Abstract

Photodynamic antimicrobial chemotherapy (PACT) is considered a promising alternative to conventional antibiotic approach. We have previously developed a novel PS containing five lysine amino acids, pentalysine-β-carbonylphthalocyanine Zinc (ZnPc(Lys)5), which in the presence of light, is highly toxic against a range of bacterial strains, including hospital isolated, drug resistant Acinetobacter baumannii. Here, we study the effect of light fluence of the two light sources on the PACT potency of ZnPc(Lys)5. We observed that an exposure of E.coli to a red LED light for only 2 seconds (light fluence of 0.15 J/cm2) in the presence of ZnPc(Lys)5 significantly eradicated 80% of the E.coli. We further demonstrated that a light fluence of 4.5 J/cm2 from a household light source induced a noticeable photodynamic effect in vitro and in vivo animal model. This study points to a new research direction of reducing light illumination time by increasing potency of PS.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber optic microendoscopy for preclinical study of bacterial infection dynamics

Nooman Mufti, Ying Kong, Jeffrey D. Cirillo, and Kristen C. Maitland
Biomed. Opt. Express 2(5) 1121-1134 (2011)

Characterizing low fluence thresholds for in vitro photodynamic therapy

Brad A. Hartl, Henry Hirschberg, Laura Marcu, and Simon R. Cherry
Biomed. Opt. Express 6(3) 770-779 (2015)

Photothermal inactivation of heat-resistant bacteria on nanoporous gold disk arrays

Greggy M. Santos, Felipe Ibañez de Santi Ferrara, Fusheng Zhao, Debora F. Rodrigues, and Wei-Chuan Shih
Opt. Mater. Express 6(4) 1217-1229 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. G. S. Denis and M. R. Hamblin, “An introduction to photoantimicrobials: photodynamic therapy as a novel method of microbial pathogen eradication,” Science against microbial pathogens: communicating current research and technological advances, A. Méndez-Vilas (Ed.), 675–683 (2011).
  2. M. Karimi, P. Sahandi Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, and M. R. Hamblin, “Smart nanostructures for cargo delivery: Uncaging and activating by light,” J. Am. Chem. Soc. 139(13), 4584–4610 (2017).
    [Crossref] [PubMed]
  3. T. Maisch, A. Eichner, A. Späth, A. Gollmer, B. König, J. Regensburger, and W. Bäumler, “Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives,” PLoS One 9(12), e111792 (2014).
    [Crossref] [PubMed]
  4. Z. Xu, Y. Gao, S. Meng, B. Yang, L. Pang, C. Wang, and T. Liu, “Mechanism and In Vivo Evaluation: Photodynamic Antibacterial Chemotherapy of Lysine-Porphyrin Conjugate,” Front. Microbiol. 7, 242 (2016).
    [Crossref] [PubMed]
  5. M. R. Hamblin and T. Hasan, “Photodynamic therapy: a new antimicrobial approach to infectious disease?” Photochem. Photobiol. Sci. 3(5), 436–450 (2004).
    [Crossref] [PubMed]
  6. Y. Zhang, K. Zheng, Z. Chen, J. Chen, P. Hu, L. Cai, Z. Iqbal, and M. Huang, “Rapid killing of bacteria by a new type of photosensitizer,” Appl. Microbiol. Biotechnol. 101(11), 4691–4700 (2017).
    [Crossref] [PubMed]
  7. C. B. Halldin, M. Gillstedt, J. Paoli, A.-M. Wennberg, and H. Gonzalez, “Predictors of pain associated with photodynamic therapy: a retrospective study of 658 treatments,” Acta Derm. Venereol. 91(5), 545–551 (2011).
    [Crossref] [PubMed]
  8. M. B. Ericson, A. M. Wennberg, and O. Larkö, “Review of photodynamic therapy in actinic keratosis and basal cell carcinoma,” Ther. Clin. Risk Manag. 4(1), 1–9 (2008).
    [PubMed]
  9. J. M. Ang, I. B. Riaz, M. U. Kamal, G. Paragh, and N. C. Zeitouni, “Photodynamic therapy and pain: A systematic review,” Photodiagn. Photodyn. Ther. 19, 308–344 (2017).
    [Crossref] [PubMed]
  10. C. A. Morton, R. M. Szeimies, A. Sidoroff, and L. R. Braathen, “European guidelines for topical photodynamic therapy part 1: treatment delivery and current indications - actinic keratoses, Bowen’s disease, basal cell carcinoma,” J. Eur. Acad. Dermatol. Venereol. 27(5), 536–544 (2013).
    [Crossref] [PubMed]
  11. Y. N. Chaves, L. A. Torezan, A. B. M. Niwa, J. A. Sanches Junior, and C. Festa Neto, “Pain in photodynamic therapy: mechanism of action and management strategies,” An. Bras. Dermatol. 87(4), 521–529 (2012).
    [Crossref] [PubMed]
  12. M. Boen, J. Brownell, P. Patel, and M. M. Tsoukas, “The Role of Photodynamic Therapy in Acne: An Evidence-Based Review,” Am. J. Clin. Dermatol. 18(3), 311–321 (2017).
    [Crossref] [PubMed]
  13. S. R. Wiegell, M. Haedersdal, P. A. Philipsen, P. Eriksen, C. D. Enk, and H. C. Wulf, “Continuous activation of PpIX by daylight is as effective as and less painful than conventional photodynamic therapy for actinic keratoses; a randomized, controlled, single-blinded study,” Br. J. Dermatol. 158(4), 740–746 (2008).
    [Crossref] [PubMed]
  14. K. Togsverd-Bo, C. S. Haak, D. Thaysen-Petersen, H. C. Wulf, R. R. Anderson, and M. Hædersdal, “Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial,” Br. J. Dermatol. 166(6), 1262–1269 (2012).
    [Crossref] [PubMed]
  15. S. Mandadi, T. Tominaga, M. Numazaki, N. Murayama, N. Saito, P. J. Armati, B. D. Roufogalis, and M. Tominaga, “Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCε-mediated phosphorylation at S800,” Pain 123(1), 106–116 (2006).
    [Crossref] [PubMed]
  16. C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol. 143(4), 767–772 (2000).
    [Crossref] [PubMed]
  17. T. Nyokong, “Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines,” Coord. Chem. Rev. 251(13-14), 1707–1722 (2007).
    [Crossref]
  18. J. Chen, Z. Chen, Y. Zheng, S. Zhou, J. Wang, N. Chen, J. Huang, F. Yan, and M. Huang, “Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment,” J. Porphyr. Phthalocyanines 15(04), 293–299 (2011).
    [Crossref]
  19. D. Wang, Y. Zhang, S. Yan, Z. Chen, Y. Deng, P. Xu, J. Chen, W. Liu, P. Hu, and M. Huang, “An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection,” J. Porphyr. Phthalocyanines 21, 205–210 (2017).
  20. J. Chen, N. Chen, J. Huang, J. Wang, and M. Huang, “Derivatizable phthalocyanine with single carboxyl group: synthesis and purification,” Inorg. Chem. Commun. 9(3), 313–315 (2006).
    [Crossref]
  21. Z. Chen, S. Zhou, J. Chen, Y. Deng, Z. Luo, H. Chen, M. R. Hamblin, and M. Huang, “Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy,” ChemMedChem 5(6), 890–898 (2010).
    [Crossref] [PubMed]
  22. N. A. Kuznetsova, N. S. Gretsova, E. A. Kalmykova, E. A. Makarova, S. N. Dashkevich, V. M. Negrimovskii, O. L. Kaliya, and E. A. Luk’yanets, “Relationship between the photochemical properties and structure of pophyrins and related compounds,” Russ. J. Gen. Chem. 70, 133–140 (2000).
  23. A. Karsi and M. L. Lawrence, “Broad host range fluorescence and bioluminescence expression vectors for Gram-negative bacteria,” Plasmid 57(3), 286–295 (2007).
    [Crossref] [PubMed]
  24. Z. Chen, S. Zhou, J. Chen, L. Li, P. Hu, S. Chen, and M. Huang, “An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy,” J. Lumin. 152, 103–107 (2014).
    [Crossref]
  25. Z. Chen, Y. Zhang, D. Wang, L. Li, S. Zhou, J. H. Huang, J. Chen, P. Hu, and M. Huang, “Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection,” J. Biomed. Opt. 21(1), 018001 (2016).
    [Crossref] [PubMed]
  26. R. Yin, T. Dai, P. Avci, A. E. Jorge, W. C. de Melo, D. Vecchio, Y. Y. Huang, A. Gupta, and M. R. Hamblin, “Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond,” Curr. Opin. Pharmacol. 13(5), 731–762 (2013).
    [Crossref] [PubMed]
  27. K. Komagoe, H. Kato, T. Inoue, and T. Katsu, “Continuous real-time monitoring of cationic porphyrin-induced photodynamic inactivation of bacterial membrane functions using electrochemical sensors,” Photochem. Photobiol. Sci. 10(7), 1181–1188 (2011).
    [Crossref] [PubMed]
  28. T. Maisch, J. Wagner, V. Papastamou, H. J. Nerl, K. A. Hiller, R. M. Szeimies, and G. Schmalz, “Combination of 10% EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro,” J. Appl. Microbiol. 107(5), 1569–1578 (2009).
    [Crossref] [PubMed]
  29. W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
    [Crossref] [PubMed]
  30. T. Maisch, F. Spannberger, J. Regensburger, A. Felgenträger, and W. Bäumler, “Fast and effective: intense pulse light photodynamic inactivation of bacteria,” J. Ind. Microbiol. Biotechnol. 39(7), 1013–1021 (2012).
    [Crossref] [PubMed]
  31. D. Metcalf, C. Robinson, D. Devine, and S. Wood, “Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation,” J. Antimicrob. Chemother. 58(1), 190–192 (2006).
    [Crossref] [PubMed]
  32. J. S. Dysart, G. Singh, and M. S. Patterson, “Calculation of singlet oxygen dose from photosensitizer fluorescence and photobleaching during mTHPC photodynamic therapy of MLL cells,” Photochem. Photobiol. 81(1), 196–205 (2005).
    [Crossref] [PubMed]
  33. L. N. Dovigo, A. C. Pavarina, A. P. D. Ribeiro, I. L. Brunetti, C. A. S. Costa, D. P. Jacomassi, V. S. Bagnato, and C. Kurachi, “Investigation of the photodynamic effects of curcumin against Candida albicans,” Photochem. Photobiol. 87(4), 895–903 (2011).
    [Crossref] [PubMed]
  34. D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
    [Crossref] [PubMed]
  35. N. Neittaanmäki-Perttu, T. T. Karppinen, M. Grönroos, T. T. Tani, and E. Snellman, “Daylight photodynamic therapy for actinic keratoses: a randomized double-blinded nonsponsored prospective study comparing 5-aminolaevulinic acid nanoemulsion (BF-200) with methyl-5-aminolaevulinate,” Br. J. Dermatol. 171(5), 1172–1180 (2014).
    [Crossref] [PubMed]
  36. S. R. Wiegell, S. Fabricius, J. Heydenreich, C. D. Enk, S. Rosso, W. Bäumler, B. T. Baldursson, and H. C. Wulf, “Weather conditions and daylight-mediated photodynamic therapy: protoporphyrin IX-weighted daylight doses measured in six geographical locations,” Br. J. Dermatol. 168(1), 186–191 (2013).
    [Crossref] [PubMed]
  37. E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, and A. Almeida, “Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins,” BMC Microbiol. 9(1), 70 (2009).
    [Crossref] [PubMed]
  38. S. Wood, D. Metcalf, D. Devine, and C. Robinson, “Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms,” J. Antimicrob. Chemother. 57(4), 680–684 (2006).
    [Crossref] [PubMed]
  39. M. A. Paschoal, L. Santos-Pinto, M. Lin, and S. Duarte, “Streptococcus mutans photoinactivation by combination of short exposure of a broad-spectrum visible light and low concentrations of photosensitizers,” Photomed. Laser Surg. 32(3), 175–180 (2014).
    [Crossref] [PubMed]
  40. L. Marciel, L. Teles, B. Moreira, M. Pacheco, L. M. Lourenço, M. G. Neves, J. P. Tomé, M. A. Faustino, and A. Almeida, “An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers,” Future Med. Chem. 9(4), 365–379 (2017).
    [Crossref] [PubMed]
  41. J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, and J. P. Tomé, “Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochem. Photobiol. 88(3), 537–547 (2012).
    [Crossref] [PubMed]

2017 (6)

M. Karimi, P. Sahandi Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, and M. R. Hamblin, “Smart nanostructures for cargo delivery: Uncaging and activating by light,” J. Am. Chem. Soc. 139(13), 4584–4610 (2017).
[Crossref] [PubMed]

Y. Zhang, K. Zheng, Z. Chen, J. Chen, P. Hu, L. Cai, Z. Iqbal, and M. Huang, “Rapid killing of bacteria by a new type of photosensitizer,” Appl. Microbiol. Biotechnol. 101(11), 4691–4700 (2017).
[Crossref] [PubMed]

J. M. Ang, I. B. Riaz, M. U. Kamal, G. Paragh, and N. C. Zeitouni, “Photodynamic therapy and pain: A systematic review,” Photodiagn. Photodyn. Ther. 19, 308–344 (2017).
[Crossref] [PubMed]

M. Boen, J. Brownell, P. Patel, and M. M. Tsoukas, “The Role of Photodynamic Therapy in Acne: An Evidence-Based Review,” Am. J. Clin. Dermatol. 18(3), 311–321 (2017).
[Crossref] [PubMed]

D. Wang, Y. Zhang, S. Yan, Z. Chen, Y. Deng, P. Xu, J. Chen, W. Liu, P. Hu, and M. Huang, “An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection,” J. Porphyr. Phthalocyanines 21, 205–210 (2017).

