Abstract

We report an ultrahigh-speed and high-resolution line-scan spectral-domain optical coherence tomography (SD-OCT) system that integrates a number of mechanisms for improving image quality. The illumination uniformity is significantly improved by the use of a Powell lens; Phase stepping and differential reconstruction are combined to suppress autocorrelation artifacts; Nonlocal means (NLM) is employed to enhance the signal to noise ratio while minimizing motion artifacts. The system is capable of acquiring cross-sectional images at more than 3,500 B-scans per second with sensitivities between 70dB and 90dB. The high B-scan rate enables image post-processing with nonlocal means, an advanced noise reduction algorithm that affords enhanced morphological details and reduced motion artifacts. The achieved axial and lateral resolutions are 2.0 and 6.2 microns, respectively. We have used this system to acquire four-dimensional (three-dimensional space and one-dimensional time) imaging data from live chicken embryos at up to 40 volumes per second. Dynamic cardiac tissue deformation and blood flow could be clearly visualized at high temporal and spatial resolutions, providing valuable information for understanding the mechanical and fluid dynamic properties of the developing cardiac system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed, ultrahigh-resolution distal scanning OCT endoscopy at 800 nm for in vivo imaging of colon tumorigenesis on murine models

Jessica Mavadia-Shukla, Payam Fathi, Wenxuan Liang, Shaoguang Wu, Cynthia Sears, and Xingde Li
Biomed. Opt. Express 9(8) 3731-3739 (2018)

Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second

Benjamin Potsaid, Iwona Gorczynska, Vivek J. Srinivasan, Yueli Chen, James Jiang, Alex Cable, and James G. Fujimoto
Opt. Express 16(19) 15149-15169 (2008)

Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins
Opt. Express 15(10) 6251-6267 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. G. J. Tearney, M. E. Brezinski, S. A. Boppart, B. E. Bouma, N. Weissman, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, “Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery,” Circulation 94(11), 3013 (1996).
    [Crossref] [PubMed]
  3. A. M. Rollins, R. Ung-Arunyawee, A. Chak, R. C. Wong, K. Kobayashi, M. V. Sivak, and J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24(19), 1358–1360 (1999).
    [Crossref] [PubMed]
  4. S. Pant, C. Li, Z. Gong, and N. Chen, “Line-scan focal modulation microscopy,” J. Biomed. Opt. 22(5), 050502 (2017).
    [Crossref] [PubMed]
  5. D. Sedmera, A. Wessels, T. C. Trusk, R. P. Thompson, K. W. Hewett, and R. G. Gourdie, “Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1646–H1652 (2006).
    [Crossref] [PubMed]
  6. M. J. Boot, R. P. Steegers-Theunissen, R. E. Poelmann, L. van Iperen, and A. C. Gittenberger-de Groot, “Cardiac outflow tract malformations in chick embryos exposed to homocysteine,” Cardiovasc. Res. 64(2), 365–373 (2004).
    [Crossref] [PubMed]
  7. L. A. Taber and R. Perucchio, “Stress-strain relations in embryonic chick heart,” Am. J. Physiol. Heart Circ. Physiol. 281(1), H463–H466 (2001).
    [Crossref] [PubMed]
  8. B. D. Metscher, “MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions,” Dev. Dyn. 238(3), 632–640 (2009).
    [Crossref] [PubMed]
  9. E. B. Clark and N. Hu, “Developmental hemodynamic changes in the chick embryo from stage 18 to 27,” Circ. Res. 51(6), 810–815 (1982).
    [Crossref] [PubMed]
  10. J. Y. Park, J. H. Chung, J. S. Lee, H. J. Kim, S. H. Choi, and U. W. Jung, “Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: anex vivostudy,” J. Periodontal Implant Sci. 47(1), 30–40 (2017).
    [Crossref] [PubMed]
  11. M. Vogt, A. Knüttel, K. Hoffmann, P. Altmeyer, and H. Ermert, “Comparison of high frequency ultrasound and optical coherence tomography as modalities for high resolution and non invasive skin imaging,” Biomed. Tech. (Berl.) 48(5), 116–121 (2003).
    [Crossref] [PubMed]
  12. Z. Y. Ko, K. Mehta, M. Jamil, C. H. Yap, and N. Chen, “A method to study the hemodynamics of chicken embryo’s aortic arches using optical coherence tomography,” J. Biophotonics 10(3), 353–359 (2017).
    [Crossref] [PubMed]
  13. A. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung-Arunyawee, and J. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3(6), 219–229 (1998).
    [Crossref] [PubMed]
  14. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003).
    [Crossref] [PubMed]
  15. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
    [Crossref] [PubMed]
  16. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
    [Crossref]
  17. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  18. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  19. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [Crossref] [PubMed]
  20. D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
    [Crossref] [PubMed]
  21. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
    [Crossref] [PubMed]
  22. A. F. Zuluaga and R. Richards-Kortum, “Spatially resolved spectral interferometry for determination of subsurface structure,” Opt. Lett. 24(8), 519–521 (1999).
    [Crossref] [PubMed]
  23. L. Ginner, A. Kumar, D. Fechtig, L. M. Wurster, M. Salas, M. Pircher, and R. A. Leitgeb, “Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo,” Optica 4(8), 924–931 (2017).
    [Crossref]
  24. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005).
    [Crossref] [PubMed]
  25. I. Powell, “Design of a laser beam line expander,” Appl. Opt. 26(17), 3705–3709 (1987).
    [Crossref] [PubMed]
  26. J. A. Izatt and M. A. Choma, “Theory of Optical Coherence Tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer Berlin Heidelberg, 2008), pp. 47–72.
  27. A. Buades, B. Coll, and J.-M. Morel, “Nonlocal Image and Movie Denoising,” Int. J. Comput. Vis. 76(2), 123–139 (2008).
    [Crossref]
  28. A. Buades, B. Coll, and J. M. Morel, “Image denoising by non-local averaging,” Acoustics, Speech, and Signal Processing, IEEE International Conference on, 25–28 (2005).
    [Crossref]
  29. A. Buades, B. Coll, and J. M. Morel, “Denoising image sequences does not require motion estimation,” in IEEE Conference on Advanced Video and Signal Based Surveillance,2005), 70–74.
    [Crossref]
  30. S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
    [Crossref] [PubMed]
  31. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
    [Crossref] [PubMed]
  32. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  33. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
    [Crossref] [PubMed]
  34. V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” J. Morphol. 88(1), 49–92 (1951).
    [Crossref] [PubMed]
  35. B. J. Martinsen, “Reference guide to the stages of chick heart embryology,” Dev. Dyn. 233(4), 1217–1237 (2005).
    [Crossref] [PubMed]
  36. B. M. Patten, T. C. Kramer, and A. Barry, “Valvular action in the embryonic chick heart by localized apposition of endocardial masses,” Anat. Rec. 102(3), 299–311 (1948).
    [Crossref] [PubMed]
  37. A. C. Gittenberger-de Groot, M. M. Bartelings, M. C. Deruiter, and R. E. Poelmann, “Basics of cardiac development for the understanding of congenital heart malformations,” Pediatr. Res. 57(2), 169–176 (2005).
    [Crossref] [PubMed]
  38. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
    [Crossref] [PubMed]
  39. A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
    [Crossref] [PubMed]
  40. S. Gu, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “High-speed optical coherence tomography imaging of the beating avian embryonic heart,” Cold Spring Harbor protocols 2011(2), pdb top98 (2011).
    [Crossref]
  41. S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
    [Crossref] [PubMed]
  42. J. Barrick, A. Doblas, M. R. Gardner, P. R. Sears, L. E. Ostrowski, and A. L. Oldenburg, “High-speed and high-sensitivity parallel spectral-domain optical coherence tomography using a supercontinuum light source,” Opt. Lett. 41(24), 5620–5623 (2016).

2017 (4)

S. Pant, C. Li, Z. Gong, and N. Chen, “Line-scan focal modulation microscopy,” J. Biomed. Opt. 22(5), 050502 (2017).
[Crossref] [PubMed]

J. Y. Park, J. H. Chung, J. S. Lee, H. J. Kim, S. H. Choi, and U. W. Jung, “Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: anex vivostudy,” J. Periodontal Implant Sci. 47(1), 30–40 (2017).
[Crossref] [PubMed]

Z. Y. Ko, K. Mehta, M. Jamil, C. H. Yap, and N. Chen, “A method to study the hemodynamics of chicken embryo’s aortic arches using optical coherence tomography,” J. Biophotonics 10(3), 353–359 (2017).
[Crossref] [PubMed]

L. Ginner, A. Kumar, D. Fechtig, L. M. Wurster, M. Salas, M. Pircher, and R. A. Leitgeb, “Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo,” Optica 4(8), 924–931 (2017).
[Crossref]

2016 (1)

2015 (1)

2013 (1)

2012 (2)

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (2)

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref] [PubMed]

B. D. Metscher, “MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions,” Dev. Dyn. 238(3), 632–640 (2009).
[Crossref] [PubMed]

2008 (3)

