Abstract

Bioluminescence imaging has shown great potential for studying and monitoring disease progression in small animal pre-clinical imaging. However, absolute bioluminescence source recovery through tomographic multi-wavelength measurements is often hindered through the lack of quantitative accuracy and suffers from both poor localisation and quantitative recovery. In this work a method to incorporate a permissible region strategy through not only a priori location (permissible region) but also based on a model of light propagation and hence light sensitivity is developed and tested using both simulations and experimental data. Reconstructions on two different numerical models (a simple slab, and the digital version of a heterogeneous mouse) show an improvement of localisation and recovery of intensity (around 25% for the slab model and around 10% for the digital mouse model). This strategy is also used with experimental data from a phantom gel, which demonstrated an improved recovered tomographic image.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative bioluminescence tomography using spectral derivative data

Hamid Dehghani, James A. Guggenheim, Shelley L. Taylor, Xiangkun Xu, and Ken Kang-Hsin Wang
Biomed. Opt. Express 9(9) 4163-4174 (2018)

Three-dimensional bioluminescence tomography with model-based reconstruction

Xuejun Gu, Qizhi Zhang, Lyndon Larcom, and Huabei Jiang
Opt. Express 12(17) 3996-4000 (2004)

In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models

Junting Liu, Yabin Wang, Xiaochao Qu, Xiangsi Li, Xiaopeng Ma, Runqiang Han, Zhenhua Hu, Xueli Chen, Dongdong Sun, Rongqing Zhang, Duofang Chen, Dan Chen, Xiaoyuan Chen, Jimin Liang, Feng Cao, and Jie Tian
Opt. Express 18(12) 13102-13113 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18, 13102–13113 (2010).
    [Crossref] [PubMed]
  2. J. Liu, W. Fan, M. Liu, X. Lin, Y. Wang, F. Wang, X. Chen, F. Cao, and J. Liang, “Spatial Vascular Volume Fraction Imaging for Quantitative Assessment of Angiogenesis,” Mol. Imaging Biol. 16, 362–371 (2014).
    [Crossref]
  3. T. Xu, D. Close, W. Handagama, E. Marr, G. Sayler, and S. Ripp, “The Expanding Toolbox of In Vivo Bioluminescent Imaging,” Front. Oncol. 6, 150 (2016).
    [Crossref] [PubMed]
  4. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365–367 (2006).
    [Crossref] [PubMed]
  5. H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35, 4863–4871 (2008).
    [Crossref] [PubMed]
  6. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
    [Crossref] [PubMed]
  7. H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization,” Opt. Express 18, 1854–1871 (2010).
    [Crossref] [PubMed]
  8. H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation Part 2: total variation and l1 data fidelity,” Opt. Express 18, 2894–2912 (2010).
    [Crossref] [PubMed]
  9. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source Reconstruction for Spectrally-resolved Bioluminescence Tomography with Sparse A priori Information,” Opt. Express 17, 8062–8080 (2009).
    [Crossref] [PubMed]
  10. J. Yu, F. Liu, J. Wu, L. Jiao, and X. He, “Fast Source Reconstruction for Bioluminescence Tomography Based on Sparse Regularization,” IEEE Trans. Bio-Med. Eng. 57, 2583–2586 (2010).
    [Crossref]
  11. H. R. A. Basevi, K. M. Tichauer, F. Leblond, H. Dehghani, J. A. Guggenheim, R. W. Holt, and I. B. Styles, “Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise,” Biomed. Opt. Express 3, 2131–2141 (2012).
    [Crossref] [PubMed]
  12. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).
    [Crossref] [PubMed]
  13. J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16, 15640–15654 (2008).
    [Crossref] [PubMed]
  14. M. Allard, D. Coté, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
    [Crossref] [PubMed]
  15. A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37, 329–338 (2010).
    [Crossref] [PubMed]
  16. G. Wang, H. Shen, W. Cong, S. Zhao, and G. W. Wei, “Temperature-modulated bioluminescence tomography,” Opt. Express 14, 7852–7871 (2006).
    [Crossref] [PubMed]
  17. G. Bal and J. C. Schotland, “Ultrasound-modulated bioluminescence tomography,” Phys. Rev. E 89, 031201 (2014).
    [Crossref]
  18. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. En. 25, 711–732 (2008).
    [Crossref]
  19. M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18, 086007 (2013).
    [Crossref]
  20. Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56, 7419 (2011).
    [Crossref] [PubMed]
  21. D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4, S27 (2002).
  22. B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3d whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577 (2007).
    [Crossref] [PubMed]
  23. Q. Zhu, S. H. Kurtzman, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing Optical Tomography with Ultrasound Localization to Image Heterogeneous Hemoglobin Distribution in Large Breast Cancers,” Neoplasia 7, 263–270 (2005).
    [Crossref] [PubMed]
  24. R. W. Cootney, “Ultrasound Imaging: Principles and Applications in Rodent Research,” ILAR J. 42, 233–247 (2001).
    [Crossref]
  25. G. C. Kagadis, G. Loudos, K. Katsanos, S. G. Langer, and G. C. Nikiforidis, “In vivo small animal imaging: Current status and future prospects,” Med. Phys. 37, 6421–6442 (2010).
    [Crossref]

