Abstract

Tissue-mimicking phantoms are widely used for the calibration, evaluation and standardisation of medical imaging systems, and for clinical training. For photoacoustic imaging, tissue-mimicking materials (TMMs) that have tuneable optical and acoustic properties, high stability, and mechanical robustness are highly desired. In this study, gel wax is introduced as a TMM that satisfies these criteria for developing photoacoustic imaging phantoms. The reduced scattering and optical absorption coefficients were independently tuned with the addition of TiO2 and oil-based inks. The frequency-dependent acoustic attenuation obeyed a power law; for native gel wax, it varied from 0.71 dB/cm at 3 MHz to 9.93 dB/cm at 12 MHz. The chosen oil-based inks, which have different optical absorption spectra in the range of 400 to 900 nm, were found to have good photostability under pulsed illumination with photoacoustic excitation light. Optically heterogeneous phantoms that comprised of inclusions with different concentrations of carbon black and coloured inks were fabricated, and multispectral photoacoustic imaging was performed with an optical parametric oscillator and a planar Fabry-Pérot sensor. We conclude that gel wax is well suited as a TMM for multispectral photoacoustic imaging.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging

Jason R. Cook, Richard R. Bouchard, and Stanislav Y. Emelianov
Biomed. Opt. Express 2(11) 3193-3206 (2011)

Integrated photoacoustic, ultrasound and fluorescence platform for diagnostic medical imaging-proof of concept study with a tissue mimicking phantom

Joseph James, Vadakke Matham Murukeshan, and Lye Sun Woh
Biomed. Opt. Express 5(7) 2135-2144 (2014)

Multispectral quantitative photoacoustic imaging of osteoarthritis in finger joints

Jiaying Xiao and Jishan He
Appl. Opt. 49(30) 5721-5727 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. Beard, “Biomedical Photoacoustic Imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref]
  2. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  3. V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
    [Crossref] [PubMed]
  4. Y. Cao, A. Kole, L. Lan, P. Wang, J. Hui, M. Sturek, and J.-X. Cheng, “Spectral analysis assisted photoacoustic imaging for lipid composition differentiation,” Photoacoustics 7, 12–19 (2017).
    [Crossref] [PubMed]
  5. M.A.L. Bell, A.K. Ostrowski, K. Li, P. Kazanzides, and E.M. Boctor, “Localization of transcranial targets for photoacoustic-guided endonasal surgeries,” Photoacoustics 3(2), 78–87 (2015).
    [Crossref]
  6. J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express 2(11), 3193–3206 (2011).
    [Crossref] [PubMed]
  7. E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
    [Crossref] [PubMed]
  8. P. Lai, X. Xu, and L.V. Wang, “Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time,” J. Biomed. Opt. 19(3), 035002 (2014).
    [Crossref]
  9. J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34(34), 8038–8047 (1995).
    [Crossref] [PubMed]
  10. M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955–961 (1995).
    [Crossref] [PubMed]
  11. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
    [Crossref] [PubMed]
  12. M. M. Jalili, S. Y. Mousavi, and A. S. Pirayeshfar, “Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites,” Polym. Compos. 35(11), 2103–2111 (2014).
    [Crossref]
  13. K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
    [Crossref] [PubMed]
  14. J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
    [Crossref] [PubMed]
  15. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
    [Crossref] [PubMed]
  16. K. J. M. Surry, H. J. B. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol. 49(24), 5529–5546 (2004).
    [Crossref]
  17. A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
    [Crossref] [PubMed]
  18. S. Manohar, A. Kharine, J.C.G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
    [Crossref] [PubMed]
  19. W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
    [Crossref] [PubMed]
  20. D. Razansky, J. Baeten, and V. Ntziachristos, “Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT),” Med. Phys,  36(3), 939–945 (2009).
    [Crossref] [PubMed]
  21. P.D. Kumavor, C. Xu, A. Aguirre, J. Gamelin, Y. Ardeshirpour, B. Tavakoli, S. Zanganeh, U. Alqasemi, Y. Yang, and Q. Zhu, “Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system,” J. Biomed. Opt. 16(4), 046010 (2011).
    [Crossref] [PubMed]
  22. G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
    [Crossref] [PubMed]
  23. S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS one 8(9), e75533 (2013).
    [Crossref] [PubMed]
  24. W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
    [Crossref] [PubMed]
  25. M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
    [Crossref] [PubMed]
  26. T. D. Mast, “Empirical relationships between acoustic parameters in human soft tissues,” Acoust. Res. Lett. Online 1, 37–42 (2000).
    [Crossref]
  27. S. L. Vieira, T. Z. Pavan, J. E. Junior, and A. A. O. Carneiro, “Paraffin-gel tissue-mimicking material for ultrasound-guided needle biopsy phantom,” Ultrasound Med. Biol. 39(12), 2477–2484 (2013).
    [Crossref] [PubMed]
  28. J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
    [Crossref] [PubMed]
  29. L. C. Cabrelli, P. I. B. G. B. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
    [Crossref]
  30. R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
    [Crossref] [PubMed]
  31. E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, L. Cheng, and R. X. Xu, “Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging,” J. Biomed. Opt. 20(12), 121311 (2015).
    [Crossref] [PubMed]
  32. E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
    [Crossref]
  33. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32(4), 559 (1993).
    [Crossref] [PubMed]
  34. N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
    [Crossref]
  35. J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” IEEE J. Sel. Top. Quantum Electron. 16(3), 600–607 (2010).
    [Crossref]
  36. T. Stahl, T. Allen, and P. Beard, “Characterization of the thermalisation efficiency and photostability of photoacoustic contrast agents,” Proc. SPIE 8943, 89435H (2014).
    [Crossref]
  37. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Pérot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  38. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
    [Crossref] [PubMed]
  39. F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic, 2013).
  40. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  41. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
    [Crossref] [PubMed]
  42. S. Tzoumas, N. Deliolanis, S. Morscher, and V. Ntziachristos, “Un-mixing molecular agents from absorbing tissue in multispectral optoacoustic tomography,” IEEE Trans. Med. Imaging 33(1), 48–60 (2013).
    [Crossref] [PubMed]
  43. D. I. Nikitichev, A. Barburas, K. McPherson, J.-M. Mari, S. J. West, and A. E. Desjardins, “Construction of 3-Dimensional Printed Ultrasound Phantoms With Wall-less Vessels,” J. Ultrasound Med. 35(6), 1333–1339 (2016).
    [Crossref] [PubMed]
  44. S. J. West, J.-M. Mari, A. Khan, J. H. Y. Wan, W. Zhu, I. G. Koutsakos, M. Rowe, D. Kamming, and A. E. Desjardins, “Development of an ultrasound phantom for spinal injections with 3-dimensional printing,” Reg. Anesth. Pain. Med. 39(5), 429–433 (2014).
    [Crossref] [PubMed]
  45. R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
  46. K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36(5), 597–599 (2011).
    [Crossref] [PubMed]
  47. W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 86005 (2015).
    [Crossref] [PubMed]
  48. J. M. Mari, W. Xia, S. J. West, and A. E. Desjardins, “Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study,” J. Biomed. Opt. 20(11), 110503 (2015).
    [Crossref] [PubMed]