L. Marciel, L. Teles, B. Moreira, M. Pacheco, L. M. Lourenço, M. G. Neves, J. P. Tomé, M. A. Faustino, and A. Almeida, “An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers,” Future Med. Chem. 9(4), 365–379 (2017).
[Crossref] [PubMed]

2016 (2)

Z. Xu, Y. Gao, S. Meng, B. Yang, L. Pang, C. Wang, and T. Liu, “Mechanism and In Vivo Evaluation: Photodynamic Antibacterial Chemotherapy of Lysine-Porphyrin Conjugate,” Front. Microbiol. 7, 242 (2016).
[Crossref] [PubMed]

Z. Chen, Y. Zhang, D. Wang, L. Li, S. Zhou, J. H. Huang, J. Chen, P. Hu, and M. Huang, “Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection,” J. Biomed. Opt. 21(1), 018001 (2016).
[Crossref] [PubMed]

2014 (5)

Z. Chen, S. Zhou, J. Chen, L. Li, P. Hu, S. Chen, and M. Huang, “An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy,” J. Lumin. 152, 103–107 (2014).
[Crossref]

D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
[Crossref] [PubMed]

N. Neittaanmäki-Perttu, T. T. Karppinen, M. Grönroos, T. T. Tani, and E. Snellman, “Daylight photodynamic therapy for actinic keratoses: a randomized double-blinded nonsponsored prospective study comparing 5-aminolaevulinic acid nanoemulsion (BF-200) with methyl-5-aminolaevulinate,” Br. J. Dermatol. 171(5), 1172–1180 (2014).
[Crossref] [PubMed]

M. A. Paschoal, L. Santos-Pinto, M. Lin, and S. Duarte, “Streptococcus mutans photoinactivation by combination of short exposure of a broad-spectrum visible light and low concentrations of photosensitizers,” Photomed. Laser Surg. 32(3), 175–180 (2014).
[Crossref] [PubMed]

T. Maisch, A. Eichner, A. Späth, A. Gollmer, B. König, J. Regensburger, and W. Bäumler, “Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives,” PLoS One 9(12), e111792 (2014).
[Crossref] [PubMed]

2013 (3)

C. A. Morton, R. M. Szeimies, A. Sidoroff, and L. R. Braathen, “European guidelines for topical photodynamic therapy part 1: treatment delivery and current indications - actinic keratoses, Bowen’s disease, basal cell carcinoma,” J. Eur. Acad. Dermatol. Venereol. 27(5), 536–544 (2013).
[Crossref] [PubMed]

S. R. Wiegell, S. Fabricius, J. Heydenreich, C. D. Enk, S. Rosso, W. Bäumler, B. T. Baldursson, and H. C. Wulf, “Weather conditions and daylight-mediated photodynamic therapy: protoporphyrin IX-weighted daylight doses measured in six geographical locations,” Br. J. Dermatol. 168(1), 186–191 (2013).
[Crossref] [PubMed]

R. Yin, T. Dai, P. Avci, A. E. Jorge, W. C. de Melo, D. Vecchio, Y. Y. Huang, A. Gupta, and M. R. Hamblin, “Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond,” Curr. Opin. Pharmacol. 13(5), 731–762 (2013).
[Crossref] [PubMed]

2012 (4)

T. Maisch, F. Spannberger, J. Regensburger, A. Felgenträger, and W. Bäumler, “Fast and effective: intense pulse light photodynamic inactivation of bacteria,” J. Ind. Microbiol. Biotechnol. 39(7), 1013–1021 (2012).
[Crossref] [PubMed]

Y. N. Chaves, L. A. Torezan, A. B. M. Niwa, J. A. Sanches Junior, and C. Festa Neto, “Pain in photodynamic therapy: mechanism of action and management strategies,” An. Bras. Dermatol. 87(4), 521–529 (2012).
[Crossref] [PubMed]

K. Togsverd-Bo, C. S. Haak, D. Thaysen-Petersen, H. C. Wulf, R. R. Anderson, and M. Hædersdal, “Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial,” Br. J. Dermatol. 166(6), 1262–1269 (2012).
[Crossref] [PubMed]

J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, and J. P. Tomé, “Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochem. Photobiol. 88(3), 537–547 (2012).
[Crossref] [PubMed]

2011 (4)

J. Chen, Z. Chen, Y. Zheng, S. Zhou, J. Wang, N. Chen, J. Huang, F. Yan, and M. Huang, “Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment,” J. Porphyr. Phthalocyanines 15(04), 293–299 (2011).
[Crossref]

C. B. Halldin, M. Gillstedt, J. Paoli, A.-M. Wennberg, and H. Gonzalez, “Predictors of pain associated with photodynamic therapy: a retrospective study of 658 treatments,” Acta Derm. Venereol. 91(5), 545–551 (2011).
[Crossref] [PubMed]

L. N. Dovigo, A. C. Pavarina, A. P. D. Ribeiro, I. L. Brunetti, C. A. S. Costa, D. P. Jacomassi, V. S. Bagnato, and C. Kurachi, “Investigation of the photodynamic effects of curcumin against Candida albicans,” Photochem. Photobiol. 87(4), 895–903 (2011).
[Crossref] [PubMed]

K. Komagoe, H. Kato, T. Inoue, and T. Katsu, “Continuous real-time monitoring of cationic porphyrin-induced photodynamic inactivation of bacterial membrane functions using electrochemical sensors,” Photochem. Photobiol. Sci. 10(7), 1181–1188 (2011).
[Crossref] [PubMed]

2010 (1)

Z. Chen, S. Zhou, J. Chen, Y. Deng, Z. Luo, H. Chen, M. R. Hamblin, and M. Huang, “Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy,” ChemMedChem 5(6), 890–898 (2010).
[Crossref] [PubMed]

2009 (2)

T. Maisch, J. Wagner, V. Papastamou, H. J. Nerl, K. A. Hiller, R. M. Szeimies, and G. Schmalz, “Combination of 10% EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro,” J. Appl. Microbiol. 107(5), 1569–1578 (2009).
[Crossref] [PubMed]

E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, and A. Almeida, “Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins,” BMC Microbiol. 9(1), 70 (2009).
[Crossref] [PubMed]

2008 (3)

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

M. B. Ericson, A. M. Wennberg, and O. Larkö, “Review of photodynamic therapy in actinic keratosis and basal cell carcinoma,” Ther. Clin. Risk Manag. 4(1), 1–9 (2008).
[PubMed]

S. R. Wiegell, M. Haedersdal, P. A. Philipsen, P. Eriksen, C. D. Enk, and H. C. Wulf, “Continuous activation of PpIX by daylight is as effective as and less painful than conventional photodynamic therapy for actinic keratoses; a randomized, controlled, single-blinded study,” Br. J. Dermatol. 158(4), 740–746 (2008).
[Crossref] [PubMed]

2007 (2)

T. Nyokong, “Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines,” Coord. Chem. Rev. 251(13-14), 1707–1722 (2007).
[Crossref]

A. Karsi and M. L. Lawrence, “Broad host range fluorescence and bioluminescence expression vectors for Gram-negative bacteria,” Plasmid 57(3), 286–295 (2007).
[Crossref] [PubMed]

2006 (4)

S. Wood, D. Metcalf, D. Devine, and C. Robinson, “Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms,” J. Antimicrob. Chemother. 57(4), 680–684 (2006).
[Crossref] [PubMed]

D. Metcalf, C. Robinson, D. Devine, and S. Wood, “Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation,” J. Antimicrob. Chemother. 58(1), 190–192 (2006).
[Crossref] [PubMed]

J. Chen, N. Chen, J. Huang, J. Wang, and M. Huang, “Derivatizable phthalocyanine with single carboxyl group: synthesis and purification,” Inorg. Chem. Commun. 9(3), 313–315 (2006).
[Crossref]

S. Mandadi, T. Tominaga, M. Numazaki, N. Murayama, N. Saito, P. J. Armati, B. D. Roufogalis, and M. Tominaga, “Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCε-mediated phosphorylation at S800,” Pain 123(1), 106–116 (2006).
[Crossref] [PubMed]

2005 (1)

J. S. Dysart, G. Singh, and M. S. Patterson, “Calculation of singlet oxygen dose from photosensitizer fluorescence and photobleaching during mTHPC photodynamic therapy of MLL cells,” Photochem. Photobiol. 81(1), 196–205 (2005).
[Crossref] [PubMed]

2004 (1)

M. R. Hamblin and T. Hasan, “Photodynamic therapy: a new antimicrobial approach to infectious disease?” Photochem. Photobiol. Sci. 3(5), 436–450 (2004).
[Crossref] [PubMed]

2000 (2)

C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol. 143(4), 767–772 (2000).
[Crossref] [PubMed]

N. A. Kuznetsova, N. S. Gretsova, E. A. Kalmykova, E. A. Makarova, S. N. Dashkevich, V. M. Negrimovskii, O. L. Kaliya, and E. A. Luk’yanets, “Relationship between the photochemical properties and structure of pophyrins and related compounds,” Russ. J. Gen. Chem. 70, 133–140 (2000).

Almeida, A.

L. Marciel, L. Teles, B. Moreira, M. Pacheco, L. M. Lourenço, M. G. Neves, J. P. Tomé, M. A. Faustino, and A. Almeida, “An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers,” Future Med. Chem. 9(4), 365–379 (2017).
[Crossref] [PubMed]

J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, and J. P. Tomé, “Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochem. Photobiol. 88(3), 537–547 (2012).
[Crossref] [PubMed]

E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, and A. Almeida, “Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins,” BMC Microbiol. 9(1), 70 (2009).
[Crossref] [PubMed]

Alves, E.

E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, and A. Almeida, “Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins,” BMC Microbiol. 9(1), 70 (2009).
[Crossref] [PubMed]

Anderson, R. R.

K. Togsverd-Bo, C. S. Haak, D. Thaysen-Petersen, H. C. Wulf, R. R. Anderson, and M. Hædersdal, “Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial,” Br. J. Dermatol. 166(6), 1262–1269 (2012).
[Crossref] [PubMed]

Ang, J. M.

J. M. Ang, I. B. Riaz, M. U. Kamal, G. Paragh, and N. C. Zeitouni, “Photodynamic therapy and pain: A systematic review,” Photodiagn. Photodyn. Ther. 19, 308–344 (2017).
[Crossref] [PubMed]

Armati, P. J.

S. Mandadi, T. Tominaga, M. Numazaki, N. Murayama, N. Saito, P. J. Armati, B. D. Roufogalis, and M. Tominaga, “Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCε-mediated phosphorylation at S800,” Pain 123(1), 106–116 (2006).
[Crossref] [PubMed]

Avci, P.

R. Yin, T. Dai, P. Avci, A. E. Jorge, W. C. de Melo, D. Vecchio, Y. Y. Huang, A. Gupta, and M. R. Hamblin, “Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond,” Curr. Opin. Pharmacol. 13(5), 731–762 (2013).
[Crossref] [PubMed]

Baghaee-Ravari, S.

M. Karimi, P. Sahandi Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, and M. R. Hamblin, “Smart nanostructures for cargo delivery: Uncaging and activating by light,” J. Am. Chem. Soc. 139(13), 4584–4610 (2017).
[Crossref] [PubMed]

Bagnato, V. S.

L. N. Dovigo, A. C. Pavarina, A. P. D. Ribeiro, I. L. Brunetti, C. A. S. Costa, D. P. Jacomassi, V. S. Bagnato, and C. Kurachi, “Investigation of the photodynamic effects of curcumin against Candida albicans,” Photochem. Photobiol. 87(4), 895–903 (2011).
[Crossref] [PubMed]

Baldursson, B. T.

S. R. Wiegell, S. Fabricius, J. Heydenreich, C. D. Enk, S. Rosso, W. Bäumler, B. T. Baldursson, and H. C. Wulf, “Weather conditions and daylight-mediated photodynamic therapy: protoporphyrin IX-weighted daylight doses measured in six geographical locations,” Br. J. Dermatol. 168(1), 186–191 (2013).
[Crossref] [PubMed]

Bäumler, W.

