deoxygenated hemoglobin (CHbR), and total hemoglobin (CHbT) and cerebral tissue oxygen saturation (StO2). Applying the fast Fourier transform to each pixel of the sequential images of CHbT along the timeline, SLFOs of cerebral blood volume were visualized as a spatial map of power spectral density (PSD) at specific frequencies related to vasomotion. To confirm the feasibility of this method, we performed in vivo experiments using exposed rat brain during a cortical spreading depression (CSD) evoked by topical application of KCl. Cerebral hemodynamic responses to CSD such as initial hypoperfusion, profound hyperemia, and post-CSD oligemia and hypoxemia were successfully visualized with this method. At the transition to the hyperemia phase from hypoperfusion, CHbO and StO2 were significantly increased, which implied vasodilatation in arterioles and increased cerebral blood volume in response to CSD. In the wake of the hyperemic phase, CHbO and CHbT were significantly reduced to 25 ± 12% and 3.5 ± 1% of baseline, respectively, suggesting long-lasting vasoconstriction after CSD. In this persistent oligemia, StO2 significantly dropped to at most 23 ± 12% of the level before CSD, indicating long-lasting hypoxemia. The PSD value of SLFOs in CHbT for arteriole regions during CSD was significantly reduced to 28 ± 20% of baseline with respect to the pre-CSD level, which was correlated with the reduction in StO2. The results showed the possibility of RGB camera-based diffuse reflectance spectroscopy imaging for evaluating cerebral hemodynamics and SLFOs under normal and pathologic conditions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo imaging of hepatic hemodynamics and light scattering property during ischemia-reperfusion in rats based on spectrocolorimetry

Sharmin Akter, Satoko Kawauchi, Shunichi Sato, Suefumi Aosasa, Junji Yamamoto, and Izumi Nishidate
Biomed. Opt. Express 8(2) 974-992 (2017)

Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation

Andrew K. Dunn, Anna Devor, Hayrunnisa Bolay, Mark L. Andermann, Michael A. Moskowitz, Anders M. Dale, and David A. Boas
Opt. Lett. 28(1) 28-30 (2003)

Noninvasive monitoring of estrogen effects against ischemic stroke in rats by near-infrared spectroscopy

Mengna Xia, Shaohua Yang, James W. Simpkins, and Hanli Liu
Appl. Opt. 46(34) 8315-8321 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. A. P. Leão, “Spreading depression of activity in the cerebral cortex,” J. Neurophysiol. 7(6), 359–390 (1944).
    [Crossref] [PubMed]
  2. A. Gorji, “Spreading depression: a review of the clinical relevance,” Brain Res. Brain Res. Rev. 38(1-2), 33–60 (2001).
    [Crossref] [PubMed]
  3. G. G. Somjen, “Mechanisms of spreading depression and hypoxic spreading depression-like depolarization,” Physiol. Rev. 81(3), 1065–1096 (2001).
    [Crossref] [PubMed]
  4. M. Lauritzen, “Pathophysiology of the migraine aura. The spreading depression theory,” Brain 117(1), 199–210 (1994).
    [Crossref] [PubMed]
  5. M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings, R. Bullock, A. J. Strong, and M. Lauritzen, “Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain,” Clin. Neurophysiol. 119(9), 1973–1984 (2008).
    [Crossref] [PubMed]
  6. K. A. Hossmann, “Periinfarct depolarizations,” Cerebrovasc. Brain Metab. Rev. 8(3), 195–208 (1996).
    [PubMed]
  7. K. Takano, L. L. Latour, J. E. Formato, R. A. Carano, K. G. Helmer, Y. Hasegawa, C. H. Sotak, and M. Fisher, “The role of spreading depression in focal ischemia evaluated by diffusion mapping,” Ann. Neurol. 39(3), 308–318 (1996).
    [Crossref] [PubMed]
  8. M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
    [Crossref] [PubMed]
  9. H. Oka, M. Kako, M. Matsushima, and K. Ando, “Traumatic spreading depression syndrome. review of a particular type of head injury in 37 patients,” Brain 100(2), 287–298 (1977).
    [Crossref] [PubMed]
  10. D. Torrente, R. Cabezas, M. F. Avila, L. M. García-Segura, G. E. Barreto, and R. C. Guedes, “Cortical spreading depression in traumatic brain injuries: Is there a role for astrocytes?” Neurosci. Lett. 565, 2–6 (2014).
    [Crossref] [PubMed]
  11. S. Sato, S. Kawauchi, W. Okuda, I. Nishidate, H. Nawashiro, and G. Tsumatori, “Real-time optical diagnosis of the rat brain exposed to a Laser-induced shock wave: Observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia,” PLoS One 9(1), e82891 (2014).
    [Crossref] [PubMed]
  12. T. Bonhoeffer and A. Grinvald, [Brain mapping: The Methods], Academic Press, San Diego, 1996.
  13. J. P. Dreier, “The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease,” Nat. Med. 17(4), 439–447 (2011).
    [Crossref] [PubMed]
  14. C. Ayata, “Spreading depression and neurovascular coupling,” Stroke 44(6), S87–S89 (2013).
    [Crossref] [PubMed]
  15. H. Piilgaard and M. Lauritzen, “Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex,” J. Cereb. Blood Flow Metab. 29(9), 1517–1527 (2009).
    [Crossref] [PubMed]
  16. B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
    [Crossref] [PubMed]
  17. Z. Zhang and R. Khatami, “Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study,” Eur. J. Neurosci. 40(9), 3396–3404 (2014).
    [Crossref] [PubMed]
  18. A. Stefanovska, “Coupled oscillators. Complex but not complicated cardiovascular and brain interactions,” IEEE Eng. Med. Biol. Mag. 26(6), 25–29 (2007).
    [Crossref] [PubMed]
  19. R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
    [Crossref] [PubMed]
  20. H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
    [Crossref] [PubMed]
  21. A. G. Hudetz, R. J. Roman, and D. R. Harder, “Spontaneous flow oscillations in the cerebral cortex during acute changes in mean arterial pressure,” J. Cereb. Blood Flow Metab. 12(3), 491–499 (1992).
    [Crossref] [PubMed]
  22. J. E. Mayhew, S. Askew, Y. Zheng, J. Porrill, G. W. Westby, P. Redgrave, D. M. Rector, and R. M. Harper, “Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity,” Neuroimage 4(3), 183–193 (1996).
    [Crossref] [PubMed]
  23. M. Guiou, S. Sheth, M. Nemoto, M. Walker, N. Pouratian, A. Ba, and A. W. Toga, “Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling,” J. Biomed. Opt. 10(1), 011004 (2005).
    [Crossref] [PubMed]
  24. C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
    [Crossref] [PubMed]
  25. I. Sukhotinsky, E. Dilekoz, M. A. Moskowitz, and C. Ayata, “Hypoxia and hypotension transform the blood flow response to cortical spreading depression from hyperemia into hypoperfusion in the rat,” J. Cereb. Blood Flow Metab. 28(7), 1369–1376 (2008).
    [Crossref] [PubMed]
  26. C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14(3), 1125–1144 (2006).
    [Crossref] [PubMed]
  27. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
    [Crossref] [PubMed]
  28. B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
    [Crossref] [PubMed]
  29. B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
    [Crossref] [PubMed]
  30. R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
    [Crossref] [PubMed]
  31. I. Nishidate, C. Mizushima, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression,” J. Biomed. Opt. 20(2), 027003 (2015).
    [Crossref] [PubMed]
  32. P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
    [Crossref] [PubMed]
  33. A. M. Ba, M. Guiou, N. Pouratian, A. Muthialu, D. E. Rex, A. F. Cannestra, J. W. Y. Chen, and A. W. Toga, “Multiwavelength optical intrinsic signal imaging of cortical spreading depression,” J. Neurophysiol. 88(5), 2726–2735 (2002).
    [Crossref] [PubMed]
  34. S. Chen, Z. Feng, P. Li, S. L. Jacques, S. Zeng, and Q. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt. 11(3), 034002 (2006).
    [Crossref] [PubMed]
  35. C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” Neuroimage 76, 70–80 (2013).
    [Crossref] [PubMed]
  36. S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt. 18(1), 015003 (2013).
    [Crossref] [PubMed]
  37. I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of cerebral hemodynamics and tissue morphology of in vivo rat brain using spectral diffuse reflectance imaging,” Appl. Spectrosc. 71(5), 866–878 (2017).
    [Crossref] [PubMed]
  38. T. Arnold, M. De Biasio, and R. Leitner, “Hyper-spectral video endoscope for intra-surgery tissue classification using auto-fluorescence and reflectance spectroscopy,” Proc. SPIE 8087, 808711 (2011).
    [Crossref]
  39. A. Basiri, M. Nabili, S. Mathews, A. Libin, S. Groah, H. J. Noordmans, and J. C. Ramella-Roman, “Use of a multi-spectral camera in the characterization of skin wounds,” Opt. Express 18(4), 3244–3257 (2010).
    [Crossref] [PubMed]
  40. M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. C. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009).
    [Crossref] [PubMed]
  41. K. Yoshida, I. Nishidate, T. Ishizuka, S. Kawauchi, S. Sato, and M. Sato, “Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera,” J. Biomed. Opt. 20(5), 051026 (2015).
    [Crossref] [PubMed]
  42. A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
    [Crossref] [PubMed]
  43. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  44. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998).
    [Crossref] [PubMed]
  45. D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
    [Crossref] [PubMed]
  46. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, Bellingham, WA, 2007).
  47. S. A. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html (1999).
  48. P. van Beest, G. Wietasch, T. Scheeren, P. Spronk, and M. Kuiper, “Clinical review: use of venous oxygen saturations as a goal - a yet unfinished puzzle,” Crit. Care 15(5), 232 (2011).
    [Crossref] [PubMed]
  49. C. C. Pang, “Measurement of body venous tone,” J. Pharmacol. Toxicol. Methods 44(2), 341–360 (2000).
    [Crossref] [PubMed]
  50. J. Thomas and P. Lerche, [Anaesthesia and Analgesia for Veterinary Technicians, 4th ed.], Elsevier, (2011).
  51. R. D. Piper, G. A. Lambert, and J. W. Duckworth, “Cortical blood flow changes during spreading depression in cats,” Am. J. Physiol. 261(1 Pt 2), H96–H102 (1991).
    [PubMed]
  52. G. Florence, G. Bonvento, R. Charbonne, and J. Seylaz, “Spreading depression reversibly impairs autoregulation of cortical blood flow,” Am. J. Physiol. 266(4 Pt 2), R1136–R1140 (1994).
    [PubMed]
  53. M. Lauritzen, “Long-lasting reduction of cortical blood flow of the brain after spreading depression with preserved autoregulation and impaired CO2 response,” J. Cereb. Blood Flow Metab. 4(4), 546–554 (1984).
    [Crossref] [PubMed]
  54. V. Tsytsarev, K. Premachandra, D. Takeshita, and S. Bahar, “Imaging cortical electrical stimulation in vivo: fast intrinsic optical signal versus voltage-sensitive dyes,” Opt. Lett. 33(9), 1032–1034 (2008).
    [Crossref] [PubMed]

