Abstract

Optical tweezers are proven indispensable single-cell micro-manipulation and mechanical phenotyping tools. In this study, we have used optical tweezers for measuring the viscoelastic properties of human red blood cells (RBCs). Comparison of the viscoelastic features of the healthy fresh and atorvastatin treated cells revealed that the drug softens the cells. Using a simple modeling approach, we proposed a molecular model that explains the drug-induced softening of the RBC membrane. Our results suggest that direct interactions between the drug and cytoskeletal components underlie the drug-induced softening of the cells.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study of in vitro RBCs membrane elasticity with AOD scanning optical tweezers

Huadong Song, Ying Liu, Bin Zhang, Kangzhen Tian, Panpan Zhu, Hao Lu, and Qi Tang
Biomed. Opt. Express 8(1) 384-394 (2017)

Mechanochemistry of single red blood cells monitored using Raman tweezers

Saurabh Raj, Mónica Marro, Michal Wojdyla, and Dmitri Petrov
Biomed. Opt. Express 3(4) 753-763 (2012)

Microrheology of red blood cell membranes using dynamic scattering microscopy

M. Shahrooz Amin, YoungKeun Park, Niyom Lue, Ramachandra R. Dasari, Kamran Badizadegan, Michael S. Feld, and Gabriel Popescu
Opt. Express 15(25) 17001-17009 (2007)

References

  • View by:
  • |
  • |
  • |

  1. O. K. Baskurt and H. J. Meiselman, “Blood Rheology and Hemodynamics,” Semin. Thromb. Hemost. 29, 435–450 (2003).
    [Crossref] [PubMed]
  2. S. Suresh, “Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships,” J. Mater. Res. 21, 1871–1877 (2006).
    [Crossref]
  3. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
    [Crossref] [PubMed]
  4. Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5, 36007 (2008).
    [Crossref]
  5. F. R. Maxfield and I. Tabas, “Role of cholesterol and lipid organization in disease,” Nature 438, 612–621 (2005).
    [Crossref] [PubMed]
  6. G. G. Schwartz, “Effects of Atorvastatin on Early Recurrent Ischemic Events in Acute Coronary Syndromes.,” JAMA 285, 1711–1718 (2001).
    [Crossref] [PubMed]
  7. A. M. Forsyth, S. Braunmüller, J. Wan, T. Franke, and H. A. Stone, “The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release,” Microvasc. Res. 83, 347–351 (2012).
    [Crossref] [PubMed]
  8. G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” J. Comput. Chem. 30, 2785–2791 (2009).
    [Crossref] [PubMed]
  9. M. F. Sanner, “Python: a programming language for software integration and development.,” J. Mol. Graph. Model. 17, 57–61 (1999).
  10. A. W. Schüttelkopf and D. M. F. van Aalten, “PRODRG : a tool for high-throughput crystallography of protein-ligand complexes,” Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 1355–1363 (2004).
    [Crossref]
  11. V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “MolProbity : all-atom structure validation for macromolecular crystallography,” Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).
    [Crossref]
  12. D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton.,” Nature 463, 485–492 (2010).
    [Crossref] [PubMed]
  13. T. Betz, M. Lenz, J.-F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. 106, 15320–15325 (2009).
    [Crossref] [PubMed]
  14. J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the Red Cell Membrane and Its Relation to Hemolytic Disorders: An Optical Tweezers Study,” Biophys. J. 77, 3085–3095 (1999).
    [Crossref] [PubMed]
  15. J. Greenwood, L. Steinman, and S. S. Zamvil, “Statin therapy and autoimmune disease: from protein prenylation to immunomodulation,” Nat. Rev. Immunol. 6, 358–370 (2006).
    [Crossref] [PubMed]
  16. G. J. Blake and P. M. Ridker, “Are statins anti-inflammatory?” Curr Control Trials Cardiovasc Med 1, 161–165 (2000).
    [Crossref]
  17. M. Russo, M. Scobey, and H. Bonkovsky, “Drug-Induced Liver Injury Associated with Statins,” Semin. Liver Dis. 29, 412–422 (2009).
    [Crossref] [PubMed]
  18. B. A. Parker and P. D. Thompson, “Effect of Statins on Skeletal Muscle,” Exerc. Sport Sci. Rev. 40, 1–12 (2012).
    [Crossref]