T. Maisch, A. Eichner, A. Späth, A. Gollmer, B. König, J. Regensburger, and W. Bäumler, “Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives,” PLoS One 9(12), e111792 (2014).
[Crossref] [PubMed]

S. R. Wiegell, S. Fabricius, J. Heydenreich, C. D. Enk, S. Rosso, W. Bäumler, B. T. Baldursson, and H. C. Wulf, “Weather conditions and daylight-mediated photodynamic therapy: protoporphyrin IX-weighted daylight doses measured in six geographical locations,” Br. J. Dermatol. 168(1), 186–191 (2013).
[Crossref] [PubMed]

T. Maisch, F. Spannberger, J. Regensburger, A. Felgenträger, and W. Bäumler, “Fast and effective: intense pulse light photodynamic inactivation of bacteria,” J. Ind. Microbiol. Biotechnol. 39(7), 1013–1021 (2012).
[Crossref] [PubMed]

Boen, M.

M. Boen, J. Brownell, P. Patel, and M. M. Tsoukas, “The Role of Photodynamic Therapy in Acne: An Evidence-Based Review,” Am. J. Clin. Dermatol. 18(3), 311–321 (2017).
[Crossref] [PubMed]

Bosc, C.

D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
[Crossref] [PubMed]

Braathen, L. R.

C. A. Morton, R. M. Szeimies, A. Sidoroff, and L. R. Braathen, “European guidelines for topical photodynamic therapy part 1: treatment delivery and current indications - actinic keratoses, Bowen’s disease, basal cell carcinoma,” J. Eur. Acad. Dermatol. Venereol. 27(5), 536–544 (2013).
[Crossref] [PubMed]

Brownell, J.

M. Boen, J. Brownell, P. Patel, and M. M. Tsoukas, “The Role of Photodynamic Therapy in Acne: An Evidence-Based Review,” Am. J. Clin. Dermatol. 18(3), 311–321 (2017).
[Crossref] [PubMed]

Brunetti, I. L.

L. N. Dovigo, A. C. Pavarina, A. P. D. Ribeiro, I. L. Brunetti, C. A. S. Costa, D. P. Jacomassi, V. S. Bagnato, and C. Kurachi, “Investigation of the photodynamic effects of curcumin against Candida albicans,” Photochem. Photobiol. 87(4), 895–903 (2011).
[Crossref] [PubMed]

Cai, L.

Y. Zhang, K. Zheng, Z. Chen, J. Chen, P. Hu, L. Cai, Z. Iqbal, and M. Huang, “Rapid killing of bacteria by a new type of photosensitizer,” Appl. Microbiol. Biotechnol. 101(11), 4691–4700 (2017).
[Crossref] [PubMed]

Carvalho, C. M.

E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, and A. Almeida, “Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins,” BMC Microbiol. 9(1), 70 (2009).
[Crossref] [PubMed]

Carvalho, E. F.

J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, and J. P. Tomé, “Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochem. Photobiol. 88(3), 537–547 (2012).
[Crossref] [PubMed]

Cavaleiro, J. A.

J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, and J. P. Tomé, “Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochem. Photobiol. 88(3), 537–547 (2012).
[Crossref] [PubMed]

E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, and A. Almeida, “Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins,” BMC Microbiol. 9(1), 70 (2009).
[Crossref] [PubMed]

Chaves, Y. N.

Y. N. Chaves, L. A. Torezan, A. B. M. Niwa, J. A. Sanches Junior, and C. Festa Neto, “Pain in photodynamic therapy: mechanism of action and management strategies,” An. Bras. Dermatol. 87(4), 521–529 (2012).
[Crossref] [PubMed]

Chen, H.

Z. Chen, S. Zhou, J. Chen, Y. Deng, Z. Luo, H. Chen, M. R. Hamblin, and M. Huang, “Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy,” ChemMedChem 5(6), 890–898 (2010).
[Crossref] [PubMed]

Chen, J.

Y. Zhang, K. Zheng, Z. Chen, J. Chen, P. Hu, L. Cai, Z. Iqbal, and M. Huang, “Rapid killing of bacteria by a new type of photosensitizer,” Appl. Microbiol. Biotechnol. 101(11), 4691–4700 (2017).
[Crossref] [PubMed]

D. Wang, Y. Zhang, S. Yan, Z. Chen, Y. Deng, P. Xu, J. Chen, W. Liu, P. Hu, and M. Huang, “An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection,” J. Porphyr. Phthalocyanines 21, 205–210 (2017).

Z. Chen, Y. Zhang, D. Wang, L. Li, S. Zhou, J. H. Huang, J. Chen, P. Hu, and M. Huang, “Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection,” J. Biomed. Opt. 21(1), 018001 (2016).
[Crossref] [PubMed]

Z. Chen, S. Zhou, J. Chen, L. Li, P. Hu, S. Chen, and M. Huang, “An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy,” J. Lumin. 152, 103–107 (2014).
[Crossref]

J. Chen, Z. Chen, Y. Zheng, S. Zhou, J. Wang, N. Chen, J. Huang, F. Yan, and M. Huang, “Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment,” J. Porphyr. Phthalocyanines 15(04), 293–299 (2011).
[Crossref]

Z. Chen, S. Zhou, J. Chen, Y. Deng, Z. Luo, H. Chen, M. R. Hamblin, and M. Huang, “Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy,” ChemMedChem 5(6), 890–898 (2010).
[Crossref] [PubMed]

J. Chen, N. Chen, J. Huang, J. Wang, and M. Huang, “Derivatizable phthalocyanine with single carboxyl group: synthesis and purification,” Inorg. Chem. Commun. 9(3), 313–315 (2006).
[Crossref]

Chen, N.

J. Chen, Z. Chen, Y. Zheng, S. Zhou, J. Wang, N. Chen, J. Huang, F. Yan, and M. Huang, “Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment,” J. Porphyr. Phthalocyanines 15(04), 293–299 (2011).
[Crossref]

J. Chen, N. Chen, J. Huang, J. Wang, and M. Huang, “Derivatizable phthalocyanine with single carboxyl group: synthesis and purification,” Inorg. Chem. Commun. 9(3), 313–315 (2006).
[Crossref]

Chen, S.

Z. Chen, S. Zhou, J. Chen, L. Li, P. Hu, S. Chen, and M. Huang, “An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy,” J. Lumin. 152, 103–107 (2014).
[Crossref]

Chen, Z.

Y. Zhang, K. Zheng, Z. Chen, J. Chen, P. Hu, L. Cai, Z. Iqbal, and M. Huang, “Rapid killing of bacteria by a new type of photosensitizer,” Appl. Microbiol. Biotechnol. 101(11), 4691–4700 (2017).
[Crossref] [PubMed]

D. Wang, Y. Zhang, S. Yan, Z. Chen, Y. Deng, P. Xu, J. Chen, W. Liu, P. Hu, and M. Huang, “An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection,” J. Porphyr. Phthalocyanines 21, 205–210 (2017).

Z. Chen, Y. Zhang, D. Wang, L. Li, S. Zhou, J. H. Huang, J. Chen, P. Hu, and M. Huang, “Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection,” J. Biomed. Opt. 21(1), 018001 (2016).
[Crossref] [PubMed]

Z. Chen, S. Zhou, J. Chen, L. Li, P. Hu, S. Chen, and M. Huang, “An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy,” J. Lumin. 152, 103–107 (2014).
[Crossref]

J. Chen, Z. Chen, Y. Zheng, S. Zhou, J. Wang, N. Chen, J. Huang, F. Yan, and M. Huang, “Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment,” J. Porphyr. Phthalocyanines 15(04), 293–299 (2011).
[Crossref]

Z. Chen, S. Zhou, J. Chen, Y. Deng, Z. Luo, H. Chen, M. R. Hamblin, and M. Huang, “Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy,” ChemMedChem 5(6), 890–898 (2010).
[Crossref] [PubMed]

Costa, C. A. S.

L. N. Dovigo, A. C. Pavarina, A. P. D. Ribeiro, I. L. Brunetti, C. A. S. Costa, D. P. Jacomassi, V. S. Bagnato, and C. Kurachi, “Investigation of the photodynamic effects of curcumin against Candida albicans,” Photochem. Photobiol. 87(4), 895–903 (2011).
[Crossref] [PubMed]

Costa, L.

E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, and A. Almeida, “Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins,” BMC Microbiol. 9(1), 70 (2009).
[Crossref] [PubMed]

Cottrell, W. J.

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

Cunha, A.

J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, and J. P. Tomé, “Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochem. Photobiol. 88(3), 537–547 (2012).
[Crossref] [PubMed]

E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, and A. Almeida, “Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins,” BMC Microbiol. 9(1), 70 (2009).
[Crossref] [PubMed]

Dai, T.

R. Yin, T. Dai, P. Avci, A. E. Jorge, W. C. de Melo, D. Vecchio, Y. Y. Huang, A. Gupta, and M. R. Hamblin, “Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond,” Curr. Opin. Pharmacol. 13(5), 731–762 (2013).
[Crossref] [PubMed]

Dashkevich, S. N.

N. A. Kuznetsova, N. S. Gretsova, E. A. Kalmykova, E. A. Makarova, S. N. Dashkevich, V. M. Negrimovskii, O. L. Kaliya, and E. A. Luk’yanets, “Relationship between the photochemical properties and structure of pophyrins and related compounds,” Russ. J. Gen. Chem. 70, 133–140 (2000).

de Melo, W. C.

R. Yin, T. Dai, P. Avci, A. E. Jorge, W. C. de Melo, D. Vecchio, Y. Y. Huang, A. Gupta, and M. R. Hamblin, “Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond,” Curr. Opin. Pharmacol. 13(5), 731–762 (2013).
[Crossref] [PubMed]

Deng, Y.

D. Wang, Y. Zhang, S. Yan, Z. Chen, Y. Deng, P. Xu, J. Chen, W. Liu, P. Hu, and M. Huang, “An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection,” J. Porphyr. Phthalocyanines 21, 205–210 (2017).

Z. Chen, S. Zhou, J. Chen, Y. Deng, Z. Luo, H. Chen, M. R. Hamblin, and M. Huang, “Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy,” ChemMedChem 5(6), 890–898 (2010).
[Crossref] [PubMed]

Devine, D.

D. Metcalf, C. Robinson, D. Devine, and S. Wood, “Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation,” J. Antimicrob. Chemother. 58(1), 190–192 (2006).
[Crossref] [PubMed]

S. Wood, D. Metcalf, D. Devine, and C. Robinson, “Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms,” J. Antimicrob. Chemother. 57(4), 680–684 (2006).
[Crossref] [PubMed]

Dovigo, L. N.

L. N. Dovigo, A. C. Pavarina, A. P. D. Ribeiro, I. L. Brunetti, C. A. S. Costa, D. P. Jacomassi, V. S. Bagnato, and C. Kurachi, “Investigation of the photodynamic effects of curcumin against Candida albicans,” Photochem. Photobiol. 87(4), 895–903 (2011).
[Crossref] [PubMed]

Duarte, S.

M. A. Paschoal, L. Santos-Pinto, M. Lin, and S. Duarte, “Streptococcus mutans photoinactivation by combination of short exposure of a broad-spectrum visible light and low concentrations of photosensitizers,” Photomed. Laser Surg. 32(3), 175–180 (2014).
[Crossref] [PubMed]

Dysart, J. S.

J. S. Dysart, G. Singh, and M. S. Patterson, “Calculation of singlet oxygen dose from photosensitizer fluorescence and photobleaching during mTHPC photodynamic therapy of MLL cells,” Photochem. Photobiol. 81(1), 196–205 (2005).
[Crossref] [PubMed]

Eichner, A.

T. Maisch, A. Eichner, A. Späth, A. Gollmer, B. König, J. Regensburger, and W. Bäumler, “Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives,” PLoS One 9(12), e111792 (2014).
[Crossref] [PubMed]

Enk, C. D.

S. R. Wiegell, S. Fabricius, J. Heydenreich, C. D. Enk, S. Rosso, W. Bäumler, B. T. Baldursson, and H. C. Wulf, “Weather conditions and daylight-mediated photodynamic therapy: protoporphyrin IX-weighted daylight doses measured in six geographical locations,” Br. J. Dermatol. 168(1), 186–191 (2013).
[Crossref] [PubMed]

S. R. Wiegell, M. Haedersdal, P. A. Philipsen, P. Eriksen, C. D. Enk, and H. C. Wulf, “Continuous activation of PpIX by daylight is as effective as and less painful than conventional photodynamic therapy for actinic keratoses; a randomized, controlled, single-blinded study,” Br. J. Dermatol. 158(4), 740–746 (2008).
[Crossref] [PubMed]

Ericson, M. B.