2017 (2)

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of cerebral hemodynamics and tissue morphology of in vivo rat brain using spectral diffuse reflectance imaging,” Appl. Spectrosc. 71(5), 866–878 (2017).
[Crossref] [PubMed]

2015 (2)

I. Nishidate, C. Mizushima, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression,” J. Biomed. Opt. 20(2), 027003 (2015).
[Crossref] [PubMed]

K. Yoshida, I. Nishidate, T. Ishizuka, S. Kawauchi, S. Sato, and M. Sato, “Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera,” J. Biomed. Opt. 20(5), 051026 (2015).
[Crossref] [PubMed]

2014 (3)

Z. Zhang and R. Khatami, “Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study,” Eur. J. Neurosci. 40(9), 3396–3404 (2014).
[Crossref] [PubMed]

D. Torrente, R. Cabezas, M. F. Avila, L. M. García-Segura, G. E. Barreto, and R. C. Guedes, “Cortical spreading depression in traumatic brain injuries: Is there a role for astrocytes?” Neurosci. Lett. 565, 2–6 (2014).
[Crossref] [PubMed]

S. Sato, S. Kawauchi, W. Okuda, I. Nishidate, H. Nawashiro, and G. Tsumatori, “Real-time optical diagnosis of the rat brain exposed to a Laser-induced shock wave: Observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia,” PLoS One 9(1), e82891 (2014).
[Crossref] [PubMed]

2013 (4)

C. Ayata, “Spreading depression and neurovascular coupling,” Stroke 44(6), S87–S89 (2013).
[Crossref] [PubMed]

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” Neuroimage 76, 70–80 (2013).
[Crossref] [PubMed]

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt. 18(1), 015003 (2013).
[Crossref] [PubMed]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

2012 (1)

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
[Crossref] [PubMed]

2011 (4)

P. van Beest, G. Wietasch, T. Scheeren, P. Spronk, and M. Kuiper, “Clinical review: use of venous oxygen saturations as a goal - a yet unfinished puzzle,” Crit. Care 15(5), 232 (2011).
[Crossref] [PubMed]

J. P. Dreier, “The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease,” Nat. Med. 17(4), 439–447 (2011).
[Crossref] [PubMed]

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[Crossref] [PubMed]

T. Arnold, M. De Biasio, and R. Leitner, “Hyper-spectral video endoscope for intra-surgery tissue classification using auto-fluorescence and reflectance spectroscopy,” Proc. SPIE 8087, 808711 (2011).
[Crossref]

2010 (1)

2009 (3)

M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. C. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009).
[Crossref] [PubMed]

H. Piilgaard and M. Lauritzen, “Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex,” J. Cereb. Blood Flow Metab. 29(9), 1517–1527 (2009).
[Crossref] [PubMed]

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

2008 (6)

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[Crossref] [PubMed]

I. Sukhotinsky, E. Dilekoz, M. A. Moskowitz, and C. Ayata, “Hypoxia and hypotension transform the blood flow response to cortical spreading depression from hyperemia into hypoperfusion in the rat,” J. Cereb. Blood Flow Metab. 28(7), 1369–1376 (2008).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[Crossref] [PubMed]

M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings, R. Bullock, A. J. Strong, and M. Lauritzen, “Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain,” Clin. Neurophysiol. 119(9), 1973–1984 (2008).
[Crossref] [PubMed]

V. Tsytsarev, K. Premachandra, D. Takeshita, and S. Bahar, “Imaging cortical electrical stimulation in vivo: fast intrinsic optical signal versus voltage-sensitive dyes,” Opt. Lett. 33(9), 1032–1034 (2008).
[Crossref] [PubMed]

2007 (1)

A. Stefanovska, “Coupled oscillators. Complex but not complicated cardiovascular and brain interactions,” IEEE Eng. Med. Biol. Mag. 26(6), 25–29 (2007).
[Crossref] [PubMed]

2006 (2)

S. Chen, Z. Feng, P. Li, S. L. Jacques, S. Zeng, and Q. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt. 11(3), 034002 (2006).
[Crossref] [PubMed]

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14(3), 1125–1144 (2006).
[Crossref] [PubMed]

2005 (1)

M. Guiou, S. Sheth, M. Nemoto, M. Walker, N. Pouratian, A. Ba, and A. W. Toga, “Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling,” J. Biomed. Opt. 10(1), 011004 (2005).
[Crossref] [PubMed]

2004 (1)

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[Crossref] [PubMed]

2002 (2)

A. M. Ba, M. Guiou, N. Pouratian, A. Muthialu, D. E. Rex, A. F. Cannestra, J. W. Y. Chen, and A. W. Toga, “Multiwavelength optical intrinsic signal imaging of cortical spreading depression,” J. Neurophysiol. 88(5), 2726–2735 (2002).
[Crossref] [PubMed]

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

2001 (3)

A. Gorji, “Spreading depression: a review of the clinical relevance,” Brain Res. Brain Res. Rev. 38(1-2), 33–60 (2001).
[Crossref] [PubMed]

G. G. Somjen, “Mechanisms of spreading depression and hypoxic spreading depression-like depolarization,” Physiol. Rev. 81(3), 1065–1096 (2001).
[Crossref] [PubMed]

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
[Crossref] [PubMed]

2000 (1)

C. C. Pang, “Measurement of body venous tone,” J. Pharmacol. Toxicol. Methods 44(2), 341–360 (2000).
[Crossref] [PubMed]

1999 (1)

H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
[Crossref] [PubMed]

1998 (1)

