Abstract

We investigated changes in ciliary body ring diameter, lens dimensions and lens refractive index distributions with accommodation in young adults. A 3T clinical magnetic resonance imaging scanner imaged right eyes of 38 18-29 year old participants using a multiple spin echo sequence to determine accommodation-induced changes along lens axial and equatorial directions. Accommodation stimuli were approximately 1 D and 5 D. With accommodation, ciliary body ring diameter, and equatorial lens diameter decreased (–0.43 ± 0.31 mm and –0.30 ± 0.23 mm, respectively), and axial lens thickness increased ( + 0.34 ± 0.16 mm). Lens shape changes cause redistribution of the lens internal structure, leading to change in refractive index distribution profiles. With accommodation, in the axial direction refractive index profiles became flatter in the center and steeper near the periphery of the lens, while in the equatorial direction they became steeper in the center and flatter in the periphery. The results suggest that the anatomical accuracy of lens optical models can be improved by accounting for changes in the refractive index profile during accommodation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Alteration in refractive index profile during accommodation based on mechanical modelling

Mehdi Bahrami, Ali Heidari, and Barbara K. Pierscionek
Biomed. Opt. Express 7(1) 99-110 (2016)

Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study

Jane F. Koretz, Susan A. Strenk, Lawrence M. Strenk, and John L. Semmlow
J. Opt. Soc. Am. A 21(3) 346-354 (2004)

An analytical method for predicting the geometrical and optical properties of the human lens under accommodation

Conor J. Sheil, Mehdi Bahrami, and Alexander V. Goncharov
Biomed. Opt. Express 5(5) 1649-1663 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [Crossref] [PubMed]
  2. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
    [Crossref] [PubMed]
  3. L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
    [Crossref] [PubMed]
  4. S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
    [Crossref] [PubMed]
  5. A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
    [Crossref] [PubMed]
  6. E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
    [Crossref] [PubMed]
  7. E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. A. Kuijer, R. G. L. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
    [Crossref] [PubMed]
  8. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
    [Crossref] [PubMed]
  9. A. Gullstrand, “The mechanism of accommodation,” in Appendix IV, Helmholtz's treatise on Physiological Optics, 3rd ed., J. P. C. Southall, ed. (Optical Society of America, New York, 1924), pp. 382–415.
  10. C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
    [Crossref] [PubMed]
  11. P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
    [Crossref] [PubMed]
  12. C. E. Jones and J. M. Pope, “Measuring optical properties of an eye lens using magnetic resonance imaging,” Magn. Reson. Imaging 22(2), 211–220 (2004).
    [Crossref] [PubMed]
  13. J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens shape and refractive index distribution in type 1 diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
    [Crossref] [PubMed]
  14. S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
    [PubMed]
  15. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
    [Crossref] [PubMed]
  16. K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
    [Crossref] [PubMed]
  17. K. Richdale, M. A. Bullimore, L. T. Sinnott, and K. Zadnik, “The effect of age, accommodation and refractive error on the adult human eye,” Optom. Vis. Sci. 93(1), 3–11 (2016).
    [Crossref] [PubMed]
  18. Y. Ni, X.-L. Liu, M.-X. Wu, Y. Lin, Y.-Y. Sun, C. He, and Y.-Z. Liu, “Objective evaluation of the changes in the crystalline lens during accommodation in young and presbyopic populations using Pentacam HR system,” Int. J. Ophthalmol. 4(6), 611–615 (2011).
    [PubMed]
  19. V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refract. Surg. 41(3), 511–526 (2015).
    [Crossref] [PubMed]
  20. K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
    [Crossref] [PubMed]
  21. S. A. Strenk, L. M. Strenk, and S. Guo, “Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters,” J. Cataract Refract. Surg. 32(11), 1792–1798 (2006).
    [Crossref] [PubMed]
  22. R. C. Augusteyn, A. Mohamed, D. Nankivil, P. Veerendranath, E. Arrieta, M. Taneja, F. Manns, A. Ho, and J. M. Parel, “Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation,” Vision Res. 51(14), 1667–1678 (2011).
    [Crossref] [PubMed]
  23. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, England, 2000).
  24. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
    [Crossref] [PubMed]
  25. R. Navarro and N. López-Gil, “Impact of internal curvature gradient on the power and accommodation of the crystalline lens,” Optica 4(3), 334–340 (2017).
    [Crossref]