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

A. Buades, B. Coll, and J.-M. Morel, “Nonlocal Image and Movie Denoising,” Int. J. Comput. Vis. 76(2), 123–139 (2008).
[Crossref]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[Crossref] [PubMed]

2006 (1)

D. Sedmera, A. Wessels, T. C. Trusk, R. P. Thompson, K. W. Hewett, and R. G. Gourdie, “Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1646–H1652 (2006).
[Crossref] [PubMed]

2005 (3)

B. J. Martinsen, “Reference guide to the stages of chick heart embryology,” Dev. Dyn. 233(4), 1217–1237 (2005).
[Crossref] [PubMed]

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005).
[Crossref] [PubMed]

A. C. Gittenberger-de Groot, M. M. Bartelings, M. C. Deruiter, and R. E. Poelmann, “Basics of cardiac development for the understanding of congenital heart malformations,” Pediatr. Res. 57(2), 169–176 (2005).
[Crossref] [PubMed]

2004 (1)

M. J. Boot, R. P. Steegers-Theunissen, R. E. Poelmann, L. van Iperen, and A. C. Gittenberger-de Groot, “Cardiac outflow tract malformations in chick embryos exposed to homocysteine,” Cardiovasc. Res. 64(2), 365–373 (2004).
[Crossref] [PubMed]

2003 (4)

2002 (2)

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

2001 (1)

L. A. Taber and R. Perucchio, “Stress-strain relations in embryonic chick heart,” Am. J. Physiol. Heart Circ. Physiol. 281(1), H463–H466 (2001).
[Crossref] [PubMed]

1999 (2)

1998 (1)

1996 (1)

G. J. Tearney, M. E. Brezinski, S. A. Boppart, B. E. Bouma, N. Weissman, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, “Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery,” Circulation 94(11), 3013 (1996).
[Crossref] [PubMed]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1987 (1)

1982 (2)

1951 (1)

V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” J. Morphol. 88(1), 49–92 (1951).
[Crossref] [PubMed]

1948 (1)

B. M. Patten, T. C. Kramer, and A. Barry, “Valvular action in the embryonic chick heart by localized apposition of endocardial masses,” Anat. Rec. 102(3), 299–311 (1948).
[Crossref] [PubMed]

Ahn, Y. C.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref] [PubMed]

Altmeyer, P.

M. Vogt, A. Knüttel, K. Hoffmann, P. Altmeyer, and H. Ermert, “Comparison of high frequency ultrasound and optical coherence tomography as modalities for high resolution and non invasive skin imaging,” Biomed. Tech. (Berl.) 48(5), 116–121 (2003).
[Crossref] [PubMed]

Bajraszewski, T.

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Barrick, J.

Barry, A.

B. M. Patten, T. C. Kramer, and A. Barry, “Valvular action in the embryonic chick heart by localized apposition of endocardial masses,” Anat. Rec. 102(3), 299–311 (1948).
[Crossref] [PubMed]

Bartelings, M. M.

A. C. Gittenberger-de Groot, M. M. Bartelings, M. C. Deruiter, and R. E. Poelmann, “Basics of cardiac development for the understanding of congenital heart malformations,” Pediatr. Res. 57(2), 169–176 (2005).
[Crossref] [PubMed]

Biedermann, B. R.

Blatter, C.

Boot, M. J.

M. J. Boot, R. P. Steegers-Theunissen, R. E. Poelmann, L. van Iperen, and A. C. Gittenberger-de Groot, “Cardiac outflow tract malformations in chick embryos exposed to homocysteine,” Cardiovasc. Res. 64(2), 365–373 (2004).
[Crossref] [PubMed]

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, S. A. Boppart, B. E. Bouma, N. Weissman, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, “Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery,” Circulation 94(11), 3013 (1996).
[Crossref] [PubMed]

Bouma, B.

Bouma, B. E.

G. J. Tearney, M. E. Brezinski, S. A. Boppart, B. E. Bouma, N. Weissman, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, “Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery,” Circulation 94(11), 3013 (1996).
[Crossref] [PubMed]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, S. A. Boppart, B. E. Bouma, N. Weissman, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, “Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery,” Circulation 94(11), 3013 (1996).
[Crossref] [PubMed]

Buades, A.

A. Buades, B. Coll, and J.-M. Morel, “Nonlocal Image and Movie Denoising,” Int. J. Comput. Vis. 76(2), 123–139 (2008).
[Crossref]

A. Buades, B. Coll, and J. M. Morel, “Denoising image sequences does not require motion estimation,” in IEEE Conference on Advanced Video and Signal Based Surveillance,2005), 70–74.
[Crossref]

Chak, A.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, N.