1996 (3)

J. E. Mayhew, S. Askew, Y. Zheng, J. Porrill, G. W. Westby, P. Redgrave, D. M. Rector, and R. M. Harper, “Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity,” Neuroimage 4(3), 183–193 (1996).
[Crossref] [PubMed]

K. A. Hossmann, “Periinfarct depolarizations,” Cerebrovasc. Brain Metab. Rev. 8(3), 195–208 (1996).
[PubMed]

K. Takano, L. L. Latour, J. E. Formato, R. A. Carano, K. G. Helmer, Y. Hasegawa, C. H. Sotak, and M. Fisher, “The role of spreading depression in focal ischemia evaluated by diffusion mapping,” Ann. Neurol. 39(3), 308–318 (1996).
[Crossref] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1994 (2)

M. Lauritzen, “Pathophysiology of the migraine aura. The spreading depression theory,” Brain 117(1), 199–210 (1994).
[Crossref] [PubMed]

G. Florence, G. Bonvento, R. Charbonne, and J. Seylaz, “Spreading depression reversibly impairs autoregulation of cortical blood flow,” Am. J. Physiol. 266(4 Pt 2), R1136–R1140 (1994).
[PubMed]

1992 (1)

A. G. Hudetz, R. J. Roman, and D. R. Harder, “Spontaneous flow oscillations in the cerebral cortex during acute changes in mean arterial pressure,” J. Cereb. Blood Flow Metab. 12(3), 491–499 (1992).
[Crossref] [PubMed]

1991 (1)

R. D. Piper, G. A. Lambert, and J. W. Duckworth, “Cortical blood flow changes during spreading depression in cats,” Am. J. Physiol. 261(1 Pt 2), H96–H102 (1991).
[PubMed]

1984 (1)

M. Lauritzen, “Long-lasting reduction of cortical blood flow of the brain after spreading depression with preserved autoregulation and impaired CO2 response,” J. Cereb. Blood Flow Metab. 4(4), 546–554 (1984).
[Crossref] [PubMed]

1977 (1)

H. Oka, M. Kako, M. Matsushima, and K. Ando, “Traumatic spreading depression syndrome. review of a particular type of head injury in 37 patients,” Brain 100(2), 287–298 (1977).
[Crossref] [PubMed]

1944 (1)

A. A. P. Leão, “Spreading depression of activity in the cerebral cortex,” J. Neurophysiol. 7(6), 359–390 (1944).
[Crossref] [PubMed]

Abookasis, D.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

Ando, K.

H. Oka, M. Kako, M. Matsushima, and K. Ando, “Traumatic spreading depression syndrome. review of a particular type of head injury in 37 patients,” Brain 100(2), 287–298 (1977).
[Crossref] [PubMed]

Arnold, T.

T. Arnold, M. De Biasio, and R. Leitner, “Hyper-spectral video endoscope for intra-surgery tissue classification using auto-fluorescence and reflectance spectroscopy,” Proc. SPIE 8087, 808711 (2011).
[Crossref]

Ashida, H.

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt. 18(1), 015003 (2013).
[Crossref] [PubMed]

Askew, S.

J. E. Mayhew, S. Askew, Y. Zheng, J. Porrill, G. W. Westby, P. Redgrave, D. M. Rector, and R. M. Harper, “Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity,” Neuroimage 4(3), 183–193 (1996).
[Crossref] [PubMed]

Avila, M. F.

D. Torrente, R. Cabezas, M. F. Avila, L. M. García-Segura, G. E. Barreto, and R. C. Guedes, “Cortical spreading depression in traumatic brain injuries: Is there a role for astrocytes?” Neurosci. Lett. 565, 2–6 (2014).
[Crossref] [PubMed]

Ayata, C.

C. Ayata, “Spreading depression and neurovascular coupling,” Stroke 44(6), S87–S89 (2013).
[Crossref] [PubMed]

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[Crossref] [PubMed]

I. Sukhotinsky, E. Dilekoz, M. A. Moskowitz, and C. Ayata, “Hypoxia and hypotension transform the blood flow response to cortical spreading depression from hyperemia into hypoperfusion in the rat,” J. Cereb. Blood Flow Metab. 28(7), 1369–1376 (2008).
[Crossref] [PubMed]

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[Crossref] [PubMed]

Ba, A.

M. Guiou, S. Sheth, M. Nemoto, M. Walker, N. Pouratian, A. Ba, and A. W. Toga, “Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling,” J. Biomed. Opt. 10(1), 011004 (2005).
[Crossref] [PubMed]

Ba, A. M.

A. M. Ba, M. Guiou, N. Pouratian, A. Muthialu, D. E. Rex, A. F. Cannestra, J. W. Y. Chen, and A. W. Toga, “Multiwavelength optical intrinsic signal imaging of cortical spreading depression,” J. Neurophysiol. 88(5), 2726–2735 (2002).
[Crossref] [PubMed]

Bahar, S.

Barreto, G. E.

D. Torrente, R. Cabezas, M. F. Avila, L. M. García-Segura, G. E. Barreto, and R. C. Guedes, “Cortical spreading depression in traumatic brain injuries: Is there a role for astrocytes?” Neurosci. Lett. 565, 2–6 (2014).
[Crossref] [PubMed]

Basiri, A.

Bender, J. E.

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[Crossref] [PubMed]

Bhatia, R.

M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings, R. Bullock, A. J. Strong, and M. Lauritzen, “Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain,” Clin. Neurophysiol. 119(9), 1973–1984 (2008).
[Crossref] [PubMed]

Boas, D. A.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[Crossref] [PubMed]

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[Crossref] [PubMed]

Bonvento, G.

G. Florence, G. Bonvento, R. Charbonne, and J. Seylaz, “Spreading depression reversibly impairs autoregulation of cortical blood flow,” Am. J. Physiol. 266(4 Pt 2), R1136–R1140 (1994).
[PubMed]

Bosch, B. M.

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

Bouchard, M. B.

Boutelle, M. G.

M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings, R. Bullock, A. J. Strong, and M. Lauritzen, “Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain,” Clin. Neurophysiol. 119(9), 1973–1984 (2008).
[Crossref] [PubMed]

Bringard, A.

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

Bullock, R.

M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings, R. Bullock, A. J. Strong, and M. Lauritzen, “Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain,” Clin. Neurophysiol. 119(9), 1973–1984 (2008).
[Crossref] [PubMed]

Burgess, S. A.

Cabezas, R.

D. Torrente, R. Cabezas, M. F. Avila, L. M. García-Segura, G. E. Barreto, and R. C. Guedes, “Cortical spreading depression in traumatic brain injuries: Is there a role for astrocytes?” Neurosci. Lett. 565, 2–6 (2014).
[Crossref] [PubMed]

Cannestra, A. F.

A. M. Ba, M. Guiou, N. Pouratian, A. Muthialu, D. E. Rex, A. F. Cannestra, J. W. Y. Chen, and A. W. Toga, “Multiwavelength optical intrinsic signal imaging of cortical spreading depression,” J. Neurophysiol. 88(5), 2726–2735 (2002).
[Crossref] [PubMed]

Carano, R. A.

K. Takano, L. L. Latour, J. E. Formato, R. A. Carano, K. G. Helmer, Y. Hasegawa, C. H. Sotak, and M. Fisher, “The role of spreading depression in focal ischemia evaluated by diffusion mapping,” Ann. Neurol. 39(3), 308–318 (1996).
[Crossref] [PubMed]

Charbonne, R.

G. Florence, G. Bonvento, R. Charbonne, and J. Seylaz, “Spreading depression reversibly impairs autoregulation of cortical blood flow,” Am. J. Physiol. 266(4 Pt 2), R1136–R1140 (1994).
[PubMed]

Chen, B. R.

Chen, J. W. Y.

A. M. Ba, M. Guiou, N. Pouratian, A. Muthialu, D. E. Rex, A. F. Cannestra, J. W. Y. Chen, and A. W. Toga, “Multiwavelength optical intrinsic signal imaging of cortical spreading depression,” J. Neurophysiol. 88(5), 2726–2735 (2002).
[Crossref] [PubMed]

Chen, S.

S. Chen, Z. Feng, P. Li, S. L. Jacques, S. Zeng, and Q. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt. 11(3), 034002 (2006).
[Crossref] [PubMed]

Crandall, C. G.