2017 (2)

2016 (1)

K. Richdale, M. A. Bullimore, L. T. Sinnott, and K. Zadnik, “The effect of age, accommodation and refractive error on the adult human eye,” Optom. Vis. Sci. 93(1), 3–11 (2016).
[Crossref] [PubMed]

2015 (3)

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens shape and refractive index distribution in type 1 diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refract. Surg. 41(3), 511–526 (2015).
[Crossref] [PubMed]

2013 (1)

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

2011 (4)

R. C. Augusteyn, A. Mohamed, D. Nankivil, P. Veerendranath, E. Arrieta, M. Taneja, F. Manns, A. Ho, and J. M. Parel, “Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation,” Vision Res. 51(14), 1667–1678 (2011).
[Crossref] [PubMed]

Y. Ni, X.-L. Liu, M.-X. Wu, Y. Lin, Y.-Y. Sun, C. He, and Y.-Z. Liu, “Objective evaluation of the changes in the crystalline lens during accommodation in young and presbyopic populations using Pentacam HR system,” Int. J. Ophthalmol. 4(6), 611–615 (2011).
[PubMed]

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

2009 (1)

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. A. Kuijer, R. G. L. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

2008 (2)

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[Crossref] [PubMed]

2007 (1)

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

2006 (2)

L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, and S. Guo, “Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters,” J. Cataract Refract. Surg. 32(11), 1792–1798 (2006).
[Crossref] [PubMed]

2005 (2)

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

2004 (2)

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

C. E. Jones and J. M. Pope, “Measuring optical properties of an eye lens using magnetic resonance imaging,” Magn. Reson. Imaging 22(2), 211–220 (2004).
[Crossref] [PubMed]

2001 (1)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

1999 (1)

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Adnan, J. M.

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens shape and refractive index distribution in type 1 diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

Arrieta, E.

R. C. Augusteyn, A. Mohamed, D. Nankivil, P. Veerendranath, E. Arrieta, M. Taneja, F. Manns, A. Ho, and J. M. Parel, “Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation,” Vision Res. 51(14), 1667–1678 (2011).
[Crossref] [PubMed]

Atchison, D. A.

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens shape and refractive index distribution in type 1 diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

Augusteyn, R. C.

R. C. Augusteyn, A. Mohamed, D. Nankivil, P. Veerendranath, E. Arrieta, M. Taneja, F. Manns, A. Ho, and J. M. Parel, “Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation,” Vision Res. 51(14), 1667–1678 (2011).
[Crossref] [PubMed]

Bullimore, M. A.

K. Richdale, M. A. Bullimore, L. T. Sinnott, and K. Zadnik, “The effect of age, accommodation and refractive error on the adult human eye,” Optom. Vis. Sci. 93(1), 3–11 (2016).
[Crossref] [PubMed]

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[Crossref] [PubMed]

Davies, L. N.

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

DeMarco, J. K.

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Dubbelman, M.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. A. Kuijer, R. G. L. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

Dunne, M. C.

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

Evans, C. J.

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

Glasser, A.

V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refract. Surg. 41(3), 511–526 (2015).
[Crossref] [PubMed]

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
[Crossref] [PubMed]

Gronlund-Jacob, J.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Guo, S.

S. A. Strenk, L. M. Strenk, and S. Guo, “Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters,” J. Cataract Refract. Surg. 32(11), 1792–1798 (2006).
[Crossref] [PubMed]

He, C.

Y. Ni, X.-L. Liu, M.-X. Wu, Y. Lin, Y.-Y. Sun, C. He, and Y.-Z. Liu, “Objective evaluation of the changes in the crystalline lens during accommodation in young and presbyopic populations using Pentacam HR system,” Int. J. Ophthalmol. 4(6), 611–615 (2011).
[PubMed]

Heethaar, R. M.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. A. Kuijer, R. G. L. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

Hermans, E. A.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. A. Kuijer, R. G. L. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

Ho, A.