2018 (1)

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

2017 (2)

L. C. Cabrelli, P. I. B. G. B. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref]

Y. Cao, A. Kole, L. Lan, P. Wang, J. Hui, M. Sturek, and J.-X. Cheng, “Spectral analysis assisted photoacoustic imaging for lipid composition differentiation,” Photoacoustics 7, 12–19 (2017).
[Crossref] [PubMed]

2016 (3)

D. I. Nikitichev, A. Barburas, K. McPherson, J.-M. Mari, S. J. West, and A. E. Desjardins, “Construction of 3-Dimensional Printed Ultrasound Phantoms With Wall-less Vessels,” J. Ultrasound Med. 35(6), 1333–1339 (2016).
[Crossref] [PubMed]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref] [PubMed]

2015 (4)

E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, L. Cheng, and R. X. Xu, “Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging,” J. Biomed. Opt. 20(12), 121311 (2015).
[Crossref] [PubMed]

M.A.L. Bell, A.K. Ostrowski, K. Li, P. Kazanzides, and E.M. Boctor, “Localization of transcranial targets for photoacoustic-guided endonasal surgeries,” Photoacoustics 3(2), 78–87 (2015).
[Crossref]

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 86005 (2015).
[Crossref] [PubMed]

J. M. Mari, W. Xia, S. J. West, and A. E. Desjardins, “Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study,” J. Biomed. Opt. 20(11), 110503 (2015).
[Crossref] [PubMed]

2014 (4)

P. Lai, X. Xu, and L.V. Wang, “Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time,” J. Biomed. Opt. 19(3), 035002 (2014).
[Crossref]

T. Stahl, T. Allen, and P. Beard, “Characterization of the thermalisation efficiency and photostability of photoacoustic contrast agents,” Proc. SPIE 8943, 89435H (2014).
[Crossref]

S. J. West, J.-M. Mari, A. Khan, J. H. Y. Wan, W. Zhu, I. G. Koutsakos, M. Rowe, D. Kamming, and A. E. Desjardins, “Development of an ultrasound phantom for spinal injections with 3-dimensional printing,” Reg. Anesth. Pain. Med. 39(5), 429–433 (2014).
[Crossref] [PubMed]

M. M. Jalili, S. Y. Mousavi, and A. S. Pirayeshfar, “Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites,” Polym. Compos. 35(11), 2103–2111 (2014).
[Crossref]

2013 (4)

S. L. Vieira, T. Z. Pavan, J. E. Junior, and A. A. O. Carneiro, “Paraffin-gel tissue-mimicking material for ultrasound-guided needle biopsy phantom,” Ultrasound Med. Biol. 39(12), 2477–2484 (2013).
[Crossref] [PubMed]

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS one 8(9), e75533 (2013).
[Crossref] [PubMed]

S. Tzoumas, N. Deliolanis, S. Morscher, and V. Ntziachristos, “Un-mixing molecular agents from absorbing tissue in multispectral optoacoustic tomography,” IEEE Trans. Med. Imaging 33(1), 48–60 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (2)

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

2011 (5)

P. Beard, “Biomedical Photoacoustic Imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

P.D. Kumavor, C. Xu, A. Aguirre, J. Gamelin, Y. Ardeshirpour, B. Tavakoli, S. Zanganeh, U. Alqasemi, Y. Yang, and Q. Zhu, “Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system,” J. Biomed. Opt. 16(4), 046010 (2011).
[Crossref] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36(5), 597–599 (2011).
[Crossref] [PubMed]

J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express 2(11), 3193–3206 (2011).
[Crossref] [PubMed]

2010 (5)

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref] [PubMed]

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” IEEE J. Sel. Top. Quantum Electron. 16(3), 600–607 (2010).
[Crossref]

2009 (2)

D. Razansky, J. Baeten, and V. Ntziachristos, “Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT),” Med. Phys,  36(3), 939–945 (2009).
[Crossref] [PubMed]

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

2008 (2)

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Pérot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

2007 (1)

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

2006 (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

2005 (2)

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref] [PubMed]

2004 (2)

S. Manohar, A. Kharine, J.C.G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[Crossref] [PubMed]

K. J. M. Surry, H. J. B. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol. 49(24), 5529–5546 (2004).
[Crossref]

2003 (2)

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref] [PubMed]

J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
[Crossref] [PubMed]

2000 (1)

T. D. Mast, “Empirical relationships between acoustic parameters in human soft tissues,” Acoust. Res. Lett. Online 1, 37–42 (2000).
[Crossref]

1995 (2)

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955–961 (1995).
[Crossref] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34(34), 8038–8047 (1995).
[Crossref] [PubMed]

1993 (2)

S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32(4), 559 (1993).
[Crossref] [PubMed]

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

Aguirre, A.