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

De Biasio, M.

T. Arnold, M. De Biasio, and R. Leitner, “Hyper-spectral video endoscope for intra-surgery tissue classification using auto-fluorescence and reflectance spectroscopy,” Proc. SPIE 8087, 808711 (2011).
[Crossref]

Dilekoz, E.

I. Sukhotinsky, E. Dilekoz, M. A. Moskowitz, and C. Ayata, “Hypoxia and hypotension transform the blood flow response to cortical spreading depression from hyperemia into hypoperfusion in the rat,” J. Cereb. Blood Flow Metab. 28(7), 1369–1376 (2008).
[Crossref] [PubMed]

Dreier, J. P.

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[Crossref] [PubMed]

J. P. Dreier, “The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease,” Nat. Med. 17(4), 439–447 (2011).
[Crossref] [PubMed]

M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings, R. Bullock, A. J. Strong, and M. Lauritzen, “Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain,” Clin. Neurophysiol. 119(9), 1973–1984 (2008).
[Crossref] [PubMed]

Duckworth, J. W.

R. D. Piper, G. A. Lambert, and J. W. Duckworth, “Cortical blood flow changes during spreading depression in cats,” Am. J. Physiol. 261(1 Pt 2), H96–H102 (1991).
[PubMed]

Dunn, A. K.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[Crossref] [PubMed]

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[Crossref] [PubMed]

Durduran, T.

Eick, A. A.

Fabricius, M.

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[Crossref] [PubMed]

M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings, R. Bullock, A. J. Strong, and M. Lauritzen, “Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain,” Clin. Neurophysiol. 119(9), 1973–1984 (2008).
[Crossref] [PubMed]

Feng, Z.

S. Chen, Z. Feng, P. Li, S. L. Jacques, S. Zeng, and Q. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt. 11(3), 034002 (2006).
[Crossref] [PubMed]

Ferretti, G.

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

Fisher, M.

K. Takano, L. L. Latour, J. E. Formato, R. A. Carano, K. G. Helmer, Y. Hasegawa, C. H. Sotak, and M. Fisher, “The role of spreading depression in focal ischemia evaluated by diffusion mapping,” Ann. Neurol. 39(3), 308–318 (1996).
[Crossref] [PubMed]

Florence, G.

G. Florence, G. Bonvento, R. Charbonne, and J. Seylaz, “Spreading depression reversibly impairs autoregulation of cortical blood flow,” Am. J. Physiol. 266(4 Pt 2), R1136–R1140 (1994).
[PubMed]

Formato, J. E.

K. Takano, L. L. Latour, J. E. Formato, R. A. Carano, K. G. Helmer, Y. Hasegawa, C. H. Sotak, and M. Fisher, “The role of spreading depression in focal ischemia evaluated by diffusion mapping,” Ann. Neurol. 39(3), 308–318 (1996).
[Crossref] [PubMed]

Freyer, J. P.

Frostig, R. D.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

Fuhr, S.

M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings, R. Bullock, A. J. Strong, and M. Lauritzen, “Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain,” Clin. Neurophysiol. 119(9), 1973–1984 (2008).
[Crossref] [PubMed]

Furuya, D.

García-Segura, L. M.

D. Torrente, R. Cabezas, M. F. Avila, L. M. García-Segura, G. E. Barreto, and R. C. Guedes, “Cortical spreading depression in traumatic brain injuries: Is there a role for astrocytes?” Neurosci. Lett. 565, 2–6 (2014).
[Crossref] [PubMed]

Gorji, A.

A. Gorji, “Spreading depression: a review of the clinical relevance,” Brain Res. Brain Res. Rev. 38(1-2), 33–60 (2001).
[Crossref] [PubMed]

Graf, R.

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[Crossref] [PubMed]

Greenberg, J.

Groah, S.

Guedes, R. C.

D. Torrente, R. Cabezas, M. F. Avila, L. M. García-Segura, G. E. Barreto, and R. C. Guedes, “Cortical spreading depression in traumatic brain injuries: Is there a role for astrocytes?” Neurosci. Lett. 565, 2–6 (2014).
[Crossref] [PubMed]

Guiou, M.

M. Guiou, S. Sheth, M. Nemoto, M. Walker, N. Pouratian, A. Ba, and A. W. Toga, “Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling,” J. Biomed. Opt. 10(1), 011004 (2005).
[Crossref] [PubMed]

A. M. Ba, M. Guiou, N. Pouratian, A. Muthialu, D. E. Rex, A. F. Cannestra, J. W. Y. Chen, and A. W. Toga, “Multiwavelength optical intrinsic signal imaging of cortical spreading depression,” J. Neurophysiol. 88(5), 2726–2735 (2002).
[Crossref] [PubMed]

Harder, D. R.

A. G. Hudetz, R. J. Roman, and D. R. Harder, “Spontaneous flow oscillations in the cerebral cortex during acute changes in mean arterial pressure,” J. Cereb. Blood Flow Metab. 12(3), 491–499 (1992).
[Crossref] [PubMed]

Harper, R. M.

J. E. Mayhew, S. Askew, Y. Zheng, J. Porrill, G. W. Westby, P. Redgrave, D. M. Rector, and R. M. Harper, “Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity,” Neuroimage 4(3), 183–193 (1996).
[Crossref] [PubMed]

Hartings, J. A.

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[Crossref] [PubMed]

M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings, R. Bullock, A. J. Strong, and M. Lauritzen, “Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain,” Clin. Neurophysiol. 119(9), 1973–1984 (2008).
[Crossref] [PubMed]

Hasegawa, Y.

K. Takano, L. L. Latour, J. E. Formato, R. A. Carano, K. G. Helmer, Y. Hasegawa, C. H. Sotak, and M. Fisher, “The role of spreading depression in focal ischemia evaluated by diffusion mapping,” Ann. Neurol. 39(3), 308–318 (1996).
[Crossref] [PubMed]

Helmer, K. G.

K. Takano, L. L. Latour, J. E. Formato, R. A. Carano, K. G. Helmer, Y. Hasegawa, C. H. Sotak, and M. Fisher, “The role of spreading depression in focal ischemia evaluated by diffusion mapping,” Ann. Neurol. 39(3), 308–318 (1996).
[Crossref] [PubMed]

Hennessy, R.

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

Hielscher, A. H.

Hillman, E. M. C.

Hossmann, K. A.

K. A. Hossmann, “Periinfarct depolarizations,” Cerebrovasc. Brain Metab. Rev. 8(3), 195–208 (1996).
[PubMed]

Hudetz, A. G.

A. G. Hudetz, R. J. Roman, and D. R. Harder, “Spontaneous flow oscillations in the cerebral cortex during acute changes in mean arterial pressure,” J. Cereb. Blood Flow Metab. 12(3), 491–499 (1992).
[Crossref] [PubMed]

Hyman, B. T.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[Crossref] [PubMed]

Iglói, K.

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

Ishizuka, T.

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of cerebral hemodynamics and tissue morphology of in vivo rat brain using spectral diffuse reflectance imaging,” Appl. Spectrosc. 71(5), 866–878 (2017).
[Crossref] [PubMed]

K. Yoshida, I. Nishidate, T. Ishizuka, S. Kawauchi, S. Sato, and M. Sato, “Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera,” J. Biomed. Opt. 20(5), 051026 (2015).
[Crossref] [PubMed]

Iwasaki, K.

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

Jacques, S. L.

S. Chen, Z. Feng, P. Li, S. L. Jacques, S. Zeng, and Q. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt. 11(3), 034002 (2006).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Johnson, T. M.

Jones, P. B.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[Crossref] [PubMed]

Kako, M.

H. Oka, M. Kako, M. Matsushima, and K. Ando, “Traumatic spreading depression syndrome. review of a particular type of head injury in 37 patients,” Brain 100(2), 287–298 (1977).
[Crossref] [PubMed]

Kawauchi, S.