R. C. Augusteyn, A. Mohamed, D. Nankivil, P. Veerendranath, E. Arrieta, M. Taneja, F. Manns, A. Ho, and J. M. Parel, “Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation,” Vision Res. 51(14), 1667–1678 (2011).
[Crossref] [PubMed]

Jones, C. E.

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

C. E. Jones and J. M. Pope, “Measuring optical properties of an eye lens using magnetic resonance imaging,” Magn. Reson. Imaging 22(2), 211–220 (2004).
[Crossref] [PubMed]

Kao, C.-Y.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Kasthurirangan, S.

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens shape and refractive index distribution in type 1 diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
[Crossref] [PubMed]

Kuijer, J. P. A.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. A. Kuijer, R. G. L. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

Lin, Y.

Y. Ni, X.-L. Liu, M.-X. Wu, Y. Lin, Y.-Y. Sun, C. He, and Y.-Z. Liu, “Objective evaluation of the changes in the crystalline lens during accommodation in young and presbyopic populations using Pentacam HR system,” Int. J. Ophthalmol. 4(6), 611–615 (2011).
[PubMed]

Liu, X.-L.

Y. Ni, X.-L. Liu, M.-X. Wu, Y. Lin, Y.-Y. Sun, C. He, and Y.-Z. Liu, “Objective evaluation of the changes in the crystalline lens during accommodation in young and presbyopic populations using Pentacam HR system,” Int. J. Ophthalmol. 4(6), 611–615 (2011).
[PubMed]

Liu, Y.-Z.

Y. Ni, X.-L. Liu, M.-X. Wu, Y. Lin, Y.-Y. Sun, C. He, and Y.-Z. Liu, “Objective evaluation of the changes in the crystalline lens during accommodation in young and presbyopic populations using Pentacam HR system,” Int. J. Ophthalmol. 4(6), 611–615 (2011).
[PubMed]

López-Gil, N.

Manns, F.

R. C. Augusteyn, A. Mohamed, D. Nankivil, P. Veerendranath, E. Arrieta, M. Taneja, F. Manns, A. Ho, and J. M. Parel, “Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation,” Vision Res. 51(14), 1667–1678 (2011).
[Crossref] [PubMed]

Marcos, S.

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

Martinez-Enriquez, E.

Mathur, A.

Meder, R.

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

Mohamed, A.

R. C. Augusteyn, A. Mohamed, D. Nankivil, P. Veerendranath, E. Arrieta, M. Taneja, F. Manns, A. Ho, and J. M. Parel, “Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation,” Vision Res. 51(14), 1667–1678 (2011).
[Crossref] [PubMed]

Munoz, P.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Mutti, D. O.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Nankivil, D.

R. C. Augusteyn, A. Mohamed, D. Nankivil, P. Veerendranath, E. Arrieta, M. Taneja, F. Manns, A. Ho, and J. M. Parel, “Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation,” Vision Res. 51(14), 1667–1678 (2011).
[Crossref] [PubMed]

Navarro, R.

Ni, Y.

Y. Ni, X.-L. Liu, M.-X. Wu, Y. Lin, Y.-Y. Sun, C. He, and Y.-Z. Liu, “Objective evaluation of the changes in the crystalline lens during accommodation in young and presbyopic populations using Pentacam HR system,” Int. J. Ophthalmol. 4(6), 611–615 (2011).
[PubMed]

Ostrin, L.

L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
[Crossref] [PubMed]

Parel, J. M.

R. C. Augusteyn, A. Mohamed, D. Nankivil, P. Veerendranath, E. Arrieta, M. Taneja, F. Manns, A. Ho, and J. M. Parel, “Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation,” Vision Res. 51(14), 1667–1678 (2011).
[Crossref] [PubMed]

Patz, S.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Pérez-Merino, P.

Pope, J. M.

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens shape and refractive index distribution in type 1 diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

C. E. Jones and J. M. Pope, “Measuring optical properties of an eye lens using magnetic resonance imaging,” Magn. Reson. Imaging 22(2), 211–220 (2004).
[Crossref] [PubMed]

Pouwels, P. J.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. A. Kuijer, R. G. L. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

Ramasubramanian, V.