M. B. Ericson, A. M. Wennberg, and O. Larkö, “Review of photodynamic therapy in actinic keratosis and basal cell carcinoma,” Ther. Clin. Risk Manag. 4(1), 1–9 (2008).
[PubMed]

Eriksen, P.

S. R. Wiegell, M. Haedersdal, P. A. Philipsen, P. Eriksen, C. D. Enk, and H. C. Wulf, “Continuous activation of PpIX by daylight is as effective as and less painful than conventional photodynamic therapy for actinic keratoses; a randomized, controlled, single-blinded study,” Br. J. Dermatol. 158(4), 740–746 (2008).
[Crossref] [PubMed]

Fabricius, S.

S. R. Wiegell, S. Fabricius, J. Heydenreich, C. D. Enk, S. Rosso, W. Bäumler, B. T. Baldursson, and H. C. Wulf, “Weather conditions and daylight-mediated photodynamic therapy: protoporphyrin IX-weighted daylight doses measured in six geographical locations,” Br. J. Dermatol. 168(1), 186–191 (2013).
[Crossref] [PubMed]

Faustino, M. A.

L. Marciel, L. Teles, B. Moreira, M. Pacheco, L. M. Lourenço, M. G. Neves, J. P. Tomé, M. A. Faustino, and A. Almeida, “An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers,” Future Med. Chem. 9(4), 365–379 (2017).
[Crossref] [PubMed]

J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, and J. P. Tomé, “Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochem. Photobiol. 88(3), 537–547 (2012).
[Crossref] [PubMed]

E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, and A. Almeida, “Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins,” BMC Microbiol. 9(1), 70 (2009).
[Crossref] [PubMed]

Felgenträger, A.

T. Maisch, F. Spannberger, J. Regensburger, A. Felgenträger, and W. Bäumler, “Fast and effective: intense pulse light photodynamic inactivation of bacteria,” J. Ind. Microbiol. Biotechnol. 39(7), 1013–1021 (2012).
[Crossref] [PubMed]

Fernandes, R.

J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, and J. P. Tomé, “Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochem. Photobiol. 88(3), 537–547 (2012).
[Crossref] [PubMed]

Festa Neto, C.

Y. N. Chaves, L. A. Torezan, A. B. M. Niwa, J. A. Sanches Junior, and C. Festa Neto, “Pain in photodynamic therapy: mechanism of action and management strategies,” An. Bras. Dermatol. 87(4), 521–529 (2012).
[Crossref] [PubMed]

Foley, P.

D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
[Crossref] [PubMed]

Foster, T. H.

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

Gao, Y.

Z. Xu, Y. Gao, S. Meng, B. Yang, L. Pang, C. Wang, and T. Liu, “Mechanism and In Vivo Evaluation: Photodynamic Antibacterial Chemotherapy of Lysine-Porphyrin Conjugate,” Front. Microbiol. 7, 242 (2016).
[Crossref] [PubMed]

Ghazadeh, M.

M. Karimi, P. Sahandi Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, and M. R. Hamblin, “Smart nanostructures for cargo delivery: Uncaging and activating by light,” J. Am. Chem. Soc. 139(13), 4584–4610 (2017).
[Crossref] [PubMed]

Gillstedt, M.

C. B. Halldin, M. Gillstedt, J. Paoli, A.-M. Wennberg, and H. Gonzalez, “Predictors of pain associated with photodynamic therapy: a retrospective study of 658 treatments,” Acta Derm. Venereol. 91(5), 545–551 (2011).
[Crossref] [PubMed]

Gollmer, A.

T. Maisch, A. Eichner, A. Späth, A. Gollmer, B. König, J. Regensburger, and W. Bäumler, “Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives,” PLoS One 9(12), e111792 (2014).
[Crossref] [PubMed]

Gomes, N. C.

J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, and J. P. Tomé, “Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochem. Photobiol. 88(3), 537–547 (2012).
[Crossref] [PubMed]

Gonzalez, H.

C. B. Halldin, M. Gillstedt, J. Paoli, A.-M. Wennberg, and H. Gonzalez, “Predictors of pain associated with photodynamic therapy: a retrospective study of 658 treatments,” Acta Derm. Venereol. 91(5), 545–551 (2011).
[Crossref] [PubMed]

Gretsova, N. S.

N. A. Kuznetsova, N. S. Gretsova, E. A. Kalmykova, E. A. Makarova, S. N. Dashkevich, V. M. Negrimovskii, O. L. Kaliya, and E. A. Luk’yanets, “Relationship between the photochemical properties and structure of pophyrins and related compounds,” Russ. J. Gen. Chem. 70, 133–140 (2000).

Grönroos, M.

N. Neittaanmäki-Perttu, T. T. Karppinen, M. Grönroos, T. T. Tani, and E. Snellman, “Daylight photodynamic therapy for actinic keratoses: a randomized double-blinded nonsponsored prospective study comparing 5-aminolaevulinic acid nanoemulsion (BF-200) with methyl-5-aminolaevulinate,” Br. J. Dermatol. 171(5), 1172–1180 (2014).
[Crossref] [PubMed]

Gupta, A.

R. Yin, T. Dai, P. Avci, A. E. Jorge, W. C. de Melo, D. Vecchio, Y. Y. Huang, A. Gupta, and M. R. Hamblin, “Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond,” Curr. Opin. Pharmacol. 13(5), 731–762 (2013).
[Crossref] [PubMed]

Haak, C. S.

K. Togsverd-Bo, C. S. Haak, D. Thaysen-Petersen, H. C. Wulf, R. R. Anderson, and M. Hædersdal, “Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial,” Br. J. Dermatol. 166(6), 1262–1269 (2012).
[Crossref] [PubMed]

Hædersdal, M.

K. Togsverd-Bo, C. S. Haak, D. Thaysen-Petersen, H. C. Wulf, R. R. Anderson, and M. Hædersdal, “Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial,” Br. J. Dermatol. 166(6), 1262–1269 (2012).
[Crossref] [PubMed]

Haedersdal, M.

S. R. Wiegell, M. Haedersdal, P. A. Philipsen, P. Eriksen, C. D. Enk, and H. C. Wulf, “Continuous activation of PpIX by daylight is as effective as and less painful than conventional photodynamic therapy for actinic keratoses; a randomized, controlled, single-blinded study,” Br. J. Dermatol. 158(4), 740–746 (2008).
[Crossref] [PubMed]

Halldin, C. B.

C. B. Halldin, M. Gillstedt, J. Paoli, A.-M. Wennberg, and H. Gonzalez, “Predictors of pain associated with photodynamic therapy: a retrospective study of 658 treatments,” Acta Derm. Venereol. 91(5), 545–551 (2011).
[Crossref] [PubMed]

Hamblin, M. R.

M. Karimi, P. Sahandi Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, and M. R. Hamblin, “Smart nanostructures for cargo delivery: Uncaging and activating by light,” J. Am. Chem. Soc. 139(13), 4584–4610 (2017).
[Crossref] [PubMed]

R. Yin, T. Dai, P. Avci, A. E. Jorge, W. C. de Melo, D. Vecchio, Y. Y. Huang, A. Gupta, and M. R. Hamblin, “Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond,” Curr. Opin. Pharmacol. 13(5), 731–762 (2013).
[Crossref] [PubMed]

Z. Chen, S. Zhou, J. Chen, Y. Deng, Z. Luo, H. Chen, M. R. Hamblin, and M. Huang, “Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy,” ChemMedChem 5(6), 890–898 (2010).
[Crossref] [PubMed]

M. R. Hamblin and T. Hasan, “Photodynamic therapy: a new antimicrobial approach to infectious disease?” Photochem. Photobiol. Sci. 3(5), 436–450 (2004).
[Crossref] [PubMed]

Hasan, T.

M. R. Hamblin and T. Hasan, “Photodynamic therapy: a new antimicrobial approach to infectious disease?” Photochem. Photobiol. Sci. 3(5), 436–450 (2004).
[Crossref] [PubMed]

Hewitt, D.

D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
[Crossref] [PubMed]

Heydenreich, J.

S. R. Wiegell, S. Fabricius, J. Heydenreich, C. D. Enk, S. Rosso, W. Bäumler, B. T. Baldursson, and H. C. Wulf, “Weather conditions and daylight-mediated photodynamic therapy: protoporphyrin IX-weighted daylight doses measured in six geographical locations,” Br. J. Dermatol. 168(1), 186–191 (2013).
[Crossref] [PubMed]

Hiller, K. A.

T. Maisch, J. Wagner, V. Papastamou, H. J. Nerl, K. A. Hiller, R. M. Szeimies, and G. Schmalz, “Combination of 10% EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro,” J. Appl. Microbiol. 107(5), 1569–1578 (2009).
[Crossref] [PubMed]

Hu, P.

D. Wang, Y. Zhang, S. Yan, Z. Chen, Y. Deng, P. Xu, J. Chen, W. Liu, P. Hu, and M. Huang, “An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection,” J. Porphyr. Phthalocyanines 21, 205–210 (2017).

Y. Zhang, K. Zheng, Z. Chen, J. Chen, P. Hu, L. Cai, Z. Iqbal, and M. Huang, “Rapid killing of bacteria by a new type of photosensitizer,” Appl. Microbiol. Biotechnol. 101(11), 4691–4700 (2017).
[Crossref] [PubMed]

Z. Chen, Y. Zhang, D. Wang, L. Li, S. Zhou, J. H. Huang, J. Chen, P. Hu, and M. Huang, “Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection,” J. Biomed. Opt. 21(1), 018001 (2016).
[Crossref] [PubMed]

Z. Chen, S. Zhou, J. Chen, L. Li, P. Hu, S. Chen, and M. Huang, “An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy,” J. Lumin. 152, 103–107 (2014).
[Crossref]

Huang, J.

J. Chen, Z. Chen, Y. Zheng, S. Zhou, J. Wang, N. Chen, J. Huang, F. Yan, and M. Huang, “Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment,” J. Porphyr. Phthalocyanines 15(04), 293–299 (2011).
[Crossref]

J. Chen, N. Chen, J. Huang, J. Wang, and M. Huang, “Derivatizable phthalocyanine with single carboxyl group: synthesis and purification,” Inorg. Chem. Commun. 9(3), 313–315 (2006).
[Crossref]

Huang, J. H.

Z. Chen, Y. Zhang, D. Wang, L. Li, S. Zhou, J. H. Huang, J. Chen, P. Hu, and M. Huang, “Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection,” J. Biomed. Opt. 21(1), 018001 (2016).
[Crossref] [PubMed]

Huang, M.

Y. Zhang, K. Zheng, Z. Chen, J. Chen, P. Hu, L. Cai, Z. Iqbal, and M. Huang, “Rapid killing of bacteria by a new type of photosensitizer,” Appl. Microbiol. Biotechnol. 101(11), 4691–4700 (2017).
[Crossref] [PubMed]

D. Wang, Y. Zhang, S. Yan, Z. Chen, Y. Deng, P. Xu, J. Chen, W. Liu, P. Hu, and M. Huang, “An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection,” J. Porphyr. Phthalocyanines 21, 205–210 (2017).

Z. Chen, Y. Zhang, D. Wang, L. Li, S. Zhou, J. H. Huang, J. Chen, P. Hu, and M. Huang, “Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection,” J. Biomed. Opt. 21(1), 018001 (2016).
[Crossref] [PubMed]

Z. Chen, S. Zhou, J. Chen, L. Li, P. Hu, S. Chen, and M. Huang, “An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy,” J. Lumin. 152, 103–107 (2014).
[Crossref]

J. Chen, Z. Chen, Y. Zheng, S. Zhou, J. Wang, N. Chen, J. Huang, F. Yan, and M. Huang, “Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment,” J. Porphyr. Phthalocyanines 15(04), 293–299 (2011).
[Crossref]

Z. Chen, S. Zhou, J. Chen, Y. Deng, Z. Luo, H. Chen, M. R. Hamblin, and M. Huang, “Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy,” ChemMedChem 5(6), 890–898 (2010).
[Crossref] [PubMed]

J. Chen, N. Chen, J. Huang, J. Wang, and M. Huang, “Derivatizable phthalocyanine with single carboxyl group: synthesis and purification,” Inorg. Chem. Commun. 9(3), 313–315 (2006).
[Crossref]

Huang, Y. Y.

R. Yin, T. Dai, P. Avci, A. E. Jorge, W. C. de Melo, D. Vecchio, Y. Y. Huang, A. Gupta, and M. R. Hamblin, “Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond,” Curr. Opin. Pharmacol. 13(5), 731–762 (2013).
[Crossref] [PubMed]

Inoue, T.

K. Komagoe, H. Kato, T. Inoue, and T. Katsu, “Continuous real-time monitoring of cationic porphyrin-induced photodynamic inactivation of bacterial membrane functions using electrochemical sensors,” Photochem. Photobiol. Sci. 10(7), 1181–1188 (2011).
[Crossref] [PubMed]

Iqbal, Z.