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of cerebral hemodynamics and tissue morphology of in vivo rat brain using spectral diffuse reflectance imaging,” Appl. Spectrosc. 71(5), 866–878 (2017).
[Crossref] [PubMed]

I. Nishidate, C. Mizushima, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression,” J. Biomed. Opt. 20(2), 027003 (2015).
[Crossref] [PubMed]

K. Yoshida, I. Nishidate, T. Ishizuka, S. Kawauchi, S. Sato, and M. Sato, “Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera,” J. Biomed. Opt. 20(5), 051026 (2015).
[Crossref] [PubMed]

S. Sato, S. Kawauchi, W. Okuda, I. Nishidate, H. Nawashiro, and G. Tsumatori, “Real-time optical diagnosis of the rat brain exposed to a Laser-induced shock wave: Observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia,” PLoS One 9(1), e82891 (2014).
[Crossref] [PubMed]

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt. 18(1), 015003 (2013).
[Crossref] [PubMed]

Khatami, R.

Z. Zhang and R. Khatami, “Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study,” Eur. J. Neurosci. 40(9), 3396–3404 (2014).
[Crossref] [PubMed]

Kirkebøen, K. A.

H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
[Crossref] [PubMed]

Kuech, T. F.

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[Crossref] [PubMed]

Kuiper, M.

P. van Beest, G. Wietasch, T. Scheeren, P. Spronk, and M. Kuiper, “Clinical review: use of venous oxygen saturations as a goal - a yet unfinished puzzle,” Crit. Care 15(5), 232 (2011).
[Crossref] [PubMed]

Kvernebo, K.

H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
[Crossref] [PubMed]

Kvernmo, H. D.

H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
[Crossref] [PubMed]

Lambert, G. A.

R. D. Piper, G. A. Lambert, and J. W. Duckworth, “Cortical blood flow changes during spreading depression in cats,” Am. J. Physiol. 261(1 Pt 2), H96–H102 (1991).
[PubMed]

Latour, L. L.

K. Takano, L. L. Latour, J. E. Formato, R. A. Carano, K. G. Helmer, Y. Hasegawa, C. H. Sotak, and M. Fisher, “The role of spreading depression in focal ischemia evaluated by diffusion mapping,” Ann. Neurol. 39(3), 308–318 (1996).
[Crossref] [PubMed]

Lauritzen, M.

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[Crossref] [PubMed]

H. Piilgaard and M. Lauritzen, “Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex,” J. Cereb. Blood Flow Metab. 29(9), 1517–1527 (2009).
[Crossref] [PubMed]

M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings, R. Bullock, A. J. Strong, and M. Lauritzen, “Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain,” Clin. Neurophysiol. 119(9), 1973–1984 (2008).
[Crossref] [PubMed]

M. Lauritzen, “Pathophysiology of the migraine aura. The spreading depression theory,” Brain 117(1), 199–210 (1994).
[Crossref] [PubMed]

M. Lauritzen, “Long-lasting reduction of cortical blood flow of the brain after spreading depression with preserved autoregulation and impaired CO2 response,” J. Cereb. Blood Flow Metab. 4(4), 546–554 (1984).
[Crossref] [PubMed]

Lay, C. C.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

Leão, A. A. P.

A. A. P. Leão, “Spreading depression of activity in the cerebral cortex,” J. Neurophysiol. 7(6), 359–390 (1944).
[Crossref] [PubMed]

Leitner, R.

T. Arnold, M. De Biasio, and R. Leitner, “Hyper-spectral video endoscope for intra-surgery tissue classification using auto-fluorescence and reflectance spectroscopy,” Proc. SPIE 8087, 808711 (2011).
[Crossref]

Levine, B. D.

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

Li, P.

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” Neuroimage 76, 70–80 (2013).
[Crossref] [PubMed]

S. Chen, Z. Feng, P. Li, S. L. Jacques, S. Zeng, and Q. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt. 11(3), 034002 (2006).
[Crossref] [PubMed]

Libin, A.

Lim, S. L.

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

Linskey, M. E.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

Lo, J. Y.

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[Crossref] [PubMed]

Loschenov, V. B.

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
[Crossref] [PubMed]

Luo, Q.

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” Neuroimage 76, 70–80 (2013).
[Crossref] [PubMed]

S. Chen, Z. Feng, P. Li, S. L. Jacques, S. Zeng, and Q. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt. 11(3), 034002 (2006).
[Crossref] [PubMed]

Luo, W.

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” Neuroimage 76, 70–80 (2013).
[Crossref] [PubMed]

Markey, M. K.

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

Mathews, M. S.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

Mathews, S.

Matsushima, M.

H. Oka, M. Kako, M. Matsushima, and K. Ando, “Traumatic spreading depression syndrome. review of a particular type of head injury in 37 patients,” Brain 100(2), 287–298 (1977).
[Crossref] [PubMed]

Mayhew, J. E.

J. E. Mayhew, S. Askew, Y. Zheng, J. Porrill, G. W. Westby, P. Redgrave, D. M. Rector, and R. M. Harper, “Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity,” Neuroimage 4(3), 183–193 (1996).
[Crossref] [PubMed]

Mizushima, C.

I. Nishidate, C. Mizushima, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression,” J. Biomed. Opt. 20(2), 027003 (2015).
[Crossref] [PubMed]

Moskowitz, M. A.

I. Sukhotinsky, E. Dilekoz, M. A. Moskowitz, and C. Ayata, “Hypoxia and hypotension transform the blood flow response to cortical spreading depression from hyperemia into hypoperfusion in the rat,” J. Cereb. Blood Flow Metab. 28(7), 1369–1376 (2008).
[Crossref] [PubMed]

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[Crossref] [PubMed]

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[Crossref] [PubMed]

Mourant, J. R.

Mustari, A.

Muthialu, A.

A. M. Ba, M. Guiou, N. Pouratian, A. Muthialu, D. E. Rex, A. F. Cannestra, J. W. Y. Chen, and A. W. Toga, “Multiwavelength optical intrinsic signal imaging of cortical spreading depression,” J. Neurophysiol. 88(5), 2726–2735 (2002).
[Crossref] [PubMed]

Nabili, M.

Nawashiro, H.

S. Sato, S. Kawauchi, W. Okuda, I. Nishidate, H. Nawashiro, and G. Tsumatori, “Real-time optical diagnosis of the rat brain exposed to a Laser-induced shock wave: Observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia,” PLoS One 9(1), e82891 (2014).
[Crossref] [PubMed]

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt. 18(1), 015003 (2013).
[Crossref] [PubMed]

Nemoto, M.

M. Guiou, S. Sheth, M. Nemoto, M. Walker, N. Pouratian, A. Ba, and A. W. Toga, “Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling,” J. Biomed. Opt. 10(1), 011004 (2005).
[Crossref] [PubMed]

Nguyen, T. H.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Nichols, B. S.

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
[Crossref] [PubMed]

Nishidate, I.

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of cerebral hemodynamics and tissue morphology of in vivo rat brain using spectral diffuse reflectance imaging,” Appl. Spectrosc. 71(5), 866–878 (2017).
[Crossref] [PubMed]

I. Nishidate, C. Mizushima, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression,” J. Biomed. Opt. 20(2), 027003 (2015).
[Crossref] [PubMed]

K. Yoshida, I. Nishidate, T. Ishizuka, S. Kawauchi, S. Sato, and M. Sato, “Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera,” J. Biomed. Opt. 20(5), 051026 (2015).
[Crossref] [PubMed]

S. Sato, S. Kawauchi, W. Okuda, I. Nishidate, H. Nawashiro, and G. Tsumatori, “Real-time optical diagnosis of the rat brain exposed to a Laser-induced shock wave: Observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia,” PLoS One 9(1), e82891 (2014).
[Crossref] [PubMed]

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt. 18(1), 015003 (2013).
[Crossref] [PubMed]

Noordmans, H. J.

Oka, H.

H. Oka, M. Kako, M. Matsushima, and K. Ando, “Traumatic spreading depression syndrome. review of a particular type of head injury in 37 patients,” Brain 100(2), 287–298 (1977).
[Crossref] [PubMed]

Okuda, W.

S. Sato, S. Kawauchi, W. Okuda, I. Nishidate, H. Nawashiro, and G. Tsumatori, “Real-time optical diagnosis of the rat brain exposed to a Laser-induced shock wave: Observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia,” PLoS One 9(1), e82891 (2014).
[Crossref] [PubMed]

Ozdemir-Gursoy, Y.

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[Crossref] [PubMed]

Palmer, G. M.

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[Crossref] [PubMed]

Pang, C. C.

C. C. Pang, “Measurement of body venous tone,” J. Pharmacol. Toxicol. Methods 44(2), 341–360 (2000).
[Crossref] [PubMed]

Piilgaard, H.