2016 (1)

T. Xu, D. Close, W. Handagama, E. Marr, G. Sayler, and S. Ripp, “The Expanding Toolbox of In Vivo Bioluminescent Imaging,” Front. Oncol. 6, 150 (2016).
[Crossref] [PubMed]

2014 (2)

J. Liu, W. Fan, M. Liu, X. Lin, Y. Wang, F. Wang, X. Chen, F. Cao, and J. Liang, “Spatial Vascular Volume Fraction Imaging for Quantitative Assessment of Angiogenesis,” Mol. Imaging Biol. 16, 362–371 (2014).
[Crossref]

G. Bal and J. C. Schotland, “Ultrasound-modulated bioluminescence tomography,” Phys. Rev. E 89, 031201 (2014).
[Crossref]

2013 (1)

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18, 086007 (2013).
[Crossref]

2012 (1)

2011 (1)

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56, 7419 (2011).
[Crossref] [PubMed]

2010 (6)

J. Yu, F. Liu, J. Wu, L. Jiao, and X. He, “Fast Source Reconstruction for Bioluminescence Tomography Based on Sparse Regularization,” IEEE Trans. Bio-Med. Eng. 57, 2583–2586 (2010).
[Crossref]

G. C. Kagadis, G. Loudos, K. Katsanos, S. G. Langer, and G. C. Nikiforidis, “In vivo small animal imaging: Current status and future prospects,” Med. Phys. 37, 6421–6442 (2010).
[Crossref]

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37, 329–338 (2010).
[Crossref] [PubMed]

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18, 13102–13113 (2010).
[Crossref] [PubMed]

H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization,” Opt. Express 18, 1854–1871 (2010).
[Crossref] [PubMed]

H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation Part 2: total variation and l1 data fidelity,” Opt. Express 18, 2894–2912 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35, 4863–4871 (2008).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. En. 25, 711–732 (2008).
[Crossref]

J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16, 15640–15654 (2008).
[Crossref] [PubMed]

2007 (3)

M. Allard, D. Coté, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[Crossref] [PubMed]

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[Crossref] [PubMed]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3d whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).
[Crossref] [PubMed]

Q. Zhu, S. H. Kurtzman, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing Optical Tomography with Ultrasound Localization to Image Heterogeneous Hemoglobin Distribution in Large Breast Cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

2002 (1)

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4, S27 (2002).

2001 (1)

R. W. Cootney, “Ultrasound Imaging: Principles and Applications in Rodent Research,” ILAR J. 42, 233–247 (2001).
[Crossref]

Allard, M.

M. Allard, D. Coté, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[Crossref] [PubMed]

Bal, G.

G. Bal and J. C. Schotland, “Ultrasound-modulated bioluminescence tomography,” Phys. Rev. E 89, 031201 (2014).
[Crossref]

Basevi, H. R. A.

Beattie, B. J.

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37, 329–338 (2010).
[Crossref] [PubMed]

Blasberg, R.

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37, 329–338 (2010).
[Crossref] [PubMed]

Cao, F.