Y. Zhang, K. Zheng, Z. Chen, J. Chen, P. Hu, L. Cai, Z. Iqbal, and M. Huang, “Rapid killing of bacteria by a new type of photosensitizer,” Appl. Microbiol. Biotechnol. 101(11), 4691–4700 (2017).
[Crossref] [PubMed]

Jacomassi, D. P.

L. N. Dovigo, A. C. Pavarina, A. P. D. Ribeiro, I. L. Brunetti, C. A. S. Costa, D. P. Jacomassi, V. S. Bagnato, and C. Kurachi, “Investigation of the photodynamic effects of curcumin against Candida albicans,” Photochem. Photobiol. 87(4), 895–903 (2011).
[Crossref] [PubMed]

Jorge, A. E.

R. Yin, T. Dai, P. Avci, A. E. Jorge, W. C. de Melo, D. Vecchio, Y. Y. Huang, A. Gupta, and M. R. Hamblin, “Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond,” Curr. Opin. Pharmacol. 13(5), 731–762 (2013).
[Crossref] [PubMed]

Kaliya, O. L.

N. A. Kuznetsova, N. S. Gretsova, E. A. Kalmykova, E. A. Makarova, S. N. Dashkevich, V. M. Negrimovskii, O. L. Kaliya, and E. A. Luk’yanets, “Relationship between the photochemical properties and structure of pophyrins and related compounds,” Russ. J. Gen. Chem. 70, 133–140 (2000).

Kalmykova, E. A.

N. A. Kuznetsova, N. S. Gretsova, E. A. Kalmykova, E. A. Makarova, S. N. Dashkevich, V. M. Negrimovskii, O. L. Kaliya, and E. A. Luk’yanets, “Relationship between the photochemical properties and structure of pophyrins and related compounds,” Russ. J. Gen. Chem. 70, 133–140 (2000).

Kamal, M. U.

J. M. Ang, I. B. Riaz, M. U. Kamal, G. Paragh, and N. C. Zeitouni, “Photodynamic therapy and pain: A systematic review,” Photodiagn. Photodyn. Ther. 19, 308–344 (2017).
[Crossref] [PubMed]

Karimi, M.

M. Karimi, P. Sahandi Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, and M. R. Hamblin, “Smart nanostructures for cargo delivery: Uncaging and activating by light,” J. Am. Chem. Soc. 139(13), 4584–4610 (2017).
[Crossref] [PubMed]

Karppinen, T. T.

N. Neittaanmäki-Perttu, T. T. Karppinen, M. Grönroos, T. T. Tani, and E. Snellman, “Daylight photodynamic therapy for actinic keratoses: a randomized double-blinded nonsponsored prospective study comparing 5-aminolaevulinic acid nanoemulsion (BF-200) with methyl-5-aminolaevulinate,” Br. J. Dermatol. 171(5), 1172–1180 (2014).
[Crossref] [PubMed]

Karsi, A.

A. Karsi and M. L. Lawrence, “Broad host range fluorescence and bioluminescence expression vectors for Gram-negative bacteria,” Plasmid 57(3), 286–295 (2007).
[Crossref] [PubMed]

Kato, H.

K. Komagoe, H. Kato, T. Inoue, and T. Katsu, “Continuous real-time monitoring of cationic porphyrin-induced photodynamic inactivation of bacterial membrane functions using electrochemical sensors,” Photochem. Photobiol. Sci. 10(7), 1181–1188 (2011).
[Crossref] [PubMed]

Katsu, T.

K. Komagoe, H. Kato, T. Inoue, and T. Katsu, “Continuous real-time monitoring of cationic porphyrin-induced photodynamic inactivation of bacterial membrane functions using electrochemical sensors,” Photochem. Photobiol. Sci. 10(7), 1181–1188 (2011).
[Crossref] [PubMed]

Kerob, D.

D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
[Crossref] [PubMed]

Kerrouche, N.

D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
[Crossref] [PubMed]

Keymel, K. R.

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

Komagoe, K.

K. Komagoe, H. Kato, T. Inoue, and T. Katsu, “Continuous real-time monitoring of cationic porphyrin-induced photodynamic inactivation of bacterial membrane functions using electrochemical sensors,” Photochem. Photobiol. Sci. 10(7), 1181–1188 (2011).
[Crossref] [PubMed]

König, B.

T. Maisch, A. Eichner, A. Späth, A. Gollmer, B. König, J. Regensburger, and W. Bäumler, “Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives,” PLoS One 9(12), e111792 (2014).
[Crossref] [PubMed]

Kurachi, C.

L. N. Dovigo, A. C. Pavarina, A. P. D. Ribeiro, I. L. Brunetti, C. A. S. Costa, D. P. Jacomassi, V. S. Bagnato, and C. Kurachi, “Investigation of the photodynamic effects of curcumin against Candida albicans,” Photochem. Photobiol. 87(4), 895–903 (2011).
[Crossref] [PubMed]

Kuznetsova, N. A.

N. A. Kuznetsova, N. S. Gretsova, E. A. Kalmykova, E. A. Makarova, S. N. Dashkevich, V. M. Negrimovskii, O. L. Kaliya, and E. A. Luk’yanets, “Relationship between the photochemical properties and structure of pophyrins and related compounds,” Russ. J. Gen. Chem. 70, 133–140 (2000).

Larkö, O.

M. B. Ericson, A. M. Wennberg, and O. Larkö, “Review of photodynamic therapy in actinic keratosis and basal cell carcinoma,” Ther. Clin. Risk Manag. 4(1), 1–9 (2008).
[PubMed]

Lawrence, M. L.

A. Karsi and M. L. Lawrence, “Broad host range fluorescence and bioluminescence expression vectors for Gram-negative bacteria,” Plasmid 57(3), 286–295 (2007).
[Crossref] [PubMed]

Li, L.

Z. Chen, Y. Zhang, D. Wang, L. Li, S. Zhou, J. H. Huang, J. Chen, P. Hu, and M. Huang, “Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection,” J. Biomed. Opt. 21(1), 018001 (2016).
[Crossref] [PubMed]

Z. Chen, S. Zhou, J. Chen, L. Li, P. Hu, S. Chen, and M. Huang, “An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy,” J. Lumin. 152, 103–107 (2014).
[Crossref]

Lin, M.

M. A. Paschoal, L. Santos-Pinto, M. Lin, and S. Duarte, “Streptococcus mutans photoinactivation by combination of short exposure of a broad-spectrum visible light and low concentrations of photosensitizers,” Photomed. Laser Surg. 32(3), 175–180 (2014).
[Crossref] [PubMed]

Liu, T.

Z. Xu, Y. Gao, S. Meng, B. Yang, L. Pang, C. Wang, and T. Liu, “Mechanism and In Vivo Evaluation: Photodynamic Antibacterial Chemotherapy of Lysine-Porphyrin Conjugate,” Front. Microbiol. 7, 242 (2016).
[Crossref] [PubMed]

Liu, W.

D. Wang, Y. Zhang, S. Yan, Z. Chen, Y. Deng, P. Xu, J. Chen, W. Liu, P. Hu, and M. Huang, “An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection,” J. Porphyr. Phthalocyanines 21, 205–210 (2017).

Lourenço, L. M.

L. Marciel, L. Teles, B. Moreira, M. Pacheco, L. M. Lourenço, M. G. Neves, J. P. Tomé, M. A. Faustino, and A. Almeida, “An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers,” Future Med. Chem. 9(4), 365–379 (2017).
[Crossref] [PubMed]

Luk’yanets, E. A.

N. A. Kuznetsova, N. S. Gretsova, E. A. Kalmykova, E. A. Makarova, S. N. Dashkevich, V. M. Negrimovskii, O. L. Kaliya, and E. A. Luk’yanets, “Relationship between the photochemical properties and structure of pophyrins and related compounds,” Russ. J. Gen. Chem. 70, 133–140 (2000).

Luo, Z.

Z. Chen, S. Zhou, J. Chen, Y. Deng, Z. Luo, H. Chen, M. R. Hamblin, and M. Huang, “Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy,” ChemMedChem 5(6), 890–898 (2010).
[Crossref] [PubMed]

MacKie, R. M.

C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol. 143(4), 767–772 (2000).
[Crossref] [PubMed]

Maisch, T.

T. Maisch, A. Eichner, A. Späth, A. Gollmer, B. König, J. Regensburger, and W. Bäumler, “Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives,” PLoS One 9(12), e111792 (2014).
[Crossref] [PubMed]

T. Maisch, F. Spannberger, J. Regensburger, A. Felgenträger, and W. Bäumler, “Fast and effective: intense pulse light photodynamic inactivation of bacteria,” J. Ind. Microbiol. Biotechnol. 39(7), 1013–1021 (2012).
[Crossref] [PubMed]

T. Maisch, J. Wagner, V. Papastamou, H. J. Nerl, K. A. Hiller, R. M. Szeimies, and G. Schmalz, “Combination of 10% EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro,” J. Appl. Microbiol. 107(5), 1569–1578 (2009).
[Crossref] [PubMed]

Makarova, E. A.

N. A. Kuznetsova, N. S. Gretsova, E. A. Kalmykova, E. A. Makarova, S. N. Dashkevich, V. M. Negrimovskii, O. L. Kaliya, and E. A. Luk’yanets, “Relationship between the photochemical properties and structure of pophyrins and related compounds,” Russ. J. Gen. Chem. 70, 133–140 (2000).

Mandadi, S.

S. Mandadi, T. Tominaga, M. Numazaki, N. Murayama, N. Saito, P. J. Armati, B. D. Roufogalis, and M. Tominaga, “Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCε-mediated phosphorylation at S800,” Pain 123(1), 106–116 (2006).
[Crossref] [PubMed]

Marciel, L.

L. Marciel, L. Teles, B. Moreira, M. Pacheco, L. M. Lourenço, M. G. Neves, J. P. Tomé, M. A. Faustino, and A. Almeida, “An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers,” Future Med. Chem. 9(4), 365–379 (2017).
[Crossref] [PubMed]

Meng, S.

Z. Xu, Y. Gao, S. Meng, B. Yang, L. Pang, C. Wang, and T. Liu, “Mechanism and In Vivo Evaluation: Photodynamic Antibacterial Chemotherapy of Lysine-Porphyrin Conjugate,” Front. Microbiol. 7, 242 (2016).
[Crossref] [PubMed]

Metcalf, D.

D. Metcalf, C. Robinson, D. Devine, and S. Wood, “Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation,” J. Antimicrob. Chemother. 58(1), 190–192 (2006).
[Crossref] [PubMed]

S. Wood, D. Metcalf, D. Devine, and C. Robinson, “Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms,” J. Antimicrob. Chemother. 57(4), 680–684 (2006).
[Crossref] [PubMed]

Mirshekari, H.

M. Karimi, P. Sahandi Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, and M. R. Hamblin, “Smart nanostructures for cargo delivery: Uncaging and activating by light,” J. Am. Chem. Soc. 139(13), 4584–4610 (2017).
[Crossref] [PubMed]

Moore, J. V.

C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol. 143(4), 767–772 (2000).
[Crossref] [PubMed]

Moreira, B.

L. Marciel, L. Teles, B. Moreira, M. Pacheco, L. M. Lourenço, M. G. Neves, J. P. Tomé, M. A. Faustino, and A. Almeida, “An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers,” Future Med. Chem. 9(4), 365–379 (2017).
[Crossref] [PubMed]

Morton, C. A.

C. A. Morton, R. M. Szeimies, A. Sidoroff, and L. R. Braathen, “European guidelines for topical photodynamic therapy part 1: treatment delivery and current indications - actinic keratoses, Bowen’s disease, basal cell carcinoma,” J. Eur. Acad. Dermatol. Venereol. 27(5), 536–544 (2013).
[Crossref] [PubMed]

C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol. 143(4), 767–772 (2000).
[Crossref] [PubMed]

Murayama, N.

S. Mandadi, T. Tominaga, M. Numazaki, N. Murayama, N. Saito, P. J. Armati, B. D. Roufogalis, and M. Tominaga, “Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCε-mediated phosphorylation at S800,” Pain 123(1), 106–116 (2006).
[Crossref] [PubMed]

Murrell, D. F.

D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
[Crossref] [PubMed]

Negrimovskii, V. M.

N. A. Kuznetsova, N. S. Gretsova, E. A. Kalmykova, E. A. Makarova, S. N. Dashkevich, V. M. Negrimovskii, O. L. Kaliya, and E. A. Luk’yanets, “Relationship between the photochemical properties and structure of pophyrins and related compounds,” Russ. J. Gen. Chem. 70, 133–140 (2000).

Neittaanmäki-Perttu, N.

N. Neittaanmäki-Perttu, T. T. Karppinen, M. Grönroos, T. T. Tani, and E. Snellman, “Daylight photodynamic therapy for actinic keratoses: a randomized double-blinded nonsponsored prospective study comparing 5-aminolaevulinic acid nanoemulsion (BF-200) with methyl-5-aminolaevulinate,” Br. J. Dermatol. 171(5), 1172–1180 (2014).
[Crossref] [PubMed]

Nerl, H. J.