P.D. Kumavor, C. Xu, A. Aguirre, J. Gamelin, Y. Ardeshirpour, B. Tavakoli, S. Zanganeh, U. Alqasemi, Y. Yang, and Q. Zhu, “Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system,” J. Biomed. Opt. 16(4), 046010 (2011).
[Crossref] [PubMed]

Allen, T.

T. Stahl, T. Allen, and P. Beard, “Characterization of the thermalisation efficiency and photostability of photoacoustic contrast agents,” Proc. SPIE 8943, 89435H (2014).
[Crossref]

Alqasemi, U.

P.D. Kumavor, C. Xu, A. Aguirre, J. Gamelin, Y. Ardeshirpour, B. Tavakoli, S. Zanganeh, U. Alqasemi, Y. Yang, and Q. Zhu, “Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system,” J. Biomed. Opt. 16(4), 046010 (2011).
[Crossref] [PubMed]

Ardeshirpour, Y.

P.D. Kumavor, C. Xu, A. Aguirre, J. Gamelin, Y. Ardeshirpour, B. Tavakoli, S. Zanganeh, U. Alqasemi, Y. Yang, and Q. Zhu, “Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system,” J. Biomed. Opt. 16(4), 046010 (2011).
[Crossref] [PubMed]

Arridge, S. R.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

Austin, H. J. B.

K. J. M. Surry, H. J. B. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol. 49(24), 5529–5546 (2004).
[Crossref]

Baeten, J.

D. Razansky, J. Baeten, and V. Ntziachristos, “Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT),” Med. Phys,  36(3), 939–945 (2009).
[Crossref] [PubMed]

Barburas, A.

D. I. Nikitichev, A. Barburas, K. McPherson, J.-M. Mari, S. J. West, and A. E. Desjardins, “Construction of 3-Dimensional Printed Ultrasound Phantoms With Wall-less Vessels,” J. Ultrasound Med. 35(6), 1333–1339 (2016).
[Crossref] [PubMed]

Bastard, C.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

Beard, P.

T. Stahl, T. Allen, and P. Beard, “Characterization of the thermalisation efficiency and photostability of photoacoustic contrast agents,” Proc. SPIE 8943, 89435H (2014).
[Crossref]

P. Beard, “Biomedical Photoacoustic Imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” IEEE J. Sel. Top. Quantum Electron. 16(3), 600–607 (2010).
[Crossref]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Pérot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

Beard, P. C.

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref] [PubMed]

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 86005 (2015).
[Crossref] [PubMed]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

Bell, M.A.L.

M.A.L. Bell, A.K. Ostrowski, K. Li, P. Kazanzides, and E.M. Boctor, “Localization of transcranial targets for photoacoustic-guided endonasal surgeries,” Photoacoustics 3(2), 78–87 (2015).
[Crossref]

Bilaniuk, N.

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

Boctor, E.M.

M.A.L. Bell, A.K. Ostrowski, K. Li, P. Kazanzides, and E.M. Boctor, “Localization of transcranial targets for photoacoustic-guided endonasal surgeries,” Photoacoustics 3(2), 78–87 (2015).
[Crossref]

Bodapati, S.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS one 8(9), e75533 (2013).
[Crossref] [PubMed]

Bohndiek, S. E.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS one 8(9), e75533 (2013).
[Crossref] [PubMed]

Bolt, R. A.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref] [PubMed]

Bouchard, R. R.

Bremmer, R. H.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref] [PubMed]

Browne, J. E.

J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
[Crossref] [PubMed]

Burriesci, G.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

Cabrelli, L. C.

L. C. Cabrelli, P. I. B. G. B. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref]

Cao, Y.

Y. Cao, A. Kole, L. Lan, P. Wang, J. Hui, M. Sturek, and J.-X. Cheng, “Spectral analysis assisted photoacoustic imaging for lipid composition differentiation,” Photoacoustics 7, 12–19 (2017).
[Crossref] [PubMed]

Capelli, C.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

Carneiro, A. A. O.

L. C. Cabrelli, P. I. B. G. B. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref]

S. L. Vieira, T. Z. Pavan, J. E. Junior, and A. A. O. Carneiro, “Paraffin-gel tissue-mimicking material for ultrasound-guided needle biopsy phantom,” Ultrasound Med. Biol. 39(12), 2477–2484 (2013).
[Crossref] [PubMed]

Cheng, J.-X.

Y. Cao, A. Kole, L. Lan, P. Wang, J. Hui, M. Sturek, and J.-X. Cheng, “Spectral analysis assisted photoacoustic imaging for lipid composition differentiation,” Photoacoustics 7, 12–19 (2017).
[Crossref] [PubMed]

Cheng, L.

E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, L. Cheng, and R. X. Xu, “Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging,” J. Biomed. Opt. 20(12), 121311 (2015).
[Crossref] [PubMed]

Cook, J. R.

Cox, B.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

Cox, B. T.

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Daher, B.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

David, A. L.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 86005 (2015).
[Crossref] [PubMed]

de Bruin, D. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref] [PubMed]

de Kinkelder, R.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref] [PubMed]

de Mul, F. F. M.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref] [PubMed]

Deana, A. M.

L. C. Cabrelli, P. I. B. G. B. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref]

Deliolanis, N.