Z. Y. Ko, K. Mehta, M. Jamil, C. H. Yap, and N. Chen, “A method to study the hemodynamics of chicken embryo’s aortic arches using optical coherence tomography,” J. Biophotonics 10(3), 353–359 (2017).
[Crossref] [PubMed]

S. Pant, C. Li, Z. Gong, and N. Chen, “Line-scan focal modulation microscopy,” J. Biomed. Opt. 22(5), 050502 (2017).
[Crossref] [PubMed]

Chen, Z.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref] [PubMed]

Choi, S. H.

J. Y. Park, J. H. Chung, J. S. Lee, H. J. Kim, S. H. Choi, and U. W. Jung, “Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: anex vivostudy,” J. Periodontal Implant Sci. 47(1), 30–40 (2017).
[Crossref] [PubMed]

Choma, M.

Chung, J. H.

J. Y. Park, J. H. Chung, J. S. Lee, H. J. Kim, S. H. Choi, and U. W. Jung, “Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: anex vivostudy,” J. Periodontal Implant Sci. 47(1), 30–40 (2017).
[Crossref] [PubMed]

Clark, E. B.

E. B. Clark and N. Hu, “Developmental hemodynamic changes in the chick embryo from stage 18 to 27,” Circ. Res. 51(6), 810–815 (1982).
[Crossref] [PubMed]

Coll, B.

A. Buades, B. Coll, and J.-M. Morel, “Nonlocal Image and Movie Denoising,” Int. J. Comput. Vis. 76(2), 123–139 (2008).
[Crossref]

A. Buades, B. Coll, and J. M. Morel, “Denoising image sequences does not require motion estimation,” in IEEE Conference on Advanced Video and Signal Based Surveillance,2005), 70–74.
[Crossref]

de Boer, J.

Deruiter, M. C.

A. C. Gittenberger-de Groot, M. M. Bartelings, M. C. Deruiter, and R. E. Poelmann, “Basics of cardiac development for the understanding of congenital heart malformations,” Pediatr. Res. 57(2), 169–176 (2005).
[Crossref] [PubMed]

Doblas, A.

Drexler, W.

Eigenwillig, C. M.

Eliceiri, K. W.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
[Crossref]

Ermert, H.

M. Vogt, A. Knüttel, K. Hoffmann, P. Altmeyer, and H. Ermert, “Comparison of high frequency ultrasound and optical coherence tomography as modalities for high resolution and non invasive skin imaging,” Biomed. Tech. (Berl.) 48(5), 116–121 (2003).
[Crossref] [PubMed]

Fechtig, D.

Fechtig, D. J.

Fercher, A.

Fercher, A. F.

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, S. A. Boppart, B. E. Bouma, N. Weissman, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, “Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery,” Circulation 94(11), 3013 (1996).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gardner, M. R.

Ginner, L.

Gittenberger-de Groot, A. C.

A. C. Gittenberger-de Groot, M. M. Bartelings, M. C. Deruiter, and R. E. Poelmann, “Basics of cardiac development for the understanding of congenital heart malformations,” Pediatr. Res. 57(2), 169–176 (2005).
[Crossref] [PubMed]

M. J. Boot, R. P. Steegers-Theunissen, R. E. Poelmann, L. van Iperen, and A. C. Gittenberger-de Groot, “Cardiac outflow tract malformations in chick embryos exposed to homocysteine,” Cardiovasc. Res. 64(2), 365–373 (2004).
[Crossref] [PubMed]

Gong, Z.

S. Pant, C. Li, Z. Gong, and N. Chen, “Line-scan focal modulation microscopy,” J. Biomed. Opt. 22(5), 050502 (2017).
[Crossref] [PubMed]

Gourdie, R. G.

D. Sedmera, A. Wessels, T. C. Trusk, R. P. Thompson, K. W. Hewett, and R. G. Gourdie, “Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1646–H1652 (2006).
[Crossref] [PubMed]

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hamburger, V.

V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” J. Morphol. 88(1), 49–92 (1951).
[Crossref] [PubMed]

Hamilton, H. L.

V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” J. Morphol. 88(1), 49–92 (1951).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hewett, K. W.

D. Sedmera, A. Wessels, T. C. Trusk, R. P. Thompson, K. W. Hewett, and R. G. Gourdie, “Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1646–H1652 (2006).
[Crossref] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
[Crossref]

Hoffmann, K.

M. Vogt, A. Knüttel, K. Hoffmann, P. Altmeyer, and H. Ermert, “Comparison of high frequency ultrasound and optical coherence tomography as modalities for high resolution and non invasive skin imaging,” Biomed. Tech. (Berl.) 48(5), 116–121 (2003).
[Crossref] [PubMed]

Hu, N.