T. Maisch, J. Wagner, V. Papastamou, H. J. Nerl, K. A. Hiller, R. M. Szeimies, and G. Schmalz, “Combination of 10% EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro,” J. Appl. Microbiol. 107(5), 1569–1578 (2009).
[Crossref] [PubMed]

Neves, M. G.

L. Marciel, L. Teles, B. Moreira, M. Pacheco, L. M. Lourenço, M. G. Neves, J. P. Tomé, M. A. Faustino, and A. Almeida, “An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers,” Future Med. Chem. 9(4), 365–379 (2017).
[Crossref] [PubMed]

J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, and J. P. Tomé, “Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochem. Photobiol. 88(3), 537–547 (2012).
[Crossref] [PubMed]

E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, and A. Almeida, “Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins,” BMC Microbiol. 9(1), 70 (2009).
[Crossref] [PubMed]

Niwa, A. B. M.

Y. N. Chaves, L. A. Torezan, A. B. M. Niwa, J. A. Sanches Junior, and C. Festa Neto, “Pain in photodynamic therapy: mechanism of action and management strategies,” An. Bras. Dermatol. 87(4), 521–529 (2012).
[Crossref] [PubMed]

Numazaki, M.

S. Mandadi, T. Tominaga, M. Numazaki, N. Murayama, N. Saito, P. J. Armati, B. D. Roufogalis, and M. Tominaga, “Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCε-mediated phosphorylation at S800,” Pain 123(1), 106–116 (2006).
[Crossref] [PubMed]

Nyokong, T.

T. Nyokong, “Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines,” Coord. Chem. Rev. 251(13-14), 1707–1722 (2007).
[Crossref]

Oseroff, A. R.

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

Pacheco, M.

L. Marciel, L. Teles, B. Moreira, M. Pacheco, L. M. Lourenço, M. G. Neves, J. P. Tomé, M. A. Faustino, and A. Almeida, “An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers,” Future Med. Chem. 9(4), 365–379 (2017).
[Crossref] [PubMed]

Pang, L.

Z. Xu, Y. Gao, S. Meng, B. Yang, L. Pang, C. Wang, and T. Liu, “Mechanism and In Vivo Evaluation: Photodynamic Antibacterial Chemotherapy of Lysine-Porphyrin Conjugate,” Front. Microbiol. 7, 242 (2016).
[Crossref] [PubMed]

Paoli, J.

C. B. Halldin, M. Gillstedt, J. Paoli, A.-M. Wennberg, and H. Gonzalez, “Predictors of pain associated with photodynamic therapy: a retrospective study of 658 treatments,” Acta Derm. Venereol. 91(5), 545–551 (2011).
[Crossref] [PubMed]

Papastamou, V.

T. Maisch, J. Wagner, V. Papastamou, H. J. Nerl, K. A. Hiller, R. M. Szeimies, and G. Schmalz, “Combination of 10% EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro,” J. Appl. Microbiol. 107(5), 1569–1578 (2009).
[Crossref] [PubMed]

Paquette, A. D.

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

Paragh, G.

J. M. Ang, I. B. Riaz, M. U. Kamal, G. Paragh, and N. C. Zeitouni, “Photodynamic therapy and pain: A systematic review,” Photodiagn. Photodyn. Ther. 19, 308–344 (2017).
[Crossref] [PubMed]

Paschoal, M. A.

M. A. Paschoal, L. Santos-Pinto, M. Lin, and S. Duarte, “Streptococcus mutans photoinactivation by combination of short exposure of a broad-spectrum visible light and low concentrations of photosensitizers,” Photomed. Laser Surg. 32(3), 175–180 (2014).
[Crossref] [PubMed]

Patel, P.

M. Boen, J. Brownell, P. Patel, and M. M. Tsoukas, “The Role of Photodynamic Therapy in Acne: An Evidence-Based Review,” Am. J. Clin. Dermatol. 18(3), 311–321 (2017).
[Crossref] [PubMed]

Patterson, M. S.

J. S. Dysart, G. Singh, and M. S. Patterson, “Calculation of singlet oxygen dose from photosensitizer fluorescence and photobleaching during mTHPC photodynamic therapy of MLL cells,” Photochem. Photobiol. 81(1), 196–205 (2005).
[Crossref] [PubMed]

Pavarina, A. C.

L. N. Dovigo, A. C. Pavarina, A. P. D. Ribeiro, I. L. Brunetti, C. A. S. Costa, D. P. Jacomassi, V. S. Bagnato, and C. Kurachi, “Investigation of the photodynamic effects of curcumin against Candida albicans,” Photochem. Photobiol. 87(4), 895–903 (2011).
[Crossref] [PubMed]

Pereira, J. B.

J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, and J. P. Tomé, “Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochem. Photobiol. 88(3), 537–547 (2012).
[Crossref] [PubMed]

Philipsen, P. A.

S. R. Wiegell, M. Haedersdal, P. A. Philipsen, P. Eriksen, C. D. Enk, and H. C. Wulf, “Continuous activation of PpIX by daylight is as effective as and less painful than conventional photodynamic therapy for actinic keratoses; a randomized, controlled, single-blinded study,” Br. J. Dermatol. 158(4), 740–746 (2008).
[Crossref] [PubMed]

Regensburger, J.

T. Maisch, A. Eichner, A. Späth, A. Gollmer, B. König, J. Regensburger, and W. Bäumler, “Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives,” PLoS One 9(12), e111792 (2014).
[Crossref] [PubMed]

T. Maisch, F. Spannberger, J. Regensburger, A. Felgenträger, and W. Bäumler, “Fast and effective: intense pulse light photodynamic inactivation of bacteria,” J. Ind. Microbiol. Biotechnol. 39(7), 1013–1021 (2012).
[Crossref] [PubMed]

Riaz, I. B.

J. M. Ang, I. B. Riaz, M. U. Kamal, G. Paragh, and N. C. Zeitouni, “Photodynamic therapy and pain: A systematic review,” Photodiagn. Photodyn. Ther. 19, 308–344 (2017).
[Crossref] [PubMed]

Ribeiro, A. P. D.

L. N. Dovigo, A. C. Pavarina, A. P. D. Ribeiro, I. L. Brunetti, C. A. S. Costa, D. P. Jacomassi, V. S. Bagnato, and C. Kurachi, “Investigation of the photodynamic effects of curcumin against Candida albicans,” Photochem. Photobiol. 87(4), 895–903 (2011).
[Crossref] [PubMed]

Robinson, C.

D. Metcalf, C. Robinson, D. Devine, and S. Wood, “Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation,” J. Antimicrob. Chemother. 58(1), 190–192 (2006).
[Crossref] [PubMed]

S. Wood, D. Metcalf, D. Devine, and C. Robinson, “Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms,” J. Antimicrob. Chemother. 57(4), 680–684 (2006).
[Crossref] [PubMed]

Rosso, S.

S. R. Wiegell, S. Fabricius, J. Heydenreich, C. D. Enk, S. Rosso, W. Bäumler, B. T. Baldursson, and H. C. Wulf, “Weather conditions and daylight-mediated photodynamic therapy: protoporphyrin IX-weighted daylight doses measured in six geographical locations,” Br. J. Dermatol. 168(1), 186–191 (2013).
[Crossref] [PubMed]

Roufogalis, B. D.

S. Mandadi, T. Tominaga, M. Numazaki, N. Murayama, N. Saito, P. J. Armati, B. D. Roufogalis, and M. Tominaga, “Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCε-mediated phosphorylation at S800,” Pain 123(1), 106–116 (2006).
[Crossref] [PubMed]

Rubel, D. M.

D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
[Crossref] [PubMed]

Sahandi Zangabad, P.

M. Karimi, P. Sahandi Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, and M. R. Hamblin, “Smart nanostructures for cargo delivery: Uncaging and activating by light,” J. Am. Chem. Soc. 139(13), 4584–4610 (2017).
[Crossref] [PubMed]

Saito, N.

S. Mandadi, T. Tominaga, M. Numazaki, N. Murayama, N. Saito, P. J. Armati, B. D. Roufogalis, and M. Tominaga, “Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCε-mediated phosphorylation at S800,” Pain 123(1), 106–116 (2006).
[Crossref] [PubMed]

Sanches Junior, J. A.

Y. N. Chaves, L. A. Torezan, A. B. M. Niwa, J. A. Sanches Junior, and C. Festa Neto, “Pain in photodynamic therapy: mechanism of action and management strategies,” An. Bras. Dermatol. 87(4), 521–529 (2012).
[Crossref] [PubMed]

Santos-Pinto, L.

M. A. Paschoal, L. Santos-Pinto, M. Lin, and S. Duarte, “Streptococcus mutans photoinactivation by combination of short exposure of a broad-spectrum visible light and low concentrations of photosensitizers,” Photomed. Laser Surg. 32(3), 175–180 (2014).
[Crossref] [PubMed]

Schmalz, G.

T. Maisch, J. Wagner, V. Papastamou, H. J. Nerl, K. A. Hiller, R. M. Szeimies, and G. Schmalz, “Combination of 10% EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro,” J. Appl. Microbiol. 107(5), 1569–1578 (2009).
[Crossref] [PubMed]

See, J. A.

D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
[Crossref] [PubMed]

Shumack, S.

D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
[Crossref] [PubMed]

Sidoroff, A.

C. A. Morton, R. M. Szeimies, A. Sidoroff, and L. R. Braathen, “European guidelines for topical photodynamic therapy part 1: treatment delivery and current indications - actinic keratoses, Bowen’s disease, basal cell carcinoma,” J. Eur. Acad. Dermatol. Venereol. 27(5), 536–544 (2013).
[Crossref] [PubMed]

Singh, G.

J. S. Dysart, G. Singh, and M. S. Patterson, “Calculation of singlet oxygen dose from photosensitizer fluorescence and photobleaching during mTHPC photodynamic therapy of MLL cells,” Photochem. Photobiol. 81(1), 196–205 (2005).
[Crossref] [PubMed]

Snellman, E.

N. Neittaanmäki-Perttu, T. T. Karppinen, M. Grönroos, T. T. Tani, and E. Snellman, “Daylight photodynamic therapy for actinic keratoses: a randomized double-blinded nonsponsored prospective study comparing 5-aminolaevulinic acid nanoemulsion (BF-200) with methyl-5-aminolaevulinate,” Br. J. Dermatol. 171(5), 1172–1180 (2014).
[Crossref] [PubMed]

Spannberger, F.

T. Maisch, F. Spannberger, J. Regensburger, A. Felgenträger, and W. Bäumler, “Fast and effective: intense pulse light photodynamic inactivation of bacteria,” J. Ind. Microbiol. Biotechnol. 39(7), 1013–1021 (2012).
[Crossref] [PubMed]

Späth, A.

T. Maisch, A. Eichner, A. Späth, A. Gollmer, B. König, J. Regensburger, and W. Bäumler, “Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives,” PLoS One 9(12), e111792 (2014).
[Crossref] [PubMed]

Spelman, L.

D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
[Crossref] [PubMed]

Szeimies, R. M.

C. A. Morton, R. M. Szeimies, A. Sidoroff, and L. R. Braathen, “European guidelines for topical photodynamic therapy part 1: treatment delivery and current indications - actinic keratoses, Bowen’s disease, basal cell carcinoma,” J. Eur. Acad. Dermatol. Venereol. 27(5), 536–544 (2013).
[Crossref] [PubMed]

T. Maisch, J. Wagner, V. Papastamou, H. J. Nerl, K. A. Hiller, R. M. Szeimies, and G. Schmalz, “Combination of 10% EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro,” J. Appl. Microbiol. 107(5), 1569–1578 (2009).
[Crossref] [PubMed]

Tani, T. T.

N. Neittaanmäki-Perttu, T. T. Karppinen, M. Grönroos, T. T. Tani, and E. Snellman, “Daylight photodynamic therapy for actinic keratoses: a randomized double-blinded nonsponsored prospective study comparing 5-aminolaevulinic acid nanoemulsion (BF-200) with methyl-5-aminolaevulinate,” Br. J. Dermatol. 171(5), 1172–1180 (2014).
[Crossref] [PubMed]

Teles, L.

L. Marciel, L. Teles, B. Moreira, M. Pacheco, L. M. Lourenço, M. G. Neves, J. P. Tomé, M. A. Faustino, and A. Almeida, “An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers,” Future Med. Chem. 9(4), 365–379 (2017).
[Crossref] [PubMed]

Thaysen-Petersen, D.

K. Togsverd-Bo, C. S. Haak, D. Thaysen-Petersen, H. C. Wulf, R. R. Anderson, and M. Hædersdal, “Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial,” Br. J. Dermatol. 166(6), 1262–1269 (2012).
[Crossref] [PubMed]

Togsverd-Bo, K.