S. Tzoumas, N. Deliolanis, S. Morscher, and V. Ntziachristos, “Un-mixing molecular agents from absorbing tissue in multispectral optoacoustic tomography,” IEEE Trans. Med. Imaging 33(1), 48–60 (2013).
[Crossref] [PubMed]

Delpy, D. T.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955–961 (1995).
[Crossref] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34(34), 8038–8047 (1995).
[Crossref] [PubMed]

Desjardins, A. E.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

D. I. Nikitichev, A. Barburas, K. McPherson, J.-M. Mari, S. J. West, and A. E. Desjardins, “Construction of 3-Dimensional Printed Ultrasound Phantoms With Wall-less Vessels,” J. Ultrasound Med. 35(6), 1333–1339 (2016).
[Crossref] [PubMed]

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 86005 (2015).
[Crossref] [PubMed]

J. M. Mari, W. Xia, S. J. West, and A. E. Desjardins, “Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study,” J. Biomed. Opt. 20(11), 110503 (2015).
[Crossref] [PubMed]

S. J. West, J.-M. Mari, A. Khan, J. H. Y. Wan, W. Zhu, I. G. Koutsakos, M. Rowe, D. Kamming, and A. E. Desjardins, “Development of an ultrasound phantom for spinal injections with 3-dimensional printing,” Reg. Anesth. Pain. Med. 39(5), 429–433 (2014).
[Crossref] [PubMed]

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).

Dong, E.

E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, L. Cheng, and R. X. Xu, “Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging,” J. Biomed. Opt. 20(12), 121311 (2015).
[Crossref] [PubMed]

Duck, F. A.

F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic, 2013).

El-Dahdah, H.

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

Emelianov, S. Y.

Ewing, J.

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

Faber, D. J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref] [PubMed]

Fenster, A.

K. J. M. Surry, H. J. B. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol. 49(24), 5529–5546 (2004).
[Crossref]

Finlay, M.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

Firbank, M.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955–961 (1995).
[Crossref] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34(34), 8038–8047 (1995).
[Crossref] [PubMed]

Fonseca, M.

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref] [PubMed]

Frank, G. R.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref] [PubMed]

Gambhir, S. S.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS one 8(9), e75533 (2013).
[Crossref] [PubMed]

Gamelin, J.

P.D. Kumavor, C. Xu, A. Aguirre, J. Gamelin, Y. Ardeshirpour, B. Tavakoli, S. Zanganeh, U. Alqasemi, Y. Yang, and Q. Zhu, “Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system,” J. Biomed. Opt. 16(4), 046010 (2011).
[Crossref] [PubMed]

Garra, B. S.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

Haisch, C.

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

Hall, D. J.

Hebden, J. C.

Heijblom, M.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

Hendriks, B. H. W.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).

Hobson, M. A.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref] [PubMed]

Hoskins, P. R.

J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
[Crossref] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Hui, J.

Y. Cao, A. Kole, L. Lan, P. Wang, J. Hui, M. Sturek, and J.-X. Cheng, “Spectral analysis assisted photoacoustic imaging for lipid composition differentiation,” Photoacoustics 7, 12–19 (2017).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jalili, M. M.

M. M. Jalili, S. Y. Mousavi, and A. S. Pirayeshfar, “Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites,” Polym. Compos. 35(11), 2103–2111 (2014).
[Crossref]

Jansen, K.

Jia, C.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

Joshua Pfefer, T.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

Junior, J. E.

S. L. Vieira, T. Z. Pavan, J. E. Junior, and A. A. O. Carneiro, “Paraffin-gel tissue-mimicking material for ultrasound-guided needle biopsy phantom,” Ultrasound Med. Biol. 39(12), 2477–2484 (2013).
[Crossref] [PubMed]

Kamming, D.

S. J. West, J.-M. Mari, A. Khan, J. H. Y. Wan, W. Zhu, I. G. Koutsakos, M. Rowe, D. Kamming, and A. E. Desjardins, “Development of an ultrasound phantom for spinal injections with 3-dimensional printing,” Reg. Anesth. Pain. Med. 39(5), 429–433 (2014).
[Crossref] [PubMed]

Kazanzides, P.

M.A.L. Bell, A.K. Ostrowski, K. Li, P. Kazanzides, and E.M. Boctor, “Localization of transcranial targets for photoacoustic-guided endonasal surgeries,” Photoacoustics 3(2), 78–87 (2015).
[Crossref]

Khan, A.

S. J. West, J.-M. Mari, A. Khan, J. H. Y. Wan, W. Zhu, I. G. Koutsakos, M. Rowe, D. Kamming, and A. E. Desjardins, “Development of an ultrasound phantom for spinal injections with 3-dimensional printing,” Reg. Anesth. Pain. Med. 39(5), 429–433 (2014).
[Crossref] [PubMed]

Kharine, A.

S. Manohar, A. Kharine, J.C.G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[Crossref] [PubMed]

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref] [PubMed]

Kodach, V. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref] [PubMed]

Kole, A.

Y. Cao, A. Kole, L. Lan, P. Wang, J. Hui, M. Sturek, and J.-X. Cheng, “Spectral analysis assisted photoacoustic imaging for lipid composition differentiation,” Photoacoustics 7, 12–19 (2017).
[Crossref] [PubMed]

Kolkman, R. G. M.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref] [PubMed]

Kothapalli, S. R.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS one 8(9), e75533 (2013).
[Crossref] [PubMed]

Koutsakos, I. G.

S. J. West, J.-M. Mari, A. Khan, J. H. Y. Wan, W. Zhu, I. G. Koutsakos, M. Rowe, D. Kamming, and A. E. Desjardins, “Development of an ultrasound phantom for spinal injections with 3-dimensional printing,” Reg. Anesth. Pain. Med. 39(5), 429–433 (2014).
[Crossref] [PubMed]

Kumavor, P.D.

P.D. Kumavor, C. Xu, A. Aguirre, J. Gamelin, Y. Ardeshirpour, B. Tavakoli, S. Zanganeh, U. Alqasemi, Y. Yang, and Q. Zhu, “Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system,” J. Biomed. Opt. 16(4), 046010 (2011).
[Crossref] [PubMed]

Lai, P.

P. Lai, X. Xu, and L.V. Wang, “Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time,” J. Biomed. Opt. 19(3), 035002 (2014).
[Crossref]

Lan, L.

Y. Cao, A. Kole, L. Lan, P. Wang, J. Hui, M. Sturek, and J.-X. Cheng, “Spectral analysis assisted photoacoustic imaging for lipid composition differentiation,” Photoacoustics 7, 12–19 (2017).
[Crossref] [PubMed]

Laufer, J.