H. Piilgaard and M. Lauritzen, “Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex,” J. Cereb. Blood Flow Metab. 29(9), 1517–1527 (2009).
[Crossref] [PubMed]

Piper, R. D.

R. D. Piper, G. A. Lambert, and J. W. Duckworth, “Cortical blood flow changes during spreading depression in cats,” Am. J. Physiol. 261(1 Pt 2), H96–H102 (1991).
[PubMed]

Porrill, J.

J. E. Mayhew, S. Askew, Y. Zheng, J. Porrill, G. W. Westby, P. Redgrave, D. M. Rector, and R. M. Harper, “Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity,” Neuroimage 4(3), 183–193 (1996).
[Crossref] [PubMed]

Pouratian, N.

M. Guiou, S. Sheth, M. Nemoto, M. Walker, N. Pouratian, A. Ba, and A. W. Toga, “Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling,” J. Biomed. Opt. 10(1), 011004 (2005).
[Crossref] [PubMed]

A. M. Ba, M. Guiou, N. Pouratian, A. Muthialu, D. E. Rex, A. F. Cannestra, J. W. Y. Chen, and A. W. Toga, “Multiwavelength optical intrinsic signal imaging of cortical spreading depression,” J. Neurophysiol. 88(5), 2726–2735 (2002).
[Crossref] [PubMed]

Premachandra, K.

Rajaram, N.

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Ramanujam, N.

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[Crossref] [PubMed]

Ramella-Roman, J. C.

Rector, D. M.

J. E. Mayhew, S. Askew, Y. Zheng, J. Porrill, G. W. Westby, P. Redgrave, D. M. Rector, and R. M. Harper, “Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity,” Neuroimage 4(3), 183–193 (1996).
[Crossref] [PubMed]

Redgrave, P.

J. E. Mayhew, S. Askew, Y. Zheng, J. Porrill, G. W. Westby, P. Redgrave, D. M. Rector, and R. M. Harper, “Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity,” Neuroimage 4(3), 183–193 (1996).
[Crossref] [PubMed]

Rex, D. E.

A. M. Ba, M. Guiou, N. Pouratian, A. Muthialu, D. E. Rex, A. F. Cannestra, J. W. Y. Chen, and A. W. Toga, “Multiwavelength optical intrinsic signal imaging of cortical spreading depression,” J. Neurophysiol. 88(5), 2726–2735 (2002).
[Crossref] [PubMed]

Roman, R. J.

A. G. Hudetz, R. J. Roman, and D. R. Harder, “Spontaneous flow oscillations in the cerebral cortex during acute changes in mean arterial pressure,” J. Cereb. Blood Flow Metab. 12(3), 491–499 (1992).
[Crossref] [PubMed]

Salomone, S.

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[Crossref] [PubMed]

Sato, M.

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of cerebral hemodynamics and tissue morphology of in vivo rat brain using spectral diffuse reflectance imaging,” Appl. Spectrosc. 71(5), 866–878 (2017).
[Crossref] [PubMed]

I. Nishidate, C. Mizushima, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression,” J. Biomed. Opt. 20(2), 027003 (2015).
[Crossref] [PubMed]

K. Yoshida, I. Nishidate, T. Ishizuka, S. Kawauchi, S. Sato, and M. Sato, “Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera,” J. Biomed. Opt. 20(5), 051026 (2015).
[Crossref] [PubMed]

Sato, S.

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of cerebral hemodynamics and tissue morphology of in vivo rat brain using spectral diffuse reflectance imaging,” Appl. Spectrosc. 71(5), 866–878 (2017).
[Crossref] [PubMed]

I. Nishidate, C. Mizushima, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression,” J. Biomed. Opt. 20(2), 027003 (2015).
[Crossref] [PubMed]

K. Yoshida, I. Nishidate, T. Ishizuka, S. Kawauchi, S. Sato, and M. Sato, “Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera,” J. Biomed. Opt. 20(5), 051026 (2015).
[Crossref] [PubMed]

S. Sato, S. Kawauchi, W. Okuda, I. Nishidate, H. Nawashiro, and G. Tsumatori, “Real-time optical diagnosis of the rat brain exposed to a Laser-induced shock wave: Observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia,” PLoS One 9(1), e82891 (2014).
[Crossref] [PubMed]

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt. 18(1), 015003 (2013).
[Crossref] [PubMed]

Scheeren, T.

P. van Beest, G. Wietasch, T. Scheeren, P. Spronk, and M. Kuiper, “Clinical review: use of venous oxygen saturations as a goal - a yet unfinished puzzle,” Crit. Care 15(5), 232 (2011).
[Crossref] [PubMed]

Schwartz, S.

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

Seylaz, J.

G. Florence, G. Bonvento, R. Charbonne, and J. Seylaz, “Spreading depression reversibly impairs autoregulation of cortical blood flow,” Am. J. Physiol. 266(4 Pt 2), R1136–R1140 (1994).
[PubMed]

Shen, D.

Sheth, S.

M. Guiou, S. Sheth, M. Nemoto, M. Walker, N. Pouratian, A. Ba, and A. W. Toga, “Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling,” J. Biomed. Opt. 10(1), 011004 (2005).
[Crossref] [PubMed]

Shin, H. K.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[Crossref] [PubMed]

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[Crossref] [PubMed]

Somjen, G. G.

G. G. Somjen, “Mechanisms of spreading depression and hypoxic spreading depression-like depolarization,” Physiol. Rev. 81(3), 1065–1096 (2001).
[Crossref] [PubMed]

Sotak, C. H.

K. Takano, L. L. Latour, J. E. Formato, R. A. Carano, K. G. Helmer, Y. Hasegawa, C. H. Sotak, and M. Fisher, “The role of spreading depression in focal ischemia evaluated by diffusion mapping,” Ann. Neurol. 39(3), 308–318 (1996).
[Crossref] [PubMed]

Spronk, P.

P. van Beest, G. Wietasch, T. Scheeren, P. Spronk, and M. Kuiper, “Clinical review: use of venous oxygen saturations as a goal - a yet unfinished puzzle,” Crit. Care 15(5), 232 (2011).
[Crossref] [PubMed]

Stefanovska, A.

A. Stefanovska, “Coupled oscillators. Complex but not complicated cardiovascular and brain interactions,” IEEE Eng. Med. Biol. Mag. 26(6), 25–29 (2007).
[Crossref] [PubMed]

H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
[Crossref] [PubMed]

Stratonnikov, A. A.

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
[Crossref] [PubMed]

Strong, A. J.

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[Crossref] [PubMed]

M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings, R. Bullock, A. J. Strong, and M. Lauritzen, “Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain,” Clin. Neurophysiol. 119(9), 1973–1984 (2008).
[Crossref] [PubMed]

Sukhotinsky, I.

I. Sukhotinsky, E. Dilekoz, M. A. Moskowitz, and C. Ayata, “Hypoxia and hypotension transform the blood flow response to cortical spreading depression from hyperemia into hypoperfusion in the rat,” J. Cereb. Blood Flow Metab. 28(7), 1369–1376 (2008).
[Crossref] [PubMed]

Takano, K.

K. Takano, L. L. Latour, J. E. Formato, R. A. Carano, K. G. Helmer, Y. Hasegawa, C. H. Sotak, and M. Fisher, “The role of spreading depression in focal ischemia evaluated by diffusion mapping,” Ann. Neurol. 39(3), 308–318 (1996).
[Crossref] [PubMed]

Takeshita, D.

Toga, A. W.

M. Guiou, S. Sheth, M. Nemoto, M. Walker, N. Pouratian, A. Ba, and A. W. Toga, “Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling,” J. Biomed. Opt. 10(1), 011004 (2005).
[Crossref] [PubMed]

A. M. Ba, M. Guiou, N. Pouratian, A. Muthialu, D. E. Rex, A. F. Cannestra, J. W. Y. Chen, and A. W. Toga, “Multiwavelength optical intrinsic signal imaging of cortical spreading depression,” J. Neurophysiol. 88(5), 2726–2735 (2002).
[Crossref] [PubMed]

Torrente, D.

D. Torrente, R. Cabezas, M. F. Avila, L. M. García-Segura, G. E. Barreto, and R. C. Guedes, “Cortical spreading depression in traumatic brain injuries: Is there a role for astrocytes?” Neurosci. Lett. 565, 2–6 (2014).
[Crossref] [PubMed]

Tromberg, B. J.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

Tsumatori, G.