K. Togsverd-Bo, C. S. Haak, D. Thaysen-Petersen, H. C. Wulf, R. R. Anderson, and M. Hædersdal, “Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial,” Br. J. Dermatol. 166(6), 1262–1269 (2012).
[Crossref] [PubMed]

Tomé, A. C.

E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, and A. Almeida, “Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins,” BMC Microbiol. 9(1), 70 (2009).
[Crossref] [PubMed]

Tomé, J. P.

L. Marciel, L. Teles, B. Moreira, M. Pacheco, L. M. Lourenço, M. G. Neves, J. P. Tomé, M. A. Faustino, and A. Almeida, “An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers,” Future Med. Chem. 9(4), 365–379 (2017).
[Crossref] [PubMed]

J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, and J. P. Tomé, “Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochem. Photobiol. 88(3), 537–547 (2012).
[Crossref] [PubMed]

E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, and A. Almeida, “Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins,” BMC Microbiol. 9(1), 70 (2009).
[Crossref] [PubMed]

Tominaga, M.

S. Mandadi, T. Tominaga, M. Numazaki, N. Murayama, N. Saito, P. J. Armati, B. D. Roufogalis, and M. Tominaga, “Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCε-mediated phosphorylation at S800,” Pain 123(1), 106–116 (2006).
[Crossref] [PubMed]

Tominaga, T.

S. Mandadi, T. Tominaga, M. Numazaki, N. Murayama, N. Saito, P. J. Armati, B. D. Roufogalis, and M. Tominaga, “Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCε-mediated phosphorylation at S800,” Pain 123(1), 106–116 (2006).
[Crossref] [PubMed]

Torezan, L. A.

Y. N. Chaves, L. A. Torezan, A. B. M. Niwa, J. A. Sanches Junior, and C. Festa Neto, “Pain in photodynamic therapy: mechanism of action and management strategies,” An. Bras. Dermatol. 87(4), 521–529 (2012).
[Crossref] [PubMed]

Tsoukas, M. M.

M. Boen, J. Brownell, P. Patel, and M. M. Tsoukas, “The Role of Photodynamic Therapy in Acne: An Evidence-Based Review,” Am. J. Clin. Dermatol. 18(3), 311–321 (2017).
[Crossref] [PubMed]

Vecchio, D.

R. Yin, T. Dai, P. Avci, A. E. Jorge, W. C. de Melo, D. Vecchio, Y. Y. Huang, A. Gupta, and M. R. Hamblin, “Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond,” Curr. Opin. Pharmacol. 13(5), 731–762 (2013).
[Crossref] [PubMed]

Wagner, J.

T. Maisch, J. Wagner, V. Papastamou, H. J. Nerl, K. A. Hiller, R. M. Szeimies, and G. Schmalz, “Combination of 10% EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro,” J. Appl. Microbiol. 107(5), 1569–1578 (2009).
[Crossref] [PubMed]

Wang, C.

Z. Xu, Y. Gao, S. Meng, B. Yang, L. Pang, C. Wang, and T. Liu, “Mechanism and In Vivo Evaluation: Photodynamic Antibacterial Chemotherapy of Lysine-Porphyrin Conjugate,” Front. Microbiol. 7, 242 (2016).
[Crossref] [PubMed]

Wang, D.

D. Wang, Y. Zhang, S. Yan, Z. Chen, Y. Deng, P. Xu, J. Chen, W. Liu, P. Hu, and M. Huang, “An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection,” J. Porphyr. Phthalocyanines 21, 205–210 (2017).

Z. Chen, Y. Zhang, D. Wang, L. Li, S. Zhou, J. H. Huang, J. Chen, P. Hu, and M. Huang, “Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection,” J. Biomed. Opt. 21(1), 018001 (2016).
[Crossref] [PubMed]

Wang, J.

J. Chen, Z. Chen, Y. Zheng, S. Zhou, J. Wang, N. Chen, J. Huang, F. Yan, and M. Huang, “Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment,” J. Porphyr. Phthalocyanines 15(04), 293–299 (2011).
[Crossref]

J. Chen, N. Chen, J. Huang, J. Wang, and M. Huang, “Derivatizable phthalocyanine with single carboxyl group: synthesis and purification,” Inorg. Chem. Commun. 9(3), 313–315 (2006).
[Crossref]

Wennberg, A. M.

M. B. Ericson, A. M. Wennberg, and O. Larkö, “Review of photodynamic therapy in actinic keratosis and basal cell carcinoma,” Ther. Clin. Risk Manag. 4(1), 1–9 (2008).
[PubMed]

Wennberg, A.-M.

C. B. Halldin, M. Gillstedt, J. Paoli, A.-M. Wennberg, and H. Gonzalez, “Predictors of pain associated with photodynamic therapy: a retrospective study of 658 treatments,” Acta Derm. Venereol. 91(5), 545–551 (2011).
[Crossref] [PubMed]

Whitehurst, C.

C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol. 143(4), 767–772 (2000).
[Crossref] [PubMed]

Wiegell, S. R.

S. R. Wiegell, S. Fabricius, J. Heydenreich, C. D. Enk, S. Rosso, W. Bäumler, B. T. Baldursson, and H. C. Wulf, “Weather conditions and daylight-mediated photodynamic therapy: protoporphyrin IX-weighted daylight doses measured in six geographical locations,” Br. J. Dermatol. 168(1), 186–191 (2013).
[Crossref] [PubMed]

S. R. Wiegell, M. Haedersdal, P. A. Philipsen, P. Eriksen, C. D. Enk, and H. C. Wulf, “Continuous activation of PpIX by daylight is as effective as and less painful than conventional photodynamic therapy for actinic keratoses; a randomized, controlled, single-blinded study,” Br. J. Dermatol. 158(4), 740–746 (2008).
[Crossref] [PubMed]

Wood, S.

S. Wood, D. Metcalf, D. Devine, and C. Robinson, “Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms,” J. Antimicrob. Chemother. 57(4), 680–684 (2006).
[Crossref] [PubMed]

D. Metcalf, C. Robinson, D. Devine, and S. Wood, “Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation,” J. Antimicrob. Chemother. 58(1), 190–192 (2006).
[Crossref] [PubMed]

Wulf, H. C.

D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
[Crossref] [PubMed]

S. R. Wiegell, S. Fabricius, J. Heydenreich, C. D. Enk, S. Rosso, W. Bäumler, B. T. Baldursson, and H. C. Wulf, “Weather conditions and daylight-mediated photodynamic therapy: protoporphyrin IX-weighted daylight doses measured in six geographical locations,” Br. J. Dermatol. 168(1), 186–191 (2013).
[Crossref] [PubMed]

K. Togsverd-Bo, C. S. Haak, D. Thaysen-Petersen, H. C. Wulf, R. R. Anderson, and M. Hædersdal, “Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial,” Br. J. Dermatol. 166(6), 1262–1269 (2012).
[Crossref] [PubMed]

S. R. Wiegell, M. Haedersdal, P. A. Philipsen, P. Eriksen, C. D. Enk, and H. C. Wulf, “Continuous activation of PpIX by daylight is as effective as and less painful than conventional photodynamic therapy for actinic keratoses; a randomized, controlled, single-blinded study,” Br. J. Dermatol. 158(4), 740–746 (2008).
[Crossref] [PubMed]

Xu, P.

D. Wang, Y. Zhang, S. Yan, Z. Chen, Y. Deng, P. Xu, J. Chen, W. Liu, P. Hu, and M. Huang, “An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection,” J. Porphyr. Phthalocyanines 21, 205–210 (2017).

Xu, Z.

Z. Xu, Y. Gao, S. Meng, B. Yang, L. Pang, C. Wang, and T. Liu, “Mechanism and In Vivo Evaluation: Photodynamic Antibacterial Chemotherapy of Lysine-Porphyrin Conjugate,” Front. Microbiol. 7, 242 (2016).
[Crossref] [PubMed]

Yan, F.

J. Chen, Z. Chen, Y. Zheng, S. Zhou, J. Wang, N. Chen, J. Huang, F. Yan, and M. Huang, “Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment,” J. Porphyr. Phthalocyanines 15(04), 293–299 (2011).
[Crossref]

Yan, S.

D. Wang, Y. Zhang, S. Yan, Z. Chen, Y. Deng, P. Xu, J. Chen, W. Liu, P. Hu, and M. Huang, “An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection,” J. Porphyr. Phthalocyanines 21, 205–210 (2017).

Yang, B.

Z. Xu, Y. Gao, S. Meng, B. Yang, L. Pang, C. Wang, and T. Liu, “Mechanism and In Vivo Evaluation: Photodynamic Antibacterial Chemotherapy of Lysine-Porphyrin Conjugate,” Front. Microbiol. 7, 242 (2016).
[Crossref] [PubMed]

Yin, R.

R. Yin, T. Dai, P. Avci, A. E. Jorge, W. C. de Melo, D. Vecchio, Y. Y. Huang, A. Gupta, and M. R. Hamblin, “Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond,” Curr. Opin. Pharmacol. 13(5), 731–762 (2013).
[Crossref] [PubMed]

Zeitouni, N. C.

J. M. Ang, I. B. Riaz, M. U. Kamal, G. Paragh, and N. C. Zeitouni, “Photodynamic therapy and pain: A systematic review,” Photodiagn. Photodyn. Ther. 19, 308–344 (2017).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, K. Zheng, Z. Chen, J. Chen, P. Hu, L. Cai, Z. Iqbal, and M. Huang, “Rapid killing of bacteria by a new type of photosensitizer,” Appl. Microbiol. Biotechnol. 101(11), 4691–4700 (2017).
[Crossref] [PubMed]

D. Wang, Y. Zhang, S. Yan, Z. Chen, Y. Deng, P. Xu, J. Chen, W. Liu, P. Hu, and M. Huang, “An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection,” J. Porphyr. Phthalocyanines 21, 205–210 (2017).

Z. Chen, Y. Zhang, D. Wang, L. Li, S. Zhou, J. H. Huang, J. Chen, P. Hu, and M. Huang, “Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection,” J. Biomed. Opt. 21(1), 018001 (2016).
[Crossref] [PubMed]

Zheng, K.

Y. Zhang, K. Zheng, Z. Chen, J. Chen, P. Hu, L. Cai, Z. Iqbal, and M. Huang, “Rapid killing of bacteria by a new type of photosensitizer,” Appl. Microbiol. Biotechnol. 101(11), 4691–4700 (2017).
[Crossref] [PubMed]

Zheng, Y.

J. Chen, Z. Chen, Y. Zheng, S. Zhou, J. Wang, N. Chen, J. Huang, F. Yan, and M. Huang, “Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment,” J. Porphyr. Phthalocyanines 15(04), 293–299 (2011).
[Crossref]

Zhou, S.

Z. Chen, Y. Zhang, D. Wang, L. Li, S. Zhou, J. H. Huang, J. Chen, P. Hu, and M. Huang, “Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection,” J. Biomed. Opt. 21(1), 018001 (2016).
[Crossref] [PubMed]

Z. Chen, S. Zhou, J. Chen, L. Li, P. Hu, S. Chen, and M. Huang, “An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy,” J. Lumin. 152, 103–107 (2014).
[Crossref]

J. Chen, Z. Chen, Y. Zheng, S. Zhou, J. Wang, N. Chen, J. Huang, F. Yan, and M. Huang, “Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment,” J. Porphyr. Phthalocyanines 15(04), 293–299 (2011).
[Crossref]

Z. Chen, S. Zhou, J. Chen, Y. Deng, Z. Luo, H. Chen, M. R. Hamblin, and M. Huang, “Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy,” ChemMedChem 5(6), 890–898 (2010).
[Crossref] [PubMed]

Acta Derm. Venereol. (1)

C. B. Halldin, M. Gillstedt, J. Paoli, A.-M. Wennberg, and H. Gonzalez, “Predictors of pain associated with photodynamic therapy: a retrospective study of 658 treatments,” Acta Derm. Venereol. 91(5), 545–551 (2011).
[Crossref] [PubMed]

Am. J. Clin. Dermatol. (1)

M. Boen, J. Brownell, P. Patel, and M. M. Tsoukas, “The Role of Photodynamic Therapy in Acne: An Evidence-Based Review,” Am. J. Clin. Dermatol. 18(3), 311–321 (2017).
[Crossref] [PubMed]

An. Bras. Dermatol. (1)

Y. N. Chaves, L. A. Torezan, A. B. M. Niwa, J. A. Sanches Junior, and C. Festa Neto, “Pain in photodynamic therapy: mechanism of action and management strategies,” An. Bras. Dermatol. 87(4), 521–529 (2012).
[Crossref] [PubMed]

Appl. Microbiol. Biotechnol. (1)

Y. Zhang, K. Zheng, Z. Chen, J. Chen, P. Hu, L. Cai, Z. Iqbal, and M. Huang, “Rapid killing of bacteria by a new type of photosensitizer,” Appl. Microbiol. Biotechnol. 101(11), 4691–4700 (2017).
[Crossref] [PubMed]