J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” IEEE J. Sel. Top. Quantum Electron. 16(3), 600–607 (2010).
[Crossref]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Pérot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

Laufer, J. G.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

Li, K.

M.A.L. Bell, A.K. Ostrowski, K. Li, P. Kazanzides, and E.M. Boctor, “Localization of transcranial targets for photoacoustic-guided endonasal surgeries,” Photoacoustics 3(2), 78–87 (2015).
[Crossref]

Li, S.

E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, L. Cheng, and R. X. Xu, “Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging,” J. Biomed. Opt. 20(12), 121311 (2015).
[Crossref] [PubMed]

Madsen, E. L.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref] [PubMed]

Maneas, E.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

Manimaran, M.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

Manohar, S.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

S. Manohar, A. Kharine, J.C.G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[Crossref] [PubMed]

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref] [PubMed]

Mari, J. M.

J. M. Mari, W. Xia, S. J. West, and A. E. Desjardins, “Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study,” J. Biomed. Opt. 20(11), 110503 (2015).
[Crossref] [PubMed]

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 86005 (2015).
[Crossref] [PubMed]

Mari, J.-M.

D. I. Nikitichev, A. Barburas, K. McPherson, J.-M. Mari, S. J. West, and A. E. Desjardins, “Construction of 3-Dimensional Printed Ultrasound Phantoms With Wall-less Vessels,” J. Ultrasound Med. 35(6), 1333–1339 (2016).
[Crossref] [PubMed]

S. J. West, J.-M. Mari, A. Khan, J. H. Y. Wan, W. Zhu, I. G. Koutsakos, M. Rowe, D. Kamming, and A. E. Desjardins, “Development of an ultrasound phantom for spinal injections with 3-dimensional printing,” Reg. Anesth. Pain. Med. 39(5), 429–433 (2014).
[Crossref] [PubMed]

Mast, T. D.

T. D. Mast, “Empirical relationships between acoustic parameters in human soft tissues,” Acoust. Res. Lett. Online 1, 37–42 (2000).
[Crossref]

McPherson, K.

D. I. Nikitichev, A. Barburas, K. McPherson, J.-M. Mari, S. J. West, and A. E. Desjardins, “Construction of 3-Dimensional Printed Ultrasound Phantoms With Wall-less Vessels,” J. Ultrasound Med. 35(6), 1333–1339 (2016).
[Crossref] [PubMed]

Miette, V.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

Morscher, S.

S. Tzoumas, N. Deliolanis, S. Morscher, and V. Ntziachristos, “Un-mixing molecular agents from absorbing tissue in multispectral optoacoustic tomography,” IEEE Trans. Med. Imaging 33(1), 48–60 (2013).
[Crossref] [PubMed]

Mousavi, S. Y.

M. M. Jalili, S. Y. Mousavi, and A. S. Pirayeshfar, “Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites,” Polym. Compos. 35(11), 2103–2111 (2014).
[Crossref]

Nachabé, R.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).

Niessner, R.

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

Nikitichev, D. I.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

D. I. Nikitichev, A. Barburas, K. McPherson, J.-M. Mari, S. J. West, and A. E. Desjardins, “Construction of 3-Dimensional Printed Ultrasound Phantoms With Wall-less Vessels,” J. Ultrasound Med. 35(6), 1333–1339 (2016).
[Crossref] [PubMed]

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 86005 (2015).
[Crossref] [PubMed]

Ntziachristos, V.

S. Tzoumas, N. Deliolanis, S. Morscher, and V. Ntziachristos, “Un-mixing molecular agents from absorbing tissue in multispectral optoacoustic tomography,” IEEE Trans. Med. Imaging 33(1), 48–60 (2013).
[Crossref] [PubMed]

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref] [PubMed]

D. Razansky, J. Baeten, and V. Ntziachristos, “Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT),” Med. Phys,  36(3), 939–945 (2009).
[Crossref] [PubMed]

Oda, M.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955–961 (1995).
[Crossref] [PubMed]

Oosterhuis, J. W.

Oraevsky, A. A.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Ostrowski, A.K.

M.A.L. Bell, A.K. Ostrowski, K. Li, P. Kazanzides, and E.M. Boctor, “Localization of transcranial targets for photoacoustic-guided endonasal surgeries,” Photoacoustics 3(2), 78–87 (2015).
[Crossref]

Oudry, J.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

Ourselin, S.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 86005 (2015).
[Crossref] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Pavan, T. Z.

L. C. Cabrelli, P. I. B. G. B. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref]

S. L. Vieira, T. Z. Pavan, J. E. Junior, and A. A. O. Carneiro, “Paraffin-gel tissue-mimicking material for ultrasound-guided needle biopsy phantom,” Ultrasound Med. Biol. 39(12), 2477–2484 (2013).
[Crossref] [PubMed]

Pelissari, P. I. B. G. B.

L. C. Cabrelli, P. I. B. G. B. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref]

Peters, T. M.

K. J. M. Surry, H. J. B. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol. 49(24), 5529–5546 (2004).
[Crossref]

Piras, D.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

Pirayeshfar, A. S.

M. M. Jalili, S. Y. Mousavi, and A. S. Pirayeshfar, “Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites,” Polym. Compos. 35(11), 2103–2111 (2014).
[Crossref]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Povoski, S. P.

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

Prahl, S. A.

Pratt, R.

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 86005 (2015).
[Crossref] [PubMed]

Rahmani, B.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

Ramnarine, K. V.

J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
[Crossref] [PubMed]

Razansky, D.

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref] [PubMed]

D. Razansky, J. Baeten, and V. Ntziachristos, “Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT),” Med. Phys,  36(3), 939–945 (2009).
[Crossref] [PubMed]

Rowe, M.