S. Sato, S. Kawauchi, W. Okuda, I. Nishidate, H. Nawashiro, and G. Tsumatori, “Real-time optical diagnosis of the rat brain exposed to a Laser-induced shock wave: Observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia,” PLoS One 9(1), e82891 (2014).
[Crossref] [PubMed]

Tsytsarev, V.

Tunnell, J. W.

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Uozumi, Y.

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt. 18(1), 015003 (2013).
[Crossref] [PubMed]

van Beest, P.

P. van Beest, G. Wietasch, T. Scheeren, P. Spronk, and M. Kuiper, “Clinical review: use of venous oxygen saturations as a goal - a yet unfinished puzzle,” Crit. Care 15(5), 232 (2011).
[Crossref] [PubMed]

Walker, M.

M. Guiou, S. Sheth, M. Nemoto, M. Walker, N. Pouratian, A. Ba, and A. W. Toga, “Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling,” J. Biomed. Opt. 10(1), 011004 (2005).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wang, Y.

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” Neuroimage 76, 70–80 (2013).
[Crossref] [PubMed]

Westby, G. W.

J. E. Mayhew, S. Askew, Y. Zheng, J. Porrill, G. W. Westby, P. Redgrave, D. M. Rector, and R. M. Harper, “Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity,” Neuroimage 4(3), 183–193 (1996).
[Crossref] [PubMed]

Wietasch, G.

P. van Beest, G. Wietasch, T. Scheeren, P. Spronk, and M. Kuiper, “Clinical review: use of venous oxygen saturations as a goal - a yet unfinished puzzle,” Crit. Care 15(5), 232 (2011).
[Crossref] [PubMed]

Willumsen, L.

M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings, R. Bullock, A. J. Strong, and M. Lauritzen, “Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain,” Clin. Neurophysiol. 119(9), 1973–1984 (2008).
[Crossref] [PubMed]

Wilson, T. E.

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

Yin, C.

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” Neuroimage 76, 70–80 (2013).
[Crossref] [PubMed]

Yodh, A.

Yoshida, K.

I. Nishidate, T. Ishizuka, A. Mustari, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “Evaluation of cerebral hemodynamics and tissue morphology of in vivo rat brain using spectral diffuse reflectance imaging,” Appl. Spectrosc. 71(5), 866–878 (2017).
[Crossref] [PubMed]

I. Nishidate, C. Mizushima, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression,” J. Biomed. Opt. 20(2), 027003 (2015).
[Crossref] [PubMed]

K. Yoshida, I. Nishidate, T. Ishizuka, S. Kawauchi, S. Sato, and M. Sato, “Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera,” J. Biomed. Opt. 20(5), 051026 (2015).
[Crossref] [PubMed]

Yu, B.

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[Crossref] [PubMed]

Yu, G.

Zeng, S.

S. Chen, Z. Feng, P. Li, S. L. Jacques, S. Zeng, and Q. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt. 11(3), 034002 (2006).
[Crossref] [PubMed]

Zhang, R.

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang and R. Khatami, “Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study,” Eur. J. Neurosci. 40(9), 3396–3404 (2014).
[Crossref] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Zheng, Y.

J. E. Mayhew, S. Askew, Y. Zheng, J. Porrill, G. W. Westby, P. Redgrave, D. M. Rector, and R. M. Harper, “Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity,” Neuroimage 4(3), 183–193 (1996).
[Crossref] [PubMed]

Zhou, C.

Zhou, F.

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” Neuroimage 76, 70–80 (2013).
[Crossref] [PubMed]

Zuckerman, J. H.

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

Am. J. Physiol. (2)

R. D. Piper, G. A. Lambert, and J. W. Duckworth, “Cortical blood flow changes during spreading depression in cats,” Am. J. Physiol. 261(1 Pt 2), H96–H102 (1991).
[PubMed]

G. Florence, G. Bonvento, R. Charbonne, and J. Seylaz, “Spreading depression reversibly impairs autoregulation of cortical blood flow,” Am. J. Physiol. 266(4 Pt 2), R1136–R1140 (1994).
[PubMed]

Ann. Neurol. (1)

K. Takano, L. L. Latour, J. E. Formato, R. A. Carano, K. G. Helmer, Y. Hasegawa, C. H. Sotak, and M. Fisher, “The role of spreading depression in focal ischemia evaluated by diffusion mapping,” Ann. Neurol. 39(3), 308–318 (1996).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Brain (2)

M. Lauritzen, “Pathophysiology of the migraine aura. The spreading depression theory,” Brain 117(1), 199–210 (1994).
[Crossref] [PubMed]

H. Oka, M. Kako, M. Matsushima, and K. Ando, “Traumatic spreading depression syndrome. review of a particular type of head injury in 37 patients,” Brain 100(2), 287–298 (1977).
[Crossref] [PubMed]

Brain Res. Brain Res. Rev. (1)

A. Gorji, “Spreading depression: a review of the clinical relevance,” Brain Res. Brain Res. Rev. 38(1-2), 33–60 (2001).
[Crossref] [PubMed]

Cerebrovasc. Brain Metab. Rev. (1)

K. A. Hossmann, “Periinfarct depolarizations,” Cerebrovasc. Brain Metab. Rev. 8(3), 195–208 (1996).
[PubMed]

Circulation (1)

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

Clin. Neurophysiol. (1)

M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings, R. Bullock, A. J. Strong, and M. Lauritzen, “Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain,” Clin. Neurophysiol. 119(9), 1973–1984 (2008).
[Crossref] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Crit. Care (1)

P. van Beest, G. Wietasch, T. Scheeren, P. Spronk, and M. Kuiper, “Clinical review: use of venous oxygen saturations as a goal - a yet unfinished puzzle,” Crit. Care 15(5), 232 (2011).
[Crossref] [PubMed]

Eur. J. Neurosci. (1)

Z. Zhang and R. Khatami, “Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study,” Eur. J. Neurosci. 40(9), 3396–3404 (2014).
[Crossref] [PubMed]

IEEE Eng. Med. Biol. Mag. (1)

A. Stefanovska, “Coupled oscillators. Complex but not complicated cardiovascular and brain interactions,” IEEE Eng. Med. Biol. Mag. 26(6), 25–29 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (12)

M. Guiou, S. Sheth, M. Nemoto, M. Walker, N. Pouratian, A. Ba, and A. W. Toga, “Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling,” J. Biomed. Opt. 10(1), 011004 (2005).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13(6), 060505 (2008).
[Crossref] [PubMed]

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
[Crossref] [PubMed]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

I. Nishidate, C. Mizushima, K. Yoshida, S. Kawauchi, S. Sato, and M. Sato, “In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression,” J. Biomed. Opt. 20(2), 027003 (2015).
[Crossref] [PubMed]

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[Crossref] [PubMed]

S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt. 18(1), 015003 (2013).
[Crossref] [PubMed]

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

S. Chen, Z. Feng, P. Li, S. L. Jacques, S. Zeng, and Q. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt. 11(3), 034002 (2006).
[Crossref] [PubMed]

K. Yoshida, I. Nishidate, T. Ishizuka, S. Kawauchi, S. Sato, and M. Sato, “Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera,” J. Biomed. Opt. 20(5), 051026 (2015).
[Crossref] [PubMed]

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (6)

M. Lauritzen, “Long-lasting reduction of cortical blood flow of the brain after spreading depression with preserved autoregulation and impaired CO2 response,” J. Cereb. Blood Flow Metab. 4(4), 546–554 (1984).
[Crossref] [PubMed]

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[Crossref] [PubMed]

I. Sukhotinsky, E. Dilekoz, M. A. Moskowitz, and C. Ayata, “Hypoxia and hypotension transform the blood flow response to cortical spreading depression from hyperemia into hypoperfusion in the rat,” J. Cereb. Blood Flow Metab. 28(7), 1369–1376 (2008).
[Crossref] [PubMed]

A. G. Hudetz, R. J. Roman, and D. R. Harder, “Spontaneous flow oscillations in the cerebral cortex during acute changes in mean arterial pressure,” J. Cereb. Blood Flow Metab. 12(3), 491–499 (1992).
[Crossref] [PubMed]

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[Crossref] [PubMed]