BMC Microbiol. (1)

E. Alves, L. Costa, C. M. Carvalho, J. P. Tomé, M. A. Faustino, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, and A. Almeida, “Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins,” BMC Microbiol. 9(1), 70 (2009).
[Crossref] [PubMed]

Br. J. Dermatol. (6)

D. M. Rubel, L. Spelman, D. F. Murrell, J. A. See, D. Hewitt, P. Foley, C. Bosc, D. Kerob, N. Kerrouche, H. C. Wulf, and S. Shumack, “Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment: a randomized controlled trial,” Br. J. Dermatol. 171(5), 1164–1171 (2014).
[Crossref] [PubMed]

N. Neittaanmäki-Perttu, T. T. Karppinen, M. Grönroos, T. T. Tani, and E. Snellman, “Daylight photodynamic therapy for actinic keratoses: a randomized double-blinded nonsponsored prospective study comparing 5-aminolaevulinic acid nanoemulsion (BF-200) with methyl-5-aminolaevulinate,” Br. J. Dermatol. 171(5), 1172–1180 (2014).
[Crossref] [PubMed]

S. R. Wiegell, S. Fabricius, J. Heydenreich, C. D. Enk, S. Rosso, W. Bäumler, B. T. Baldursson, and H. C. Wulf, “Weather conditions and daylight-mediated photodynamic therapy: protoporphyrin IX-weighted daylight doses measured in six geographical locations,” Br. J. Dermatol. 168(1), 186–191 (2013).
[Crossref] [PubMed]

S. R. Wiegell, M. Haedersdal, P. A. Philipsen, P. Eriksen, C. D. Enk, and H. C. Wulf, “Continuous activation of PpIX by daylight is as effective as and less painful than conventional photodynamic therapy for actinic keratoses; a randomized, controlled, single-blinded study,” Br. J. Dermatol. 158(4), 740–746 (2008).
[Crossref] [PubMed]

K. Togsverd-Bo, C. S. Haak, D. Thaysen-Petersen, H. C. Wulf, R. R. Anderson, and M. Hædersdal, “Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial,” Br. J. Dermatol. 166(6), 1262–1269 (2012).
[Crossref] [PubMed]

C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol. 143(4), 767–772 (2000).
[Crossref] [PubMed]

ChemMedChem (1)

Z. Chen, S. Zhou, J. Chen, Y. Deng, Z. Luo, H. Chen, M. R. Hamblin, and M. Huang, “Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy,” ChemMedChem 5(6), 890–898 (2010).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

Coord. Chem. Rev. (1)

T. Nyokong, “Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines,” Coord. Chem. Rev. 251(13-14), 1707–1722 (2007).
[Crossref]

Curr. Opin. Pharmacol. (1)

R. Yin, T. Dai, P. Avci, A. E. Jorge, W. C. de Melo, D. Vecchio, Y. Y. Huang, A. Gupta, and M. R. Hamblin, “Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond,” Curr. Opin. Pharmacol. 13(5), 731–762 (2013).
[Crossref] [PubMed]

Front. Microbiol. (1)

Z. Xu, Y. Gao, S. Meng, B. Yang, L. Pang, C. Wang, and T. Liu, “Mechanism and In Vivo Evaluation: Photodynamic Antibacterial Chemotherapy of Lysine-Porphyrin Conjugate,” Front. Microbiol. 7, 242 (2016).
[Crossref] [PubMed]

Future Med. Chem. (1)

L. Marciel, L. Teles, B. Moreira, M. Pacheco, L. M. Lourenço, M. G. Neves, J. P. Tomé, M. A. Faustino, and A. Almeida, “An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers,” Future Med. Chem. 9(4), 365–379 (2017).
[Crossref] [PubMed]

Inorg. Chem. Commun. (1)

J. Chen, N. Chen, J. Huang, J. Wang, and M. Huang, “Derivatizable phthalocyanine with single carboxyl group: synthesis and purification,” Inorg. Chem. Commun. 9(3), 313–315 (2006).
[Crossref]

J. Am. Chem. Soc. (1)

M. Karimi, P. Sahandi Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, and M. R. Hamblin, “Smart nanostructures for cargo delivery: Uncaging and activating by light,” J. Am. Chem. Soc. 139(13), 4584–4610 (2017).
[Crossref] [PubMed]

J. Antimicrob. Chemother. (2)

D. Metcalf, C. Robinson, D. Devine, and S. Wood, “Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation,” J. Antimicrob. Chemother. 58(1), 190–192 (2006).
[Crossref] [PubMed]

S. Wood, D. Metcalf, D. Devine, and C. Robinson, “Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms,” J. Antimicrob. Chemother. 57(4), 680–684 (2006).
[Crossref] [PubMed]

J. Appl. Microbiol. (1)

T. Maisch, J. Wagner, V. Papastamou, H. J. Nerl, K. A. Hiller, R. M. Szeimies, and G. Schmalz, “Combination of 10% EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro,” J. Appl. Microbiol. 107(5), 1569–1578 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

Z. Chen, Y. Zhang, D. Wang, L. Li, S. Zhou, J. H. Huang, J. Chen, P. Hu, and M. Huang, “Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection,” J. Biomed. Opt. 21(1), 018001 (2016).
[Crossref] [PubMed]

J. Eur. Acad. Dermatol. Venereol. (1)

C. A. Morton, R. M. Szeimies, A. Sidoroff, and L. R. Braathen, “European guidelines for topical photodynamic therapy part 1: treatment delivery and current indications - actinic keratoses, Bowen’s disease, basal cell carcinoma,” J. Eur. Acad. Dermatol. Venereol. 27(5), 536–544 (2013).
[Crossref] [PubMed]

J. Ind. Microbiol. Biotechnol. (1)

T. Maisch, F. Spannberger, J. Regensburger, A. Felgenträger, and W. Bäumler, “Fast and effective: intense pulse light photodynamic inactivation of bacteria,” J. Ind. Microbiol. Biotechnol. 39(7), 1013–1021 (2012).
[Crossref] [PubMed]

J. Lumin. (1)

Z. Chen, S. Zhou, J. Chen, L. Li, P. Hu, S. Chen, and M. Huang, “An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy,” J. Lumin. 152, 103–107 (2014).
[Crossref]

J. Porphyr. Phthalocyanines (2)

J. Chen, Z. Chen, Y. Zheng, S. Zhou, J. Wang, N. Chen, J. Huang, F. Yan, and M. Huang, “Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment,” J. Porphyr. Phthalocyanines 15(04), 293–299 (2011).
[Crossref]

D. Wang, Y. Zhang, S. Yan, Z. Chen, Y. Deng, P. Xu, J. Chen, W. Liu, P. Hu, and M. Huang, “An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection,” J. Porphyr. Phthalocyanines 21, 205–210 (2017).

Pain (1)

S. Mandadi, T. Tominaga, M. Numazaki, N. Murayama, N. Saito, P. J. Armati, B. D. Roufogalis, and M. Tominaga, “Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCε-mediated phosphorylation at S800,” Pain 123(1), 106–116 (2006).
[Crossref] [PubMed]

Photochem. Photobiol. (3)

J. S. Dysart, G. Singh, and M. S. Patterson, “Calculation of singlet oxygen dose from photosensitizer fluorescence and photobleaching during mTHPC photodynamic therapy of MLL cells,” Photochem. Photobiol. 81(1), 196–205 (2005).
[Crossref] [PubMed]

L. N. Dovigo, A. C. Pavarina, A. P. D. Ribeiro, I. L. Brunetti, C. A. S. Costa, D. P. Jacomassi, V. S. Bagnato, and C. Kurachi, “Investigation of the photodynamic effects of curcumin against Candida albicans,” Photochem. Photobiol. 87(4), 895–903 (2011).
[Crossref] [PubMed]

J. B. Pereira, E. F. Carvalho, M. A. Faustino, R. Fernandes, M. G. Neves, J. A. Cavaleiro, N. C. Gomes, A. Cunha, A. Almeida, and J. P. Tomé, “Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers,” Photochem. Photobiol. 88(3), 537–547 (2012).
[Crossref] [PubMed]

Photochem. Photobiol. Sci. (2)

K. Komagoe, H. Kato, T. Inoue, and T. Katsu, “Continuous real-time monitoring of cationic porphyrin-induced photodynamic inactivation of bacterial membrane functions using electrochemical sensors,” Photochem. Photobiol. Sci. 10(7), 1181–1188 (2011).
[Crossref] [PubMed]

M. R. Hamblin and T. Hasan, “Photodynamic therapy: a new antimicrobial approach to infectious disease?” Photochem. Photobiol. Sci. 3(5), 436–450 (2004).
[Crossref] [PubMed]

Photodiagn. Photodyn. Ther. (1)

J. M. Ang, I. B. Riaz, M. U. Kamal, G. Paragh, and N. C. Zeitouni, “Photodynamic therapy and pain: A systematic review,” Photodiagn. Photodyn. Ther. 19, 308–344 (2017).
[Crossref] [PubMed]

Photomed. Laser Surg. (1)

M. A. Paschoal, L. Santos-Pinto, M. Lin, and S. Duarte, “Streptococcus mutans photoinactivation by combination of short exposure of a broad-spectrum visible light and low concentrations of photosensitizers,” Photomed. Laser Surg. 32(3), 175–180 (2014).
[Crossref] [PubMed]

Plasmid (1)

A. Karsi and M. L. Lawrence, “Broad host range fluorescence and bioluminescence expression vectors for Gram-negative bacteria,” Plasmid 57(3), 286–295 (2007).
[Crossref] [PubMed]

PLoS One (1)

T. Maisch, A. Eichner, A. Späth, A. Gollmer, B. König, J. Regensburger, and W. Bäumler, “Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives,” PLoS One 9(12), e111792 (2014).
[Crossref] [PubMed]

Russ. J. Gen. Chem. (1)

N. A. Kuznetsova, N. S. Gretsova, E. A. Kalmykova, E. A. Makarova, S. N. Dashkevich, V. M. Negrimovskii, O. L. Kaliya, and E. A. Luk’yanets, “Relationship between the photochemical properties and structure of pophyrins and related compounds,” Russ. J. Gen. Chem. 70, 133–140 (2000).

Ther. Clin. Risk Manag. (1)

M. B. Ericson, A. M. Wennberg, and O. Larkö, “Review of photodynamic therapy in actinic keratosis and basal cell carcinoma,” Ther. Clin. Risk Manag. 4(1), 1–9 (2008).
[PubMed]

Other (1)

T. G. S. Denis and M. R. Hamblin, “An introduction to photoantimicrobials: photodynamic therapy as a novel method of microbial pathogen eradication,” Science against microbial pathogens: communicating current research and technological advances, A. Méndez-Vilas (Ed.), 675–683 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Ultraviolet-Visible absorption spectrum of photosensitizer ZnPc(Lys)5 in DMSO (A), light intensity distribution of a custom-made planar LED (B) and phototoxicities of ZnPc-(Lys)5 against Escherichia coli DH5α (C) and Staphylococcus aureus Xen29 (D) after receiving 2-sec illumination (light fluence of 0.15 J/cm2) and total of 8 seconds illumination (light fluence of 0.6 J/cm2) from the custom-made planar LED (660 nm). Data represent the mean ± SEM of three independent experiments, each performed in triplicate.
Fig. 2
Fig. 2 Light intensity distribution of a house-hold lamp (A) and antibacterial effects of ZnPc(Lys)5 against Gram-negative bacteria E.coli (B) and Gram-positive bacteria S.aureus (C) under light illumination from either the custom-made planar LED (4.5 J/cm2, open circles) or a house-hold lamp (4.5 J/cm2, black triangles). Antibacterial effects of ZnPc(Lys)5 against E.coli (D) and S.aureus (E) were also measured by colony counting method under light illumination from a house-hold lamp (4.5 J/cm2).
Fig. 3
Fig. 3 Reduction of viable S.aureus in infected incision wounds on mice upon incubation with 5 μl of ZnPc(Lys)5 (1 mM) followed by a 10-min light exposure from either the custom-made planar LED (75 mW/cm2) or a house-hold lamp (12.5 mW/cm2). Values of colony forming units obtained from defined infected wounds. Data points are means of values from the wounds on six mice per group and bars are SEM.
Fig. 4
Fig. 4 Effects of ZnPc(Lys)5 on the healing of S.aureus infected excisional wounds in mice under the light exposure from different light sources. Each wound was infected with 1x106 cells of S. aureus 10 min before the photodynamic treatment with ZnPc(Lys)5. Wounds were measured in two dimensions every three days after the infection, and the areas were calculated. Data points are means of values from the corresponding wound on six mice and bars are SEM.

Tables (1)

Tables Icon

Table 1 Summary of PACT efficacy using white light as reported in literature

Metrics