2012 (2)

A. M. Forsyth, S. Braunmüller, J. Wan, T. Franke, and H. A. Stone, “The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release,” Microvasc. Res. 83, 347–351 (2012).
[Crossref] [PubMed]

B. A. Parker and P. D. Thompson, “Effect of Statins on Skeletal Muscle,” Exerc. Sport Sci. Rev. 40, 1–12 (2012).
[Crossref]

2010 (2)

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “MolProbity : all-atom structure validation for macromolecular crystallography,” Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).
[Crossref]

D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton.,” Nature 463, 485–492 (2010).
[Crossref] [PubMed]

2009 (3)

T. Betz, M. Lenz, J.-F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. 106, 15320–15325 (2009).
[Crossref] [PubMed]

M. Russo, M. Scobey, and H. Bonkovsky, “Drug-Induced Liver Injury Associated with Statins,” Semin. Liver Dis. 29, 412–422 (2009).
[Crossref] [PubMed]

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” J. Comput. Chem. 30, 2785–2791 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5, 36007 (2008).
[Crossref]

2006 (2)

S. Suresh, “Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships,” J. Mater. Res. 21, 1871–1877 (2006).
[Crossref]

J. Greenwood, L. Steinman, and S. S. Zamvil, “Statin therapy and autoimmune disease: from protein prenylation to immunomodulation,” Nat. Rev. Immunol. 6, 358–370 (2006).
[Crossref] [PubMed]

2005 (1)

F. R. Maxfield and I. Tabas, “Role of cholesterol and lipid organization in disease,” Nature 438, 612–621 (2005).
[Crossref] [PubMed]

2004 (1)

A. W. Schüttelkopf and D. M. F. van Aalten, “PRODRG : a tool for high-throughput crystallography of protein-ligand complexes,” Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 1355–1363 (2004).
[Crossref]

2003 (1)

O. K. Baskurt and H. J. Meiselman, “Blood Rheology and Hemodynamics,” Semin. Thromb. Hemost. 29, 435–450 (2003).
[Crossref] [PubMed]

2001 (1)

G. G. Schwartz, “Effects of Atorvastatin on Early Recurrent Ischemic Events in Acute Coronary Syndromes.,” JAMA 285, 1711–1718 (2001).
[Crossref] [PubMed]

2000 (1)

G. J. Blake and P. M. Ridker, “Are statins anti-inflammatory?” Curr Control Trials Cardiovasc Med 1, 161–165 (2000).
[Crossref]

1999 (3)

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the Red Cell Membrane and Its Relation to Hemolytic Disorders: An Optical Tweezers Study,” Biophys. J. 77, 3085–3095 (1999).
[Crossref] [PubMed]

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
[Crossref] [PubMed]

M. F. Sanner, “Python: a programming language for software integration and development.,” J. Mol. Graph. Model. 17, 57–61 (1999).

Arendall, W. B.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “MolProbity : all-atom structure validation for macromolecular crystallography,” Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).
[Crossref]

Baskurt, O. K.

O. K. Baskurt and H. J. Meiselman, “Blood Rheology and Hemodynamics,” Semin. Thromb. Hemost. 29, 435–450 (2003).
[Crossref] [PubMed]

Belew, R. K.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” J. Comput. Chem. 30, 2785–2791 (2009).
[Crossref] [PubMed]

Betz, T.

T. Betz, M. Lenz, J.-F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. 106, 15320–15325 (2009).
[Crossref] [PubMed]

Blake, G. J.

G. J. Blake and P. M. Ridker, “Are statins anti-inflammatory?” Curr Control Trials Cardiovasc Med 1, 161–165 (2000).
[Crossref]

Bonkovsky, H.

M. Russo, M. Scobey, and H. Bonkovsky, “Drug-Induced Liver Injury Associated with Statins,” Semin. Liver Dis. 29, 412–422 (2009).
[Crossref] [PubMed]

Braunmüller, S.

A. M. Forsyth, S. Braunmüller, J. Wan, T. Franke, and H. A. Stone, “The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release,” Microvasc. Res. 83, 347–351 (2012).
[Crossref] [PubMed]

Chen, V. B.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “MolProbity : all-atom structure validation for macromolecular crystallography,” Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).
[Crossref]

Cicuta, P.