H. Piilgaard and M. Lauritzen, “Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex,” J. Cereb. Blood Flow Metab. 29(9), 1517–1527 (2009).
[Crossref] [PubMed]

J. Neurophysiol. (2)

A. A. P. Leão, “Spreading depression of activity in the cerebral cortex,” J. Neurophysiol. 7(6), 359–390 (1944).
[Crossref] [PubMed]

A. M. Ba, M. Guiou, N. Pouratian, A. Muthialu, D. E. Rex, A. F. Cannestra, J. W. Y. Chen, and A. W. Toga, “Multiwavelength optical intrinsic signal imaging of cortical spreading depression,” J. Neurophysiol. 88(5), 2726–2735 (2002).
[Crossref] [PubMed]

J. Pharmacol. Toxicol. Methods (1)

C. C. Pang, “Measurement of body venous tone,” J. Pharmacol. Toxicol. Methods 44(2), 341–360 (2000).
[Crossref] [PubMed]

Microvasc. Res. (1)

H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
[Crossref] [PubMed]

Nat. Med. (1)

J. P. Dreier, “The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease,” Nat. Med. 17(4), 439–447 (2011).
[Crossref] [PubMed]

Neuroimage (2)

J. E. Mayhew, S. Askew, Y. Zheng, J. Porrill, G. W. Westby, P. Redgrave, D. M. Rector, and R. M. Harper, “Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity,” Neuroimage 4(3), 183–193 (1996).
[Crossref] [PubMed]

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” Neuroimage 76, 70–80 (2013).
[Crossref] [PubMed]

Neurophotonics (1)

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

Neurosci. Lett. (1)

D. Torrente, R. Cabezas, M. F. Avila, L. M. García-Segura, G. E. Barreto, and R. C. Guedes, “Cortical spreading depression in traumatic brain injuries: Is there a role for astrocytes?” Neurosci. Lett. 565, 2–6 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Physiol. Rev. (1)

G. G. Somjen, “Mechanisms of spreading depression and hypoxic spreading depression-like depolarization,” Physiol. Rev. 81(3), 1065–1096 (2001).
[Crossref] [PubMed]

PLoS One (1)

S. Sato, S. Kawauchi, W. Okuda, I. Nishidate, H. Nawashiro, and G. Tsumatori, “Real-time optical diagnosis of the rat brain exposed to a Laser-induced shock wave: Observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia,” PLoS One 9(1), e82891 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

T. Arnold, M. De Biasio, and R. Leitner, “Hyper-spectral video endoscope for intra-surgery tissue classification using auto-fluorescence and reflectance spectroscopy,” Proc. SPIE 8087, 808711 (2011).
[Crossref]

Stroke (1)

C. Ayata, “Spreading depression and neurovascular coupling,” Stroke 44(6), S87–S89 (2013).
[Crossref] [PubMed]

Other (4)

T. Bonhoeffer and A. Grinvald, [Brain mapping: The Methods], Academic Press, San Diego, 1996.

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, Bellingham, WA, 2007).

S. A. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html (1999).

J. Thomas and P. Lerche, [Anaesthesia and Analgesia for Veterinary Technicians, 4th ed.], Elsevier, (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic diagram of spreading depression-induced sequential changes in the extracellular slow LFP shift and CBF. Alphabetic characters represent deflection points at which the amplitude of CBF changes: onset of hypoperfusion phase, A; negative peak of hypoperfusion phase, B; positive peak of hypoperfusion phase, C; onset of post-CSD oligemia phase, D; bottom of post-CSD oligemia phase, E.
Fig. 2
Fig. 2 Flow diagram of the process for estimating the concentration of oxygenated hemoglobin (CHbO), the concentration of deoxygenated hemoglobin (CHbR), the concentration of total hemoglobin (CHbT), and tissue oxygen saturation (StO2). (a) Preparation work for determining the multiple regression equations, (b) main process for deriving CHbO, CHbR, CHbT, and StO2 from the RGB value, and (c) two-dimensional spatial mapping of PSD by extracting low-frequency oscillation components at each pixel from time series CHbT images.
Fig. 3
Fig. 3 Comparison between the estimated and expected values of (a) X, (b) Y, and (c) Z obtained from the multiple regression analysis.
Fig. 4
Fig. 4 (a) Schematic diagram of the experimental system, and (b) representation of the rat skull with an RGB image of the exposed rat brain.
Fig. 5
Fig. 5 Typical images of exposed rat brain before CSD under normoxia for (a) the RGB color image, (b) oxygenated hemoglobin (CHbO), (c) deoxygenated hemoglobin (CHbR), (d) total hemoglobin (CHbT), and (e) tissue oxygen saturation (StO2). The scale bar in (a) represents 1 mm.
Fig. 6
Fig. 6 Typical sequential images obtained before, during, and after CSD for (a) the RGB color image, (b) ΔCHbO, (c) ΔCHbR, (d) ΔCHbT, and (e) ΔStO2. Alphabetic characters E and ROI in (a) represent a recording electrode and region of interest, respectively. The scale bar in (a) represents 1 mm.
Fig. 7
Fig. 7 Typical time courses of (a) total hemoglobin (CHbT) and (b) tissue oxygen saturation (StO2) averaged over the area for the ROI on the parenchyma region (corresponding to the white square on the RGB image in Fig. 6(a)).
Fig. 8
Fig. 8 Relative change in (a) oxygenated hemoglobin (ΔCHbO), (b) deoxygenated hemoglobin (ΔCHbR), (c) total hemoglobin (ΔCHbT), and (d) tissue oxygen saturation (ΔStO2) averaged over the ROIs for all five samples at initial hypoperfusion, hyperemia, and post-CSD oligemia. The error bars show the standard deviations (n = 9). *P < 0.05/9.
Fig. 9
Fig. 9 Typical results obtained from the exposed cerebral cortex of a rat for (a) the time course of CHbT averaged over the ROI on arterioles over a 120-s period for before CSD and (b) the PSD.
Fig. 10
Fig. 10 Typical results obtained from the exposed cerebral cortex of a rat before CSD for (a) the raw RGB image and two-dimensional maps of PSD for low-frequency oscillations in CHbT over a 120-s period at (b) 0.05 Hz, (c) 0.1 Hz, and (d) 0.5 Hz. The scale bar in (a) represents 1 mm.
Fig. 11
Fig. 11 Typical results obtained from the exposed cerebral cortex of a rat for (a) the raw RGB image before CSD and the spectral power map of low-frequency oscillations in CHbT over a 120-s period at 0.1 Hz for (b) before CSD, (c) during CSD (hyperemia), and (d) post-CSD oligemia. The corresponding images of StO2 are shown in (e) before CSD, (f) during CSD (hyperemia), and (g) post-CSD oligemia. The scale bar in (a) represents 1 mm.
Fig. 12
Fig. 12 Relative change in PSD averaged over the ROIs on (a) arterioles, (b) parenchyma, and (c) venules during CSD (hyperemia) and post-CSD oligemia, compared with before CSD. The error bars show the standard deviations (n = 4). *P < 0.05/3.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

( R G B )= L 1 ×( X Y Z ),
X=κ Φ(λ) x ¯ (λ) Θ(λ)dλ,
Y=κ Φ(λ) y ¯ (λ) Θ(λ)dλ,
Z=κ Φ(λ) z ¯ (λ) Θ(λ)dλ,
κ= 100 Φ(λ) y ¯ (λ) dλ .
Θ= I I 0 = 0 p( μ s ,l )exp( ( μ a,HbO + μ a,HbR )l )dl ,
( X Y Z )= N 1 ×( 1 R G B ),
X= α 0 + α 1 R+ α 2 G+ α 3 B,
Y= β 0 + β 1 R+ β 2 G+ β 3 B,
Z= χ 0 + χ 1 R+ χ 2 G+ χ 3 B.
N 1 =[ α 0 α 1 α 2 α 3 β 0 β 1 β 2 β 3 χ 0 χ 1 χ 2 χ 3 ].
μ s ' (λ)=a λ b ,
C HbO = γ 0 + γ 1 X+ γ 2 Y+ γ 3 Z,
C HbR = ω 0 + ω 1 X+ ω 2 Y+ ω 3 Z.
N 2 =[ γ 0 γ 1 γ 2 γ 3 ω 0 ω 1 ω 2 ω 3 ].
[ C HbO C HbR ]= N 2 [ 1 X Y Z ].

Metrics