S. J. West, J.-M. Mari, A. Khan, J. H. Y. Wan, W. Zhu, I. G. Koutsakos, M. Rowe, D. Kamming, and A. E. Desjardins, “Development of an ultrasound phantom for spinal injections with 3-dimensional printing,” Reg. Anesth. Pain. Med. 39(5), 429–433 (2014).
[Crossref] [PubMed]

Sandrin, L.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

Schievano, S.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

Seeton, R.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref] [PubMed]

Shao, P.

E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, L. Cheng, and R. X. Xu, “Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging,” J. Biomed. Opt. 20(12), 121311 (2015).
[Crossref] [PubMed]

Shi, H.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref] [PubMed]

Sperl, J. I.

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

Spirou, G. M.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Stahl, T.

T. Stahl, T. Allen, and P. Beard, “Characterization of the thermalisation efficiency and photostability of photoacoustic contrast agents,” Proc. SPIE 8943, 89435H (2014).
[Crossref]

Steenbergen, W.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

S. Manohar, A. Kharine, J.C.G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[Crossref] [PubMed]

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).

Sturek, M.

Y. Cao, A. Kole, L. Lan, P. Wang, J. Hui, M. Sturek, and J.-X. Cheng, “Spectral analysis assisted photoacoustic imaging for lipid composition differentiation,” Photoacoustics 7, 12–19 (2017).
[Crossref] [PubMed]

Surry, K. J. M.

K. J. M. Surry, H. J. B. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol. 49(24), 5529–5546 (2004).
[Crossref]

Tavakoli, B.

P.D. Kumavor, C. Xu, A. Aguirre, J. Gamelin, Y. Ardeshirpour, B. Tavakoli, S. Zanganeh, U. Alqasemi, Y. Yang, and Q. Zhu, “Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system,” J. Biomed. Opt. 16(4), 046010 (2011).
[Crossref] [PubMed]

Treeby, B. E.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Tzoumas, S.

S. Tzoumas, N. Deliolanis, S. Morscher, and V. Ntziachristos, “Un-mixing molecular agents from absorbing tissue in multispectral optoacoustic tomography,” IEEE Trans. Med. Imaging 33(1), 48–60 (2013).
[Crossref] [PubMed]

van Beusekom, H. M. M.

Van De Sompel, D.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS one 8(9), e75533 (2013).
[Crossref] [PubMed]

van der Mark, M. B.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).

van der Steen, A. F. W.

van der Voort, M.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).

van Gemert, M. J. C.

van Hespen, J.C.G.

S. Manohar, A. Kharine, J.C.G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[Crossref] [PubMed]

van Leeuwen, T. G.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref] [PubMed]

S. Manohar, A. Kharine, J.C.G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[Crossref] [PubMed]

van Marle, J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref] [PubMed]

van Soest, G.

Varghese, T.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref] [PubMed]

Vercauteren, T.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

Vieira, S. L.

S. L. Vieira, T. Z. Pavan, J. E. Junior, and A. A. O. Carneiro, “Paraffin-gel tissue-mimicking material for ultrasound-guided needle biopsy phantom,” Ultrasound Med. Biol. 39(12), 2477–2484 (2013).
[Crossref] [PubMed]

Vitkin, I. A.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Vogel, M. W.

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

Vogt, W. C.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

Wan, J. H. Y.

S. J. West, J.-M. Mari, A. Khan, J. H. Y. Wan, W. Zhu, I. G. Koutsakos, M. Rowe, D. Kamming, and A. E. Desjardins, “Development of an ultrasound phantom for spinal injections with 3-dimensional printing,” Reg. Anesth. Pain. Med. 39(5), 429–433 (2014).
[Crossref] [PubMed]

Wang, B.

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Wang, L.V.

P. Lai, X. Xu, and L.V. Wang, “Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time,” J. Biomed. Opt. 19(3), 035002 (2014).
[Crossref]

Wang, M.

E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, L. Cheng, and R. X. Xu, “Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging,” J. Biomed. Opt. 20(12), 121311 (2015).
[Crossref] [PubMed]

Wang, P.

Y. Cao, A. Kole, L. Lan, P. Wang, J. Hui, M. Sturek, and J.-X. Cheng, “Spectral analysis assisted photoacoustic imaging for lipid composition differentiation,” Photoacoustics 7, 12–19 (2017).
[Crossref] [PubMed]

Watson, A. J.

J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
[Crossref] [PubMed]

Wear, K. A.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

Welch, A. J.

West, S. J.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

D. I. Nikitichev, A. Barburas, K. McPherson, J.-M. Mari, S. J. West, and A. E. Desjardins, “Construction of 3-Dimensional Printed Ultrasound Phantoms With Wall-less Vessels,” J. Ultrasound Med. 35(6), 1333–1339 (2016).
[Crossref] [PubMed]

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 86005 (2015).
[Crossref] [PubMed]

J. M. Mari, W. Xia, S. J. West, and A. E. Desjardins, “Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study,” J. Biomed. Opt. 20(11), 110503 (2015).
[Crossref] [PubMed]

S. J. West, J.-M. Mari, A. Khan, J. H. Y. Wan, W. Zhu, I. G. Koutsakos, M. Rowe, D. Kamming, and A. E. Desjardins, “Development of an ultrasound phantom for spinal injections with 3-dimensional printing,” Reg. Anesth. Pain. Med. 39(5), 429–433 (2014).
[Crossref] [PubMed]

Whelan, W. M.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Willinger, R.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

Wong, G. S. K.

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

Wong, R. Y. J.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

Xia, W.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

J. M. Mari, W. Xia, S. J. West, and A. E. Desjardins, “Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study,” J. Biomed. Opt. 20(11), 110503 (2015).
[Crossref] [PubMed]

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 86005 (2015).
[Crossref] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

Xie, Y.

E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, L. Cheng, and R. X. Xu, “Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging,” J. Biomed. Opt. 20(12), 121311 (2015).
[Crossref] [PubMed]

Xu, C.

P.D. Kumavor, C. Xu, A. Aguirre, J. Gamelin, Y. Ardeshirpour, B. Tavakoli, S. Zanganeh, U. Alqasemi, Y. Yang, and Q. Zhu, “Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system,” J. Biomed. Opt. 16(4), 046010 (2011).
[Crossref] [PubMed]

Xu, R. X.