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5, 36007 (2008).
[Crossref]

Fletcher, D. A.

D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton.,” Nature 463, 485–492 (2010).
[Crossref] [PubMed]

Forsyth, A. M.

A. M. Forsyth, S. Braunmüller, J. Wan, T. Franke, and H. A. Stone, “The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release,” Microvasc. Res. 83, 347–351 (2012).
[Crossref] [PubMed]

Franke, T.

A. M. Forsyth, S. Braunmüller, J. Wan, T. Franke, and H. A. Stone, “The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release,” Microvasc. Res. 83, 347–351 (2012).
[Crossref] [PubMed]

Gallet, F.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
[Crossref] [PubMed]

Goodsell, D. S.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” J. Comput. Chem. 30, 2785–2791 (2009).
[Crossref] [PubMed]

Gratzer, W.

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the Red Cell Membrane and Its Relation to Hemolytic Disorders: An Optical Tweezers Study,” Biophys. J. 77, 3085–3095 (1999).
[Crossref] [PubMed]

Greenwood, J.

J. Greenwood, L. Steinman, and S. S. Zamvil, “Statin therapy and autoimmune disease: from protein prenylation to immunomodulation,” Nat. Rev. Immunol. 6, 358–370 (2006).
[Crossref] [PubMed]

Headd, J. J.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “MolProbity : all-atom structure validation for macromolecular crystallography,” Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).
[Crossref]

Hénon, S.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
[Crossref] [PubMed]

Huey, R.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” J. Comput. Chem. 30, 2785–2791 (2009).
[Crossref] [PubMed]

Immormino, R. M.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “MolProbity : all-atom structure validation for macromolecular crystallography,” Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).
[Crossref]

Joanny, J.-F.

T. Betz, M. Lenz, J.-F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. 106, 15320–15325 (2009).
[Crossref] [PubMed]

Kapral, G. J.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “MolProbity : all-atom structure validation for macromolecular crystallography,” Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).
[Crossref]

Keedy, D. A.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “MolProbity : all-atom structure validation for macromolecular crystallography,” Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).
[Crossref]

Kotar, J.

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5, 36007 (2008).
[Crossref]

Lenormand, G.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
[Crossref] [PubMed]

Lenz, M.

T. Betz, M. Lenz, J.-F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. 106, 15320–15325 (2009).
[Crossref] [PubMed]

Lindstrom, W.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” J. Comput. Chem. 30, 2785–2791 (2009).
[Crossref] [PubMed]

Maxfield, F. R.

F. R. Maxfield and I. Tabas, “Role of cholesterol and lipid organization in disease,” Nature 438, 612–621 (2005).
[Crossref] [PubMed]

Meiselman, H. J.

O. K. Baskurt and H. J. Meiselman, “Blood Rheology and Hemodynamics,” Semin. Thromb. Hemost. 29, 435–450 (2003).
[Crossref] [PubMed]

Morris, G. M.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” J. Comput. Chem. 30, 2785–2791 (2009).
[Crossref] [PubMed]

Mullins, R. D.

D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton.,” Nature 463, 485–492 (2010).
[Crossref] [PubMed]

Murray, L. W.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “MolProbity : all-atom structure validation for macromolecular crystallography,” Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).
[Crossref]

Olson, A. J.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” J. Comput. Chem. 30, 2785–2791 (2009).
[Crossref] [PubMed]

Parker, B. A.

B. A. Parker and P. D. Thompson, “Effect of Statins on Skeletal Muscle,” Exerc. Sport Sci. Rev. 40, 1–12 (2012).
[Crossref]

Richardson, D. C.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “MolProbity : all-atom structure validation for macromolecular crystallography,” Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).
[Crossref]

Richardson, J. S.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “MolProbity : all-atom structure validation for macromolecular crystallography,” Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).
[Crossref]

Richert, A.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
[Crossref] [PubMed]

Ridker, P. M.

G. J. Blake and P. M. Ridker, “Are statins anti-inflammatory?” Curr Control Trials Cardiovasc Med 1, 161–165 (2000).
[Crossref]

Russo, M.