E. B. Clark and N. Hu, “Developmental hemodynamic changes in the chick embryo from stage 18 to 27,” Circ. Res. 51(6), 810–815 (1982).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huber, R.

Ina, H.

Izatt, J.

Izatt, J. A.

Jamil, M.

Z. Y. Ko, K. Mehta, M. Jamil, C. H. Yap, and N. Chen, “A method to study the hemodynamics of chicken embryo’s aortic arches using optical coherence tomography,” J. Biophotonics 10(3), 353–359 (2017).
[Crossref] [PubMed]

Jeong, H. W.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref] [PubMed]

Jung, U. W.

J. Y. Park, J. H. Chung, J. S. Lee, H. J. Kim, S. H. Choi, and U. W. Jung, “Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: anex vivostudy,” J. Periodontal Implant Sci. 47(1), 30–40 (2017).
[Crossref] [PubMed]

Jung, W.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
[Crossref]

Kampik, A.

Kim, B. M.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref] [PubMed]

Kim, H. J.

J. Y. Park, J. H. Chung, J. S. Lee, H. J. Kim, S. H. Choi, and U. W. Jung, “Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: anex vivostudy,” J. Periodontal Implant Sci. 47(1), 30–40 (2017).
[Crossref] [PubMed]

Klein, T.

Knüttel, A.

M. Vogt, A. Knüttel, K. Hoffmann, P. Altmeyer, and H. Ermert, “Comparison of high frequency ultrasound and optical coherence tomography as modalities for high resolution and non invasive skin imaging,” Biomed. Tech. (Berl.) 48(5), 116–121 (2003).
[Crossref] [PubMed]

Ko, Z. Y.

Z. Y. Ko, K. Mehta, M. Jamil, C. H. Yap, and N. Chen, “A method to study the hemodynamics of chicken embryo’s aortic arches using optical coherence tomography,” J. Biophotonics 10(3), 353–359 (2017).
[Crossref] [PubMed]

Kobayashi, K.

Kobayashi, S.

Kowalczyk, A.

Kramer, T. C.

B. M. Patten, T. C. Kramer, and A. Barry, “Valvular action in the embryonic chick heart by localized apposition of endocardial masses,” Anat. Rec. 102(3), 299–311 (1948).
[Crossref] [PubMed]

Kulkarni, M.

Kumar, A.

Lee, J. S.

J. Y. Park, J. H. Chung, J. S. Lee, H. J. Kim, S. H. Choi, and U. W. Jung, “Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: anex vivostudy,” J. Periodontal Implant Sci. 47(1), 30–40 (2017).
[Crossref] [PubMed]

Lee, S. W.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Li, C.

S. Pant, C. Li, Z. Gong, and N. Chen, “Line-scan focal modulation microscopy,” J. Biomed. Opt. 22(5), 050502 (2017).
[Crossref] [PubMed]

Li, P.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, A.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

Martinsen, B. J.

B. J. Martinsen, “Reference guide to the stages of chick heart embryology,” Dev. Dyn. 233(4), 1217–1237 (2005).
[Crossref] [PubMed]

Mehta, K.

Z. Y. Ko, K. Mehta, M. Jamil, C. H. Yap, and N. Chen, “A method to study the hemodynamics of chicken embryo’s aortic arches using optical coherence tomography,” J. Biophotonics 10(3), 353–359 (2017).
[Crossref] [PubMed]

Metscher, B. D.

B. D. Metscher, “MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions,” Dev. Dyn. 238(3), 632–640 (2009).
[Crossref] [PubMed]

Morel, J. M.

A. Buades, B. Coll, and J. M. Morel, “Denoising image sequences does not require motion estimation,” in IEEE Conference on Advanced Video and Signal Based Surveillance,2005), 70–74.
[Crossref]

Morel, J.-M.

A. Buades, B. Coll, and J.-M. Morel, “Nonlocal Image and Movie Denoising,” Int. J. Comput. Vis. 76(2), 123–139 (2008).
[Crossref]

Neubauer, A.

Oldenburg, A. L.

Ostrowski, L. E.

Pant, S.

S. Pant, C. Li, Z. Gong, and N. Chen, “Line-scan focal modulation microscopy,” J. Biomed. Opt. 22(5), 050502 (2017).
[Crossref] [PubMed]

Park, B.

Park, J. Y.