J. Liu, W. Fan, M. Liu, X. Lin, Y. Wang, F. Wang, X. Chen, F. Cao, and J. Liang, “Spatial Vascular Volume Fraction Imaging for Quantitative Assessment of Angiogenesis,” Mol. Imaging Biol. 16, 362–371 (2014).
[Crossref]

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18, 13102–13113 (2010).
[Crossref] [PubMed]

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. En. 25, 711–732 (2008).
[Crossref]

Chan, T. F.

Chatziioannou, A.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4, S27 (2002).

Chatziioannou, A. F.

Chen, D.

Chen, N. G.

Q. Zhu, S. H. Kurtzman, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing Optical Tomography with Ultrasound Localization to Image Heterogeneous Hemoglobin Distribution in Large Breast Cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Chen, X.

Chow, P.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4, S27 (2002).

Close, D.

T. Xu, D. Close, W. Handagama, E. Marr, G. Sayler, and S. Ripp, “The Expanding Toolbox of In Vivo Bioluminescent Imaging,” Front. Oncol. 6, 150 (2016).
[Crossref] [PubMed]

Cong, A.

Cong, W.

Cootney, R. W.

R. W. Cootney, “Ultrasound Imaging: Principles and Applications in Rodent Research,” ILAR J. 42, 233–247 (2001).
[Crossref]

Coquoz, O.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[Crossref] [PubMed]

Coté, D.

M. Allard, D. Coté, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[Crossref] [PubMed]

Davidson, L.

M. Allard, D. Coté, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[Crossref] [PubMed]

Davis, S. C.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18, 086007 (2013).
[Crossref]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. En. 25, 711–732 (2008).
[Crossref]

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35, 4863–4871 (2008).
[Crossref] [PubMed]

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365–367 (2006).
[Crossref] [PubMed]

Dazai, J.

M. Allard, D. Coté, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[Crossref] [PubMed]

Dehghani, H.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18, 086007 (2013).
[Crossref]

H. R. A. Basevi, K. M. Tichauer, F. Leblond, H. Dehghani, J. A. Guggenheim, R. W. Holt, and I. B. Styles, “Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise,” Biomed. Opt. Express 3, 2131–2141 (2012).
[Crossref] [PubMed]

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56, 7419 (2011).
[Crossref] [PubMed]

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37, 329–338 (2010).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. En. 25, 711–732 (2008).
[Crossref]

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35, 4863–4871 (2008).
[Crossref] [PubMed]

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365–367 (2006).
[Crossref] [PubMed]

Dogdas, B.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3d whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577 (2007).
[Crossref] [PubMed]

Douraghy, A.

Eames, M. E.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. En. 25, 711–732 (2008).
[Crossref]

Fan, W.

J. Liu, W. Fan, M. Liu, X. Lin, Y. Wang, F. Wang, X. Chen, F. Cao, and J. Liang, “Spatial Vascular Volume Fraction Imaging for Quantitative Assessment of Angiogenesis,” Mol. Imaging Biol. 16, 362–371 (2014).
[Crossref]

Feng, J.

Gambhir, S.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4, S27 (2002).

Gao, H.

Ghadyani, H.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18, 086007 (2013).
[Crossref]

Guggenheim, J. A.

Han, R.

Handagama, W.

T. Xu, D. Close, W. Handagama, E. Marr, G. Sayler, and S. Ripp, “The Expanding Toolbox of In Vivo Bioluminescent Imaging,” Front. Oncol. 6, 150 (2016).
[Crossref] [PubMed]

He, X.

J. Yu, F. Liu, J. Wu, L. Jiao, and X. He, “Fast Source Reconstruction for Bioluminescence Tomography Based on Sparse Regularization,” IEEE Trans. Bio-Med. Eng. 57, 2583–2586 (2010).
[Crossref]

Hegde, P.

Q. Zhu, S. H. Kurtzman, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing Optical Tomography with Ultrasound Localization to Image Heterogeneous Hemoglobin Distribution in Large Breast Cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Henkelman, R. M.

M. Allard, D. Coté, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[Crossref] [PubMed]

Hoffman, E. A.

Holt, R. W.

H. R. A. Basevi, K. M. Tichauer, F. Leblond, H. Dehghani, J. A. Guggenheim, R. W. Holt, and I. B. Styles, “Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise,” Biomed. Opt. Express 3, 2131–2141 (2012).
[Crossref] [PubMed]

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56, 7419 (2011).
[Crossref] [PubMed]

Hu, Z.