M. Russo, M. Scobey, and H. Bonkovsky, “Drug-Induced Liver Injury Associated with Statins,” Semin. Liver Dis. 29, 412–422 (2009).
[Crossref] [PubMed]

Sanner, M. F.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” J. Comput. Chem. 30, 2785–2791 (2009).
[Crossref] [PubMed]

M. F. Sanner, “Python: a programming language for software integration and development.,” J. Mol. Graph. Model. 17, 57–61 (1999).

Schüttelkopf, A. W.

A. W. Schüttelkopf and D. M. F. van Aalten, “PRODRG : a tool for high-throughput crystallography of protein-ligand complexes,” Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 1355–1363 (2004).
[Crossref]

Schwartz, G. G.

G. G. Schwartz, “Effects of Atorvastatin on Early Recurrent Ischemic Events in Acute Coronary Syndromes.,” JAMA 285, 1711–1718 (2001).
[Crossref] [PubMed]

Scobey, M.

M. Russo, M. Scobey, and H. Bonkovsky, “Drug-Induced Liver Injury Associated with Statins,” Semin. Liver Dis. 29, 412–422 (2009).
[Crossref] [PubMed]

Simmons, R.

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the Red Cell Membrane and Its Relation to Hemolytic Disorders: An Optical Tweezers Study,” Biophys. J. 77, 3085–3095 (1999).
[Crossref] [PubMed]

Sleep, J.

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the Red Cell Membrane and Its Relation to Hemolytic Disorders: An Optical Tweezers Study,” Biophys. J. 77, 3085–3095 (1999).
[Crossref] [PubMed]

Steinman, L.

J. Greenwood, L. Steinman, and S. S. Zamvil, “Statin therapy and autoimmune disease: from protein prenylation to immunomodulation,” Nat. Rev. Immunol. 6, 358–370 (2006).
[Crossref] [PubMed]

Stone, H. A.

A. M. Forsyth, S. Braunmüller, J. Wan, T. Franke, and H. A. Stone, “The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release,” Microvasc. Res. 83, 347–351 (2012).
[Crossref] [PubMed]

Suresh, S.

S. Suresh, “Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships,” J. Mater. Res. 21, 1871–1877 (2006).
[Crossref]

Sykes, C.

T. Betz, M. Lenz, J.-F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. 106, 15320–15325 (2009).
[Crossref] [PubMed]

Tabas, I.

F. R. Maxfield and I. Tabas, “Role of cholesterol and lipid organization in disease,” Nature 438, 612–621 (2005).
[Crossref] [PubMed]

Thompson, P. D.

B. A. Parker and P. D. Thompson, “Effect of Statins on Skeletal Muscle,” Exerc. Sport Sci. Rev. 40, 1–12 (2012).
[Crossref]

van Aalten, D. M. F.

A. W. Schüttelkopf and D. M. F. van Aalten, “PRODRG : a tool for high-throughput crystallography of protein-ligand complexes,” Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 1355–1363 (2004).
[Crossref]

Wan, J.

A. M. Forsyth, S. Braunmüller, J. Wan, T. Franke, and H. A. Stone, “The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release,” Microvasc. Res. 83, 347–351 (2012).
[Crossref] [PubMed]

Wilson, D.

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the Red Cell Membrane and Its Relation to Hemolytic Disorders: An Optical Tweezers Study,” Biophys. J. 77, 3085–3095 (1999).
[Crossref] [PubMed]

Yoon, G.

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5, 36007 (2008).
[Crossref]

Yoon, Y. Z.

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5, 36007 (2008).
[Crossref]

Zamvil, S. S.

J. Greenwood, L. Steinman, and S. S. Zamvil, “Statin therapy and autoimmune disease: from protein prenylation to immunomodulation,” Nat. Rev. Immunol. 6, 358–370 (2006).
[Crossref] [PubMed]

Acta Crystallogr. Sect. D Biol. Crystallogr. (2)

A. W. Schüttelkopf and D. M. F. van Aalten, “PRODRG : a tool for high-throughput crystallography of protein-ligand complexes,” Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 1355–1363 (2004).
[Crossref]

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “MolProbity : all-atom structure validation for macromolecular crystallography,” Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).
[Crossref]

Biophys. J. (2)