J. Y. Park, J. H. Chung, J. S. Lee, H. J. Kim, S. H. Choi, and U. W. Jung, “Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: anex vivostudy,” J. Periodontal Implant Sci. 47(1), 30–40 (2017).
[Crossref] [PubMed]

Patten, B. M.

B. M. Patten, T. C. Kramer, and A. Barry, “Valvular action in the embryonic chick heart by localized apposition of endocardial masses,” Anat. Rec. 102(3), 299–311 (1948).
[Crossref] [PubMed]

Perucchio, R.

L. A. Taber and R. Perucchio, “Stress-strain relations in embryonic chick heart,” Am. J. Physiol. Heart Circ. Physiol. 281(1), H463–H466 (2001).
[Crossref] [PubMed]

Pircher, M.

Poelmann, R. E.

A. C. Gittenberger-de Groot, M. M. Bartelings, M. C. Deruiter, and R. E. Poelmann, “Basics of cardiac development for the understanding of congenital heart malformations,” Pediatr. Res. 57(2), 169–176 (2005).
[Crossref] [PubMed]

M. J. Boot, R. P. Steegers-Theunissen, R. E. Poelmann, L. van Iperen, and A. C. Gittenberger-de Groot, “Cardiac outflow tract malformations in chick embryos exposed to homocysteine,” Cardiovasc. Res. 64(2), 365–373 (2004).
[Crossref] [PubMed]

Powell, I.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rasband, W. S.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Reznicek, L.

Richards-Kortum, R.

Rollins, A.

Rollins, A. M.

Rugonyi, S.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

Salas, M.

Sarunic, M.

Schmoll, T.

Schneider, C. A.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sears, P. R.

Sedmera, D.

D. Sedmera, A. Wessels, T. C. Trusk, R. P. Thompson, K. W. Hewett, and R. G. Gourdie, “Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1646–H1652 (2006).
[Crossref] [PubMed]

Shaut, C.

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

Shi, L.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

Sivak, M. V.

Southern, J. F.

G. J. Tearney, M. E. Brezinski, S. A. Boppart, B. E. Bouma, N. Weissman, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, “Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery,” Circulation 94(11), 3013 (1996).
[Crossref] [PubMed]

Steegers-Theunissen, R. P.

M. J. Boot, R. P. Steegers-Theunissen, R. E. Poelmann, L. van Iperen, and A. C. Gittenberger-de Groot, “Cardiac outflow tract malformations in chick embryos exposed to homocysteine,” Cardiovasc. Res. 64(2), 365–373 (2004).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

G. J. Tearney, M. E. Brezinski, S. A. Boppart, B. E. Bouma, N. Weissman, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, “Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery,” Circulation 94(11), 3013 (1996).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Taber, L. A.

L. A. Taber and R. Perucchio, “Stress-strain relations in embryonic chick heart,” Am. J. Physiol. Heart Circ. Physiol. 281(1), H463–H466 (2001).
[Crossref] [PubMed]

Takeda, M.

Tearney, G.

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, S. A. Boppart, B. E. Bouma, N. Weissman, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, “Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery,” Circulation 94(11), 3013 (1996).
[Crossref] [PubMed]

Thompson, R. P.

D. Sedmera, A. Wessels, T. C. Trusk, R. P. Thompson, K. W. Hewett, and R. G. Gourdie, “Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1646–H1652 (2006).
[Crossref] [PubMed]

Thornburg, K.

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

Thornburg, K. L.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

Trusk, T. C.

D. Sedmera, A. Wessels, T. C. Trusk, R. P. Thompson, K. W. Hewett, and R. G. Gourdie, “Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1646–H1652 (2006).
[Crossref] [PubMed]

Ung-Arunyawee, R.

van Iperen, L.

M. J. Boot, R. P. Steegers-Theunissen, R. E. Poelmann, L. van Iperen, and A. C. Gittenberger-de Groot, “Cardiac outflow tract malformations in chick embryos exposed to homocysteine,” Cardiovasc. Res. 64(2), 365–373 (2004).
[Crossref] [PubMed]

Vogt, M.

M. Vogt, A. Knüttel, K. Hoffmann, P. Altmeyer, and H. Ermert, “Comparison of high frequency ultrasound and optical coherence tomography as modalities for high resolution and non invasive skin imaging,” Biomed. Tech. (Berl.) 48(5), 116–121 (2003).
[Crossref] [PubMed]

Wang, R.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

Wang, R. K.

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

Weissman, N.

G. J. Tearney, M. E. Brezinski, S. A. Boppart, B. E. Bouma, N. Weissman, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, “Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery,” Circulation 94(11), 3013 (1996).
[Crossref] [PubMed]

Werkmeister, R. M.