Huang, M.

Q. Zhu, S. H. Kurtzman, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing Optical Tomography with Ultrasound Localization to Image Heterogeneous Hemoglobin Distribution in Large Breast Cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Jagjivan, B.

Q. Zhu, S. H. Kurtzman, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing Optical Tomography with Ultrasound Localization to Image Heterogeneous Hemoglobin Distribution in Large Breast Cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Jermyn, M.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18, 086007 (2013).
[Crossref]

Jia, K.

Jiang, M.

Jiang, S.

Jiao, L.

J. Yu, F. Liu, J. Wu, L. Jiao, and X. He, “Fast Source Reconstruction for Bioluminescence Tomography Based on Sparse Regularization,” IEEE Trans. Bio-Med. Eng. 57, 2583–2586 (2010).
[Crossref]

Kagadis, G. C.

G. C. Kagadis, G. Loudos, K. Katsanos, S. G. Langer, and G. C. Nikiforidis, “In vivo small animal imaging: Current status and future prospects,” Med. Phys. 37, 6421–6442 (2010).
[Crossref]

Kane, M.

Q. Zhu, S. H. Kurtzman, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing Optical Tomography with Ultrasound Localization to Image Heterogeneous Hemoglobin Distribution in Large Breast Cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Katsanos, K.

G. C. Kagadis, G. Loudos, K. Katsanos, S. G. Langer, and G. C. Nikiforidis, “In vivo small animal imaging: Current status and future prospects,” Med. Phys. 37, 6421–6442 (2010).
[Crossref]

Klose, A. D.

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37, 329–338 (2010).
[Crossref] [PubMed]

Kumar, D.

Kuo, C.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[Crossref] [PubMed]

Kurtzman, S. H.

Q. Zhu, S. H. Kurtzman, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing Optical Tomography with Ultrasound Localization to Image Heterogeneous Hemoglobin Distribution in Large Breast Cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Langer, S. G.

G. C. Kagadis, G. Loudos, K. Katsanos, S. G. Langer, and G. C. Nikiforidis, “In vivo small animal imaging: Current status and future prospects,” Med. Phys. 37, 6421–6442 (2010).
[Crossref]

Le, C.

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37, 329–338 (2010).
[Crossref] [PubMed]

Leahy, R. M.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3d whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577 (2007).
[Crossref] [PubMed]

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4, S27 (2002).

Leblond, F.

H. R. A. Basevi, K. M. Tichauer, F. Leblond, H. Dehghani, J. A. Guggenheim, R. W. Holt, and I. B. Styles, “Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise,” Biomed. Opt. Express 3, 2131–2141 (2012).
[Crossref] [PubMed]

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56, 7419 (2011).
[Crossref] [PubMed]

Lewis, X.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4, S27 (2002).

Li, X.

Liang, J.

J. Liu, W. Fan, M. Liu, X. Lin, Y. Wang, F. Wang, X. Chen, F. Cao, and J. Liang, “Spatial Vascular Volume Fraction Imaging for Quantitative Assessment of Angiogenesis,” Mol. Imaging Biol. 16, 362–371 (2014).
[Crossref]

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18, 13102–13113 (2010).
[Crossref] [PubMed]

Lin, X.

J. Liu, W. Fan, M. Liu, X. Lin, Y. Wang, F. Wang, X. Chen, F. Cao, and J. Liang, “Spatial Vascular Volume Fraction Imaging for Quantitative Assessment of Angiogenesis,” Mol. Imaging Biol. 16, 362–371 (2014).
[Crossref]

Liu, F.

J. Yu, F. Liu, J. Wu, L. Jiao, and X. He, “Fast Source Reconstruction for Bioluminescence Tomography Based on Sparse Regularization,” IEEE Trans. Bio-Med. Eng. 57, 2583–2586 (2010).
[Crossref]

Liu, J.

J. Liu, W. Fan, M. Liu, X. Lin, Y. Wang, F. Wang, X. Chen, F. Cao, and J. Liang, “Spatial Vascular Volume Fraction Imaging for Quantitative Assessment of Angiogenesis,” Mol. Imaging Biol. 16, 362–371 (2014).
[Crossref]

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18, 13102–13113 (2010).
[Crossref] [PubMed]

Liu, M.