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the Red Cell Membrane and Its Relation to Hemolytic Disorders: An Optical Tweezers Study,” Biophys. J. 77, 3085–3095 (1999).
[Crossref] [PubMed]

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
[Crossref] [PubMed]

Curr Control Trials Cardiovasc Med (1)

G. J. Blake and P. M. Ridker, “Are statins anti-inflammatory?” Curr Control Trials Cardiovasc Med 1, 161–165 (2000).
[Crossref]

Exerc. Sport Sci. Rev. (1)

B. A. Parker and P. D. Thompson, “Effect of Statins on Skeletal Muscle,” Exerc. Sport Sci. Rev. 40, 1–12 (2012).
[Crossref]

J. Comput. Chem. (1)

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” J. Comput. Chem. 30, 2785–2791 (2009).
[Crossref] [PubMed]

J. Mater. Res. (1)

S. Suresh, “Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships,” J. Mater. Res. 21, 1871–1877 (2006).
[Crossref]

J. Mol. Graph. Model. (1)

M. F. Sanner, “Python: a programming language for software integration and development.,” J. Mol. Graph. Model. 17, 57–61 (1999).

JAMA (1)

G. G. Schwartz, “Effects of Atorvastatin on Early Recurrent Ischemic Events in Acute Coronary Syndromes.,” JAMA 285, 1711–1718 (2001).
[Crossref] [PubMed]

Microvasc. Res. (1)

A. M. Forsyth, S. Braunmüller, J. Wan, T. Franke, and H. A. Stone, “The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release,” Microvasc. Res. 83, 347–351 (2012).
[Crossref] [PubMed]

Nat. Rev. Immunol. (1)

J. Greenwood, L. Steinman, and S. S. Zamvil, “Statin therapy and autoimmune disease: from protein prenylation to immunomodulation,” Nat. Rev. Immunol. 6, 358–370 (2006).
[Crossref] [PubMed]

Nature (2)

D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton.,” Nature 463, 485–492 (2010).
[Crossref] [PubMed]

F. R. Maxfield and I. Tabas, “Role of cholesterol and lipid organization in disease,” Nature 438, 612–621 (2005).
[Crossref] [PubMed]

Phys. Biol. (1)

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “The nonlinear mechanical response of the red blood cell,” Phys. Biol. 5, 36007 (2008).
[Crossref]

Proc. Natl. Acad. Sci. (1)

T. Betz, M. Lenz, J.-F. Joanny, and C. Sykes, “ATP-dependent mechanics of red blood cells,” Proc. Natl. Acad. Sci. 106, 15320–15325 (2009).
[Crossref] [PubMed]

Semin. Liver Dis. (1)

M. Russo, M. Scobey, and H. Bonkovsky, “Drug-Induced Liver Injury Associated with Statins,” Semin. Liver Dis. 29, 412–422 (2009).
[Crossref] [PubMed]

Semin. Thromb. Hemost. (1)

O. K. Baskurt and H. J. Meiselman, “Blood Rheology and Hemodynamics,” Semin. Thromb. Hemost. 29, 435–450 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 The measured force as a function of: (a) time, and (b) elongation in a typical manipulation cycle. Each step is shown using a separate color code to be distinguishable. Inset: (a) The relaxation data for the healthy-fresh (red squares) and drug-treated (red circles) of the main graph are fitted to a power law decay function (equation 1).
Fig. 2
Fig. 2 Comparison of the HF and DT cells: (a) Dynamic stiffness as a function of strain rate. The solid lines are the fits to the power-law decay function (Eq. (2)). Inset: Histogram of the resulted stiffnesses for HF and DT cells at strain rate of 0.37 s−1. (b) The dissipated energy as a function of the strain rate. The solid lines are fits to Eq. (3).
Fig. 3
Fig. 3 Molecular docking results: Three dimensional surface map showing how a Atorvastatin molecule interacts with f-actin (left), and spectrin-binding-domain of ankryn (right).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F ( t ) = Δ F 0 × ( t t 0 ) α f + F inf
K ( ˙ ) = Δ K ( ˙ ) + K 0 = Δ K 0 × ( ˙ ˙ 0 ) α k + K 0
E dissp = E 0 + E ( ˙ ˙ 0 ) α E

Metrics