Wessels, A.

D. Sedmera, A. Wessels, T. C. Trusk, R. P. Thompson, K. W. Hewett, and R. G. Gourdie, “Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1646–H1652 (2006).
[Crossref] [PubMed]

Wieser, W.

Wojtkowski, M.

Wong, R. C.

Wurster, L. M.

Yang, C.

Yap, C. H.

Z. Y. Ko, K. Mehta, M. Jamil, C. H. Yap, and N. Chen, “A method to study the hemodynamics of chicken embryo’s aortic arches using optical coherence tomography,” J. Biophotonics 10(3), 353–359 (2017).
[Crossref] [PubMed]

Yazdanfar, S.

Yin, X.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

Yun, S.

Zuluaga, A. F.

Am. J. Physiol. Heart Circ. Physiol. (2)

D. Sedmera, A. Wessels, T. C. Trusk, R. P. Thompson, K. W. Hewett, and R. G. Gourdie, “Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1646–H1652 (2006).
[Crossref] [PubMed]

L. A. Taber and R. Perucchio, “Stress-strain relations in embryonic chick heart,” Am. J. Physiol. Heart Circ. Physiol. 281(1), H463–H466 (2001).
[Crossref] [PubMed]

Anat. Rec. (1)

B. M. Patten, T. C. Kramer, and A. Barry, “Valvular action in the embryonic chick heart by localized apposition of endocardial masses,” Anat. Rec. 102(3), 299–311 (1948).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Biomed. Tech. (Berl.) (1)

M. Vogt, A. Knüttel, K. Hoffmann, P. Altmeyer, and H. Ermert, “Comparison of high frequency ultrasound and optical coherence tomography as modalities for high resolution and non invasive skin imaging,” Biomed. Tech. (Berl.) 48(5), 116–121 (2003).
[Crossref] [PubMed]

Cardiovasc. Res. (1)

M. J. Boot, R. P. Steegers-Theunissen, R. E. Poelmann, L. van Iperen, and A. C. Gittenberger-de Groot, “Cardiac outflow tract malformations in chick embryos exposed to homocysteine,” Cardiovasc. Res. 64(2), 365–373 (2004).
[Crossref] [PubMed]

Circ. Res. (1)

E. B. Clark and N. Hu, “Developmental hemodynamic changes in the chick embryo from stage 18 to 27,” Circ. Res. 51(6), 810–815 (1982).
[Crossref] [PubMed]

Circulation (1)

G. J. Tearney, M. E. Brezinski, S. A. Boppart, B. E. Bouma, N. Weissman, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, “Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery,” Circulation 94(11), 3013 (1996).
[Crossref] [PubMed]

Dev. Dyn. (2)

B. D. Metscher, “MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions,” Dev. Dyn. 238(3), 632–640 (2009).
[Crossref] [PubMed]

B. J. Martinsen, “Reference guide to the stages of chick heart embryology,” Dev. Dyn. 233(4), 1217–1237 (2005).
[Crossref] [PubMed]

Int. J. Comput. Vis. (1)

A. Buades, B. Coll, and J.-M. Morel, “Nonlocal Image and Movie Denoising,” Int. J. Comput. Vis. 76(2), 123–139 (2008).
[Crossref]

J. Biomed. Opt. (2)

S. Pant, C. Li, Z. Gong, and N. Chen, “Line-scan focal modulation microscopy,” J. Biomed. Opt. 22(5), 050502 (2017).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

J. Biophotonics (1)

Z. Y. Ko, K. Mehta, M. Jamil, C. H. Yap, and N. Chen, “A method to study the hemodynamics of chicken embryo’s aortic arches using optical coherence tomography,” J. Biophotonics 10(3), 353–359 (2017).
[Crossref] [PubMed]

J. Korean Phys. Soc. (1)

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref] [PubMed]

J. Morphol. (1)

V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” J. Morphol. 88(1), 49–92 (1951).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Periodontal Implant Sci. (1)

J. Y. Park, J. H. Chung, J. S. Lee, H. J. Kim, S. H. Choi, and U. W. Jung, “Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: anex vivostudy,” J. Periodontal Implant Sci. 47(1), 30–40 (2017).
[Crossref] [PubMed]

Nat. Methods (1)

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1), 43–48 (1995).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Optica (1)

Pediatr. Res. (1)

A. C. Gittenberger-de Groot, M. M. Bartelings, M. C. Deruiter, and R. E. Poelmann, “Basics of cardiac development for the understanding of congenital heart malformations,” Pediatr. Res. 57(2), 169–176 (2005).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref] [PubMed]

PLoS One (1)

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling,” PLoS One 7(7), e40869 (2012).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (4)

J. A. Izatt and M. A. Choma, “Theory of Optical Coherence Tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer Berlin Heidelberg, 2008), pp. 47–72.