J. Liu, W. Fan, M. Liu, X. Lin, Y. Wang, F. Wang, X. Chen, F. Cao, and J. Liang, “Spatial Vascular Volume Fraction Imaging for Quantitative Assessment of Angiogenesis,” Mol. Imaging Biol. 16, 362–371 (2014).
[Crossref]

Liu, Y.

Loudos, G.

G. C. Kagadis, G. Loudos, K. Katsanos, S. G. Langer, and G. C. Nikiforidis, “In vivo small animal imaging: Current status and future prospects,” Med. Phys. 37, 6421–6442 (2010).
[Crossref]

Lu, Y.

Lv, Y.

Ma, X.

Marr, E.

T. Xu, D. Close, W. Handagama, E. Marr, G. Sayler, and S. Ripp, “The Expanding Toolbox of In Vivo Bioluminescent Imaging,” Front. Oncol. 6, 150 (2016).
[Crossref] [PubMed]

Mastanduno, M. A.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18, 086007 (2013).
[Crossref]

McCray, P. B.

McLennan, G.

Nikiforidis, G. C.

G. C. Kagadis, G. Loudos, K. Katsanos, S. G. Langer, and G. C. Nikiforidis, “In vivo small animal imaging: Current status and future prospects,” Med. Phys. 37, 6421–6442 (2010).
[Crossref]

Patterson, M. S.

Paulsen, K. D.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. En. 25, 711–732 (2008).
[Crossref]

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365–367 (2006).
[Crossref] [PubMed]

Pogue, B. W.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18, 086007 (2013).
[Crossref]

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56, 7419 (2011).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. En. 25, 711–732 (2008).
[Crossref]

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35, 4863–4871 (2008).
[Crossref] [PubMed]

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365–367 (2006).
[Crossref] [PubMed]

Ponomarev, V.

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37, 329–338 (2010).
[Crossref] [PubMed]

Qin, C.

Qu, X.

Rice, B. W.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[Crossref] [PubMed]

Ripp, S.

T. Xu, D. Close, W. Handagama, E. Marr, G. Sayler, and S. Ripp, “The Expanding Toolbox of In Vivo Bioluminescent Imaging,” Front. Oncol. 6, 150 (2016).
[Crossref] [PubMed]

Sayler, G.

T. Xu, D. Close, W. Handagama, E. Marr, G. Sayler, and S. Ripp, “The Expanding Toolbox of In Vivo Bioluminescent Imaging,” Front. Oncol. 6, 150 (2016).
[Crossref] [PubMed]

Schotland, J. C.

G. Bal and J. C. Schotland, “Ultrasound-modulated bioluminescence tomography,” Phys. Rev. E 89, 031201 (2014).
[Crossref]

Shen, H.

Silverman, R.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4, S27 (2002).

Srinivasan, S.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. En. 25, 711–732 (2008).
[Crossref]

Stout, D.

Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source Reconstruction for Spectrally-resolved Bioluminescence Tomography with Sparse A priori Information,” Opt. Express 17, 8062–8080 (2009).
[Crossref] [PubMed]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3d whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577 (2007).
[Crossref] [PubMed]

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4, S27 (2002).

Styles, I. B.

Sun, D.

Tannenbaum, S.

Q. Zhu, S. H. Kurtzman, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing Optical Tomography with Ultrasound Localization to Image Heterogeneous Hemoglobin Distribution in Large Breast Cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Tian, J.

Tichauer, K. M.

H. R. A. Basevi, K. M. Tichauer, F. Leblond, H. Dehghani, J. A. Guggenheim, R. W. Holt, and I. B. Styles, “Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise,” Biomed. Opt. Express 3, 2131–2141 (2012).
[Crossref] [PubMed]

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56, 7419 (2011).
[Crossref] [PubMed]

Troy, T. L.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[Crossref] [PubMed]

Turner, W.

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18, 086007 (2013).
[Crossref]

Vider, L.

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37, 329–338 (2010).
[Crossref] [PubMed]

Vishwanath, K.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56, 7419 (2011).
[Crossref] [PubMed]

Wang, F.