V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refract. Surg. 41(3), 511–526 (2015).
[Crossref] [PubMed]

Richdale, K.

K. Richdale, M. A. Bullimore, L. T. Sinnott, and K. Zadnik, “The effect of age, accommodation and refractive error on the adult human eye,” Optom. Vis. Sci. 93(1), 3–11 (2016).
[Crossref] [PubMed]

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[Crossref] [PubMed]

Schmalbrock, P.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Schmid, K. L.

Semmlow, J. L.

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Sepehrband, F.

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens shape and refractive index distribution in type 1 diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

Sheppard, A. L.

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

Singh, K. D.

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

Sinnott, L. T.

K. Richdale, M. A. Bullimore, L. T. Sinnott, and K. Zadnik, “The effect of age, accommodation and refractive error on the adult human eye,” Optom. Vis. Sci. 93(1), 3–11 (2016).
[Crossref] [PubMed]

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Strenk, L. M.

S. A. Strenk, L. M. Strenk, and S. Guo, “Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters,” J. Cataract Refract. Surg. 32(11), 1792–1798 (2006).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Strenk, S. A.

S. A. Strenk, L. M. Strenk, and S. Guo, “Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters,” J. Cataract Refract. Surg. 32(11), 1792–1798 (2006).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Suheimat, M.

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens shape and refractive index distribution in type 1 diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

Sun, Y.-Y.

Y. Ni, X.-L. Liu, M.-X. Wu, Y. Lin, Y.-Y. Sun, C. He, and Y.-Z. Liu, “Objective evaluation of the changes in the crystalline lens during accommodation in young and presbyopic populations using Pentacam HR system,” Int. J. Ophthalmol. 4(6), 611–615 (2011).
[PubMed]

Taneja, M.

R. C. Augusteyn, A. Mohamed, D. Nankivil, P. Veerendranath, E. Arrieta, M. Taneja, F. Manns, A. Ho, and J. M. Parel, “Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation,” Vision Res. 51(14), 1667–1678 (2011).
[Crossref] [PubMed]

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

van der Heijde, R. G. L.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. A. Kuijer, R. G. L. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

Veerendranath, P.

R. C. Augusteyn, A. Mohamed, D. Nankivil, P. Veerendranath, E. Arrieta, M. Taneja, F. Manns, A. Ho, and J. M. Parel, “Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation,” Vision Res. 51(14), 1667–1678 (2011).
[Crossref] [PubMed]

Velasco-Ocana, M.

Verkicharla, P. K.

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens shape and refractive index distribution in type 1 diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

Wassenaar, P. A.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

Win-Hall, D.

L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
[Crossref] [PubMed]

Wolffsohn, J. S.

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

Wu, M.-X.

Y. Ni, X.-L. Liu, M.-X. Wu, Y. Lin, Y.-Y. Sun, C. He, and Y.-Z. Liu, “Objective evaluation of the changes in the crystalline lens during accommodation in young and presbyopic populations using Pentacam HR system,” Int. J. Ophthalmol. 4(6), 611–615 (2011).
[PubMed]

Zadnik, K.

K. Richdale, M. A. Bullimore, L. T. Sinnott, and K. Zadnik, “The effect of age, accommodation and refractive error on the adult human eye,” Optom. Vis. Sci. 93(1), 3–11 (2016).
[Crossref] [PubMed]

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Int. J. Ophthalmol. (1)

Y. Ni, X.-L. Liu, M.-X. Wu, Y. Lin, Y.-Y. Sun, C. He, and Y.-Z. Liu, “Objective evaluation of the changes in the crystalline lens during accommodation in young and presbyopic populations using Pentacam HR system,” Int. J. Ophthalmol. 4(6), 611–615 (2011).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

J. M. Adnan, J. M. Pope, F. Sepehrband, M. Suheimat, P. K. Verkicharla, S. Kasthurirangan, and D. A. Atchison, “Lens shape and refractive index distribution in type 1 diabetes,” Invest. Ophthalmol. Vis. Sci. 56(8), 4759–4766 (2015).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. A. Kuijer, R. G. L. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (2)