A. Buades, B. Coll, and J. M. Morel, “Image denoising by non-local averaging,” Acoustics, Speech, and Signal Processing, IEEE International Conference on, 25–28 (2005).
[Crossref]

A. Buades, B. Coll, and J. M. Morel, “Denoising image sequences does not require motion estimation,” in IEEE Conference on Advanced Video and Signal Based Surveillance,2005), 70–74.
[Crossref]

S. Gu, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “High-speed optical coherence tomography imaging of the beating avian embryonic heart,” Cold Spring Harbor protocols 2011(2), pdb top98 (2011).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1       3D projections of a chicken embryonic heart viewed from different angles.
» Visualization 2       Movie of a beating HH18 chicken embryonic heart within a complete cardiac cycle
» Visualization 3       the beating heart rotating within an angle range of 0-360 degrees (at a 10-degree increment).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the proposed SD-OCT system: (a) side view and (b) top view. The red dotted line illustrates the backscattered beams. BPF: band-pass filter; BS: beam splitter; CMOS: complementary metal-oxide semiconductor; L: achromatic lens; PA: piezo actuator; PL: Powell lens; PBS: polarized beam splitter; RM: reference mirror; SCL: super-continuum laser; λ/2: half wave plate; and λ/4: quarter wave plate. The table inset summarizes the focal lengths of the utilized achromatic lenses. The photo inset shows the chicken embryo and the orientation of the illumination line on the sample (dashed yellow line).
Fig. 2
Fig. 2 (a) Sensitivity roll-off, and (b) axial resolution measured as a function of the imaging depth at a tomographic frame rate of 3.5 kHz. The error bars are based on sample standard deviation of five repeated measurements.
Fig. 3
Fig. 3 Measured line profile using Powell lens (red) and cylindrical lens (blue).
Fig. 4
Fig. 4 Two-dimensional in vivo B-scans of chicken embryonic heart (outflow tract) obtained with (a) standard and (b) differential reconstruction approaches. The images were acquired at a scanning rate of 3,500 Hz. The yellow arrows indicate autocorrelation artifacts.
Fig. 5
Fig. 5 (a) A B-scan acquired at 5,000 Hz. (b) The image in (a) enhanced by averaging over 50 neighboring frames. (c) The image in (a) enhanced by NLM with 50 neighboring frames.
Fig. 6
Fig. 6 (a) Projection of the 3D model of an HH18 chicken embryonic heart along the transverse scanning direction. (b) Endocardium (Endo), cardiac jelly (CJ), compact myocardium (CM), and blood cells identified in the image. (c) Projection of the same 3D model rotated by 30 degrees, (d) Projection of the 3D model rotated by 135 degrees.
Fig. 7
Fig. 7 Montage of a beating HH18 chicken embryonic heart within a complete cardiac cycle. Each panel is a 3D projection of the heart with the corresponding timing information. The 4D imaging data set was acquired at 40 volumes per second.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I D 0 ( k ) = ρ ( k ) S ( k ) [ ( 1 ζ ) 2 ρ ( k ) S ( k ) R R + ζ 2 R S 1 + ζ 2 R S 2 + ... ] + ρ ( k ) S ( k ) ζ ( 1 ζ ) n = 1 N R R R S n cos [ 2 k ( z R z S n ) ] + ρ ( k ) S ( k ) ζ 2 n m = 1 N R R R S n cos [ 2 k ( z S m z S n ) ]
I D π ( k ) = ρ ( k ) S ( k ) [ ( 1 ζ ) 2 ζ 2 R R + ζ 2 R S 1 + ζ 2 R S 2 + ... ] + ρ ( k ) S ( k ) ζ ( 1 ζ ) n = 1 N R R R S n cos [ 2 k ( z R z S n ) + π ] , + ρ ( k ) S ( k ) ζ 2 n m = 1 N R R R S n cos [ 2 k ( z S m z S n ) ]
I D d i f ( k ) = 2 ρ ( k ) S ( k ) ζ ( 1 ζ ) n = 1 N R R R S cos [ 2 k ( z R z S n ) ]
N L M u ( x , y , k ) = 1 C i = k M k + M x x + d x ' y y + d y ' e [ u ( x , y , k ) u ( x ' , y ' , i ) ] 2 σ k 2 e ( x x ' ) 2 + ( y y ' ) 2 X 2 u ( x ' , y ' , i )

Metrics