J. Liu, W. Fan, M. Liu, X. Lin, Y. Wang, F. Wang, X. Chen, F. Cao, and J. Liang, “Spatial Vascular Volume Fraction Imaging for Quantitative Assessment of Angiogenesis,” Mol. Imaging Biol. 16, 362–371 (2014).
[Crossref]

Wang, G.

Wang, L. V.

Wang, Y.

J. Liu, W. Fan, M. Liu, X. Lin, Y. Wang, F. Wang, X. Chen, F. Cao, and J. Liang, “Spatial Vascular Volume Fraction Imaging for Quantitative Assessment of Angiogenesis,” Mol. Imaging Biol. 16, 362–371 (2014).
[Crossref]

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18, 13102–13113 (2010).
[Crossref] [PubMed]

Wei, G. W.

Wu, J.

J. Yu, F. Liu, J. Wu, L. Jiao, and X. He, “Fast Source Reconstruction for Bioluminescence Tomography Based on Sparse Regularization,” IEEE Trans. Bio-Med. Eng. 57, 2583–2586 (2010).
[Crossref]

Xu, H.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[Crossref] [PubMed]

Xu, T.

T. Xu, D. Close, W. Handagama, E. Marr, G. Sayler, and S. Ripp, “The Expanding Toolbox of In Vivo Bioluminescent Imaging,” Front. Oncol. 6, 150 (2016).
[Crossref] [PubMed]

Yalavarthy, P. K.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. En. 25, 711–732 (2008).
[Crossref]

Yan, G.

Yu, J.

J. Yu, F. Liu, J. Wu, L. Jiao, and X. He, “Fast Source Reconstruction for Bioluminescence Tomography Based on Sparse Regularization,” IEEE Trans. Bio-Med. Eng. 57, 2583–2586 (2010).
[Crossref]

Zabner, J.

Zarfos, K.

Q. Zhu, S. H. Kurtzman, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing Optical Tomography with Ultrasound Localization to Image Heterogeneous Hemoglobin Distribution in Large Breast Cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Zhang, R.

Zhang, X.

Zhao, H.

Zhao, S.

Zhu, Q.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56, 7419 (2011).
[Crossref] [PubMed]

Q. Zhu, S. H. Kurtzman, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing Optical Tomography with Ultrasound Localization to Image Heterogeneous Hemoglobin Distribution in Large Breast Cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Zhu, S.

Biomed. Opt. Express (1)

Commun. Numer. Meth. En. (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. En. 25, 711–732 (2008).
[Crossref]

Front. Oncol. (1)

T. Xu, D. Close, W. Handagama, E. Marr, G. Sayler, and S. Ripp, “The Expanding Toolbox of In Vivo Bioluminescent Imaging,” Front. Oncol. 6, 150 (2016).
[Crossref] [PubMed]

IEEE Trans. Bio-Med. Eng. (1)

J. Yu, F. Liu, J. Wu, L. Jiao, and X. He, “Fast Source Reconstruction for Bioluminescence Tomography Based on Sparse Regularization,” IEEE Trans. Bio-Med. Eng. 57, 2583–2586 (2010).
[Crossref]

ILAR J. (1)

R. W. Cootney, “Ultrasound Imaging: Principles and Applications in Rodent Research,” ILAR J. 42, 233–247 (2001).
[Crossref]

J. Biomed. Opt. (3)

M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt. 18, 086007 (2013).
[Crossref]

M. Allard, D. Coté, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[Crossref] [PubMed]

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[Crossref] [PubMed]

Med. Phys. (3)

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37, 329–338 (2010).
[Crossref] [PubMed]

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35, 4863–4871 (2008).
[Crossref] [PubMed]

G. C. Kagadis, G. Loudos, K. Katsanos, S. G. Langer, and G. C. Nikiforidis, “In vivo small animal imaging: Current status and future prospects,” Med. Phys. 37, 6421–6442 (2010).
[Crossref]

Mol. Imaging Biol. (2)

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4, S27 (2002).