E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, L. Cheng, and R. X. Xu, “Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging,” J. Biomed. Opt. 20(12), 121311 (2015).
[Crossref] [PubMed]

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

Xu, X.

P. Lai, X. Xu, and L.V. Wang, “Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time,” J. Biomed. Opt. 19(3), 035002 (2014).
[Crossref]

Yang, Y.

P.D. Kumavor, C. Xu, A. Aguirre, J. Gamelin, Y. Ardeshirpour, B. Tavakoli, S. Zanganeh, U. Alqasemi, Y. Yang, and Q. Zhu, “Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system,” J. Biomed. Opt. 16(4), 046010 (2011).
[Crossref] [PubMed]

Zanganeh, S.

P.D. Kumavor, C. Xu, A. Aguirre, J. Gamelin, Y. Ardeshirpour, B. Tavakoli, S. Zanganeh, U. Alqasemi, Y. Yang, and Q. Zhu, “Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system,” J. Biomed. Opt. 16(4), 046010 (2011).
[Crossref] [PubMed]

Zell, K.

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

Zeqiri, B.

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref] [PubMed]

Zhang, E.

J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” IEEE J. Sel. Top. Quantum Electron. 16(3), 600–607 (2010).
[Crossref]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Pérot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

Zhao, Z.

E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, L. Cheng, and R. X. Xu, “Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging,” J. Biomed. Opt. 20(12), 121311 (2015).
[Crossref] [PubMed]

Zhu, Q.

P.D. Kumavor, C. Xu, A. Aguirre, J. Gamelin, Y. Ardeshirpour, B. Tavakoli, S. Zanganeh, U. Alqasemi, Y. Yang, and Q. Zhu, “Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system,” J. Biomed. Opt. 16(4), 046010 (2011).
[Crossref] [PubMed]

Zhu, W.

S. J. West, J.-M. Mari, A. Khan, J. H. Y. Wan, W. Zhu, I. G. Koutsakos, M. Rowe, D. Kamming, and A. E. Desjardins, “Development of an ultrasound phantom for spinal injections with 3-dimensional printing,” Reg. Anesth. Pain. Med. 39(5), 429–433 (2014).
[Crossref] [PubMed]

Acoust. Res. Lett. Online (1)

T. D. Mast, “Empirical relationships between acoustic parameters in human soft tissues,” Acoust. Res. Lett. Online 1, 37–42 (2000).
[Crossref]

Appl. Opt. (3)

Biomed. Opt. Express (1)

Chem. Rev. (1)

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” IEEE J. Sel. Top. Quantum Electron. 16(3), 600–607 (2010).
[Crossref]

IEEE Trans. Med. Imaging (1)

S. Tzoumas, N. Deliolanis, S. Morscher, and V. Ntziachristos, “Un-mixing molecular agents from absorbing tissue in multispectral optoacoustic tomography,” IEEE Trans. Med. Imaging 33(1), 48–60 (2013).
[Crossref] [PubMed]

Interface Focus (1)

P. Beard, “Biomedical Photoacoustic Imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

J. Acoust. Soc. Am. (1)

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

J. Biomed. Opt. (13)

E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, L. Cheng, and R. X. Xu, “Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging,” J. Biomed. Opt. 20(12), 121311 (2015).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

P.D. Kumavor, C. Xu, A. Aguirre, J. Gamelin, Y. Ardeshirpour, B. Tavakoli, S. Zanganeh, U. Alqasemi, Y. Yang, and Q. Zhu, “Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system,” J. Biomed. Opt. 16(4), 046010 (2011).
[Crossref] [PubMed]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

S. Manohar, A. Kharine, J.C.G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[Crossref] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

P. Lai, X. Xu, and L.V. Wang, “Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time,” J. Biomed. Opt. 19(3), 035002 (2014).
[Crossref]

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 86005 (2015).
[Crossref] [PubMed]

J. M. Mari, W. Xia, S. J. West, and A. E. Desjardins, “Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study,” J. Biomed. Opt. 20(11), 110503 (2015).
[Crossref] [PubMed]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref] [PubMed]

J. Ultrasound Med. (1)

D. I. Nikitichev, A. Barburas, K. McPherson, J.-M. Mari, S. J. West, and A. E. Desjardins, “Construction of 3-Dimensional Printed Ultrasound Phantoms With Wall-less Vessels,” J. Ultrasound Med. 35(6), 1333–1339 (2016).
[Crossref] [PubMed]

Med. Phys (1)

D. Razansky, J. Baeten, and V. Ntziachristos, “Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT),” Med. Phys,  36(3), 939–945 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Photoacoustics (2)

Y. Cao, A. Kole, L. Lan, P. Wang, J. Hui, M. Sturek, and J.-X. Cheng, “Spectral analysis assisted photoacoustic imaging for lipid composition differentiation,” Photoacoustics 7, 12–19 (2017).
[Crossref] [PubMed]

M.A.L. Bell, A.K. Ostrowski, K. Li, P. Kazanzides, and E.M. Boctor, “Localization of transcranial targets for photoacoustic-guided endonasal surgeries,” Photoacoustics 3(2), 78–87 (2015).
[Crossref]

Phys. Med. Biol. (10)

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref] [PubMed]

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40(5), 955–961 (1995).
[Crossref] [PubMed]

K. J. M. Surry, H. J. B. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol. 49(24), 5529–5546 (2004).
[Crossref]

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref] [PubMed]

K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref] [PubMed]

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref] [PubMed]

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

L. C. Cabrelli, P. I. B. G. B. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref]

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, S. J. West, M. Finlay, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds,” Phys. Med. Biol. 63, 015033 (2018).
[Crossref]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

PLoS one (1)

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS one 8(9), e75533 (2013).
[Crossref] [PubMed]

Polym. Compos. (1)