V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refract. Surg. 41(3), 511–526 (2015).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, and S. Guo, “Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters,” J. Cataract Refract. Surg. 32(11), 1792–1798 (2006).
[Crossref] [PubMed]

J. Vis. (1)

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

Magn. Reson. Imaging (1)

C. E. Jones and J. M. Pope, “Measuring optical properties of an eye lens using magnetic resonance imaging,” Magn. Reson. Imaging 22(2), 211–220 (2004).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[Crossref] [PubMed]

Optica (1)

Optom. Vis. Sci. (3)

L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

K. Richdale, M. A. Bullimore, L. T. Sinnott, and K. Zadnik, “The effect of age, accommodation and refractive error on the adult human eye,” Optom. Vis. Sci. 93(1), 3–11 (2016).
[Crossref] [PubMed]

Vision Res. (4)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

R. C. Augusteyn, A. Mohamed, D. Nankivil, P. Veerendranath, E. Arrieta, M. Taneja, F. Manns, A. Ho, and J. M. Parel, “Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation,” Vision Res. 51(14), 1667–1678 (2011).
[Crossref] [PubMed]

Other (2)

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, England, 2000).

A. Gullstrand, “The mechanism of accommodation,” in Appendix IV, Helmholtz's treatise on Physiological Optics, 3rd ed., J. P. C. Southall, ed. (Optical Society of America, New York, 1924), pp. 382–415.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Dimensions for refractive index profiles. The red dot is the axial midpoint and the blue dot is the midpoint of the equatorial diameter.
Fig. 2
Fig. 2 Characteristic MSE images of a 21 year old male (a) without accommodation stimulus, and (b) with 5.0 D accommodation stimulus. Upon accommodation, ciliary body ring diameter and lens equatorial diameter decreased, and axial thickness increased.
Fig. 3
Fig. 3 Normalized refractive index profiles for axial thickness with fits to Eq. (3): (a) anterior axial without accommodation; (b) anterior axial with accommodation; (c) posterior axial without accommodation; (d) posterior axial with accommodation. The origin for the fits corresponds to the mid-point of the equatorial plane (the blue dot in Fig. 1). The fits are determined by combining all data, but the means and standard errors are determined from refractive index data at each normalized distance. The dashed lines are the 95% confidence limits of the fits.
Fig. 4
Fig. 4 Normalized refractive index profiles for the total axial and equatorial distances with fits to Eq. (3): (a), (c) without accommodation, and (b), (d) with accommodation. The origin for the axial profiles is the mid-point of the axis (red dot in Fig. 1) and that for the equatorial profiles is the mid-point of the equatorial plane (blue dot in Fig. 1). The fits are determined by combining all data and folding about the respective center points, but the means and standard errors are determined from refractive index data at each normalized distance. The dashed lines are the 95% confidence limits of the fits.
Fig. 5
Fig. 5 Refractive index profiles, for distances (in mm) from the lens center, without and with accommodation: (a) anterior axial; (b) posterior axial; (c) equatorial. The fits are scaled from those in Figs. 3 and 4 by the mean thicknesses (axial and posterior axial) and half the mean diameter (equatorial) as given in Table 1. The fits are determined by combining all data, but the means and standard error are determined from refractive index data at each normalized distance. The dashed lines are the 95% confidence limits of the fits.

Tables (4)

Tables Icon

Table 1 Lens and ciliary ring dimensions without and with accommodation

Tables Icon

Table 2 Co-efficients of fit to normalized axial refractive index data. Numbers in brackets are standard errors.

Tables Icon

Table 3 Co-efficients of fit to normalized equatorial refractive index data. Numbers in brackets are standard errors.

Tables Icon

Table 4 Change in ocular parameters with accommodation from various in-vivo studies

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S ( T E ) = S 0 e R 2 T E
n = 1.3554 + 1.549 × 10 3 R 2 6.34 × 10 6 R 2 2
n ( r ) = C 0 + C p r p
D c = [ D m 2 + S 2 ] 1 / 2

Metrics