J. Liu, W. Fan, M. Liu, X. Lin, Y. Wang, F. Wang, X. Chen, F. Cao, and J. Liang, “Spatial Vascular Volume Fraction Imaging for Quantitative Assessment of Angiogenesis,” Mol. Imaging Biol. 16, 362–371 (2014).
[Crossref]

Neoplasia (1)

Q. Zhu, S. H. Kurtzman, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing Optical Tomography with Ultrasound Localization to Image Heterogeneous Hemoglobin Distribution in Large Breast Cancers,” Neoplasia 7, 263–270 (2005).
[Crossref] [PubMed]

Opt. Express (7)

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18, 13102–13113 (2010).
[Crossref] [PubMed]

H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization,” Opt. Express 18, 1854–1871 (2010).
[Crossref] [PubMed]

H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation Part 2: total variation and l1 data fidelity,” Opt. Express 18, 2894–2912 (2010).
[Crossref] [PubMed]

Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source Reconstruction for Spectrally-resolved Bioluminescence Tomography with Sparse A priori Information,” Opt. Express 17, 8062–8080 (2009).
[Crossref] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756–6771 (2005).
[Crossref] [PubMed]

J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16, 15640–15654 (2008).
[Crossref] [PubMed]

G. Wang, H. Shen, W. Cong, S. Zhao, and G. W. Wei, “Temperature-modulated bioluminescence tomography,” Opt. Express 14, 7852–7871 (2006).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (2)

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3d whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577 (2007).
[Crossref] [PubMed]

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56, 7419 (2011).
[Crossref] [PubMed]

Phys. Rev. E (1)

G. Bal and J. C. Schotland, “Ultrasound-modulated bioluminescence tomography,” Phys. Rev. E 89, 031201 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Geometry of the meshes used in the simulations. (a) Slab mesh, (b) Digimouse mesh. The dashed line represents the cross-section used in the visual representation of section 4.2.
Fig. 2
Fig. 2 Metrics vs. dynamic range for the guided reconstruction of a source 15 mm deep in the slab mesh. (a)VR vs. dynamic range, (b)DICE vs. dynamic range, (c)MSE vs. dynamic range.
Fig. 3
Fig. 3 Reconstruction performances of a source 15 mm deep inside a slab mesh. (a) Visual example of the reconstruction: (Top) Whole mesh, (Middle) Large PR, (Bottom) US guided PR, (b) Metrics of three reconstruction methods.
Fig. 4
Fig. 4 Visual example of the reconstruction of two 6 mm deep sources separated by different distances. (Top) Whole mesh, (Middle) Large PR, (Bottom) US Guided PR. (a) Sources separated by 4 mm, (b) Sources separated by 6 mm, (c) Sources separated by 8 mm
Fig. 5
Fig. 5 1D profile at z = 14 mm of the reconstruction of two 6 mm deep sources separated by (a) 4 mm, (b) 6 mm, (c) 8 mm.
Fig. 6
Fig. 6 Visual comparison of three reconstruction method (Whole mesh (Top), Large PR (Middle), US Guided PR(Bottom)), for a source in the Digimouse mesh at two different depths. (a) Source depth = 7.2 mm, (b) Source at depth = 9 mm.
Fig. 7
Fig. 7 Metrics of three reconstruction methods for a source in the Digimouse mesh at two different depths. (a) Source depth = 7.2 mm, (b) Source at depth = 9 mm.
Fig. 8
Fig. 8 Ultrasound image of the experimental gel.
Fig. 9
Fig. 9 Visual comparison of two reconstruction methods (US Guided PR (a) and Whole mesh (b)) for a source 4.5 mm deep in the experimental phantom. (Top) XZ Plane, (Bottom) XY Plane.
Fig. 10
Fig. 10 Visual comparison of two reconstruction methods (US Guided PR (a) and Whole mesh (b)) for a source 15.5 mm deep in the experimental phantom. (Top) XZ Plane, (Bottom) XY Plane.

Tables (3)

Tables Icon

Table 1 Reconstruction methods compared in this study.

Tables Icon

Table 2 Geometrical and optical properties of the slab mesh.

Tables Icon

Table 3 Reconstructed source dimension.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V R = | R O I | | t R O I | D I C E = 2 | R O I t R O I | | R O I | + | t R O I | M S E = 1 N i = 1 N ( x i x 0 i ) 2

Metrics