M. M. Jalili, S. Y. Mousavi, and A. S. Pirayeshfar, “Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites,” Polym. Compos. 35(11), 2103–2111 (2014).
[Crossref]

Proc. SPIE (1)

T. Stahl, T. Allen, and P. Beard, “Characterization of the thermalisation efficiency and photostability of photoacoustic contrast agents,” Proc. SPIE 8943, 89435H (2014).
[Crossref]

Reg. Anesth. Pain. Med. (1)

S. J. West, J.-M. Mari, A. Khan, J. H. Y. Wan, W. Zhu, I. G. Koutsakos, M. Rowe, D. Kamming, and A. E. Desjardins, “Development of an ultrasound phantom for spinal injections with 3-dimensional printing,” Reg. Anesth. Pain. Med. 39(5), 429–433 (2014).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Technol. Cancer Res. Treat. (1)

R. X. Xu, J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski, “Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions,” Technol. Cancer Res. Treat. 7(6), 471–481 (2008).
[Crossref] [PubMed]

Ultrasound Med. Biol. (3)

S. L. Vieira, T. Z. Pavan, J. E. Junior, and A. A. O. Carneiro, “Paraffin-gel tissue-mimicking material for ultrasound-guided needle biopsy phantom,” Ultrasound Med. Biol. 39(12), 2477–2484 (2013).
[Crossref] [PubMed]

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Med. Biol. 35(7), 1185–1197 (2009).
[Crossref] [PubMed]

J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins, “Assessment of the acoustic properties of common tissue-mimicking test phantoms,” Ultrasound Med. Biol. 29(7), 1053–1060 (2003).
[Crossref] [PubMed]

Other (1)

F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic, 2013).

Supplementary Material (1)

NameDescription
» Visualization 1       Video showing manual compressions of a heterogeneous gel wax-based tissue-mimicking phantom.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Photographs of gel wax phantoms with different compositions. (a) Optically transparent native gel wax, prior to processing. (b) Native gel wax with TiO2 added for optical scattering. (c) Native gel wax and TiO2, with carbon black ink added for optical absorption. (d) The University College London (UCL) logo fabricated with inclusions that comprised TiO2 and differently-coloured inks in a native gel wax background ( Visualization 1).
Fig. 2
Fig. 2 Schematics of the experimental setups used to characterise gel wax properties. (a) Setup to measure the speed of sound and acoustic attenuation of gel wax. An ultrasonic pulser/receiver was used to a drive an ultrasound (US) transducer and receive reflections from a metal reflector. Gel wax-based slabs of different thicknesses were positioned between the US transducer and the reflector. The received signals were digitized by an analog-to-digital converter (ADC) and then transferred to a personal computer (PC) for processing. (b) Setup to acquire photoacoustic signals from gel wax slabs for spectroscopic and photostability measurements. Each slab was mounted on top of a rectangular acrylic frame with a thin plastic membrane. Excitation light was delivered through a fibre-coupled Nd:YAG pumped optical parametric oscillator (OPO), and a thin polyvinylidene fluoride (PVDF) ultrasound transducer was used to receive the photoacoustically-generated ultrasound waves. Signals from the PVDF transducer and the photodiode were captured simultaneously with an oscilloscope and transferred to a PC for processing.
Fig. 3
Fig. 3 Measured reduced optical scattering and optical absorption coefficients of gel wax compounds with TiO2 and carbon black ink as additives. The two columns present how the optical scattering and absorption can be controlled. In the left column [(a),(c),(e)], the concentration of TiO2 was varied and the concentration of carbon black ink was held constant. In the right column [(b),(d),(f)], the concentration of carbon black ink was varied and the concentration of TiO2 was held constant. Each measured data point was obtained by averaging across 4 different spatial locations. Linear fitting was performed for the data in (c) and (d).
Fig. 4
Fig. 4 Spectroscopic measurements of optical absorption coefficients (a) and reduced scattering coefficients (b) for gel wax compositions with TiO2 and coloured inks (green, red, blue, and violet) as additives. For illustrative purposes, the photographs [inset in (b)] correspond to samples with ink concentrations that are 10 times higher than those of the measured samples.
Fig. 5
Fig. 5 Measured acoustic attenuation of four gel wax compounds. Three of the compounds had additives; TiO2 was added to tune optical scattering and blue and carbon black inks were added to tune optical absorption. Fitting was performed with a frequency power law. Each measured data point was obtained by averaging across 5 different spatial locations (error bars: standard deviations).
Fig. 6
Fig. 6 (a) Normalised photoacoustic spectra (symbols) and corresponding normalised optical absorption spectra (solid lines) for four gel wax compounds that contained carbon black ink and coloured inks (green, blue, and violet). Each compounds also contained TiO2. For each composition, spectra were normalised to the maximum value of the photoacoustic spectrum. (b) Normalised photoacoustic signal amplitudes from 20,000 excitation pulses, which indicated good photostability.
Fig. 7
Fig. 7 Photoacoustic imaging of the carbon black ink-based vessel phantom. The photoacoustic images, displayed as maximum intensity projections across a depth of 0.2 mm, were obtained with excitation wavelengths of 630, 800 and 1210 nm. A colour photograph of the phantom is also shown. The field of view is 20 × 20 mm. (b) Photoacoustic amplitudes from the vessel inclusions, averaged across circular region of interests (error bars: standard deviations), and linear fits.
Fig. 8
Fig. 8 Photoacoustic imaging of the coloured ink vessel phantom with four inclusions: green (top left), blue (top right), violet (bottom left), and red (bottom right). The photoacoustic images, displayed as maximum intensity projections across a depth of 0.2 mm, were obtained with excitation wavelengths of 550, 630, 725, 800 and 1210 nm. A colour photograph of the phantom is also shown. The field of view is 20 × 20 mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ t = 2 ( d 2 d 1 ) c s 2 ( d 2 d 1 ) c w
α s ( f ) = 10 d 2 d 1 log 10 [ I 1 ( f ) I 2 ( f ) ] + α w ( f )

Metrics