Abstract

Finding a path towards a more accurate prediction of light propagation in human skin remains an aspiration of biomedical scientists working on cutaneous applications both for diagnostic and therapeutic reasons. The objective of this study was to investigate variability of the optical properties of human skin compartments reported in literature, to explore the underlying rational of this variability and to propose a dataset of values, to better represent an in vivo case and recommend a solution towards a more accurate prediction of light propagation through cutaneous compartments. To achieve this, we undertook a novel, logical yet simple approach. We first reviewed scientific articles published between 1981 and 2013 that reported on skin optical properties, to reveal the spread in the reported quantitative values. We found variations of up to 100-fold. Then we extracted the most trust-worthy datasets guided by a rule that the spectral properties should reflect the specific biochemical composition of each of the skin layers. This resulted in the narrowing of the spread in the calculated photon densities to 6-fold. We conclude with a recommendation to use the identified most robust datasets when estimating light propagation in human skin using Monte Carlo simulations. Alternatively, otherwise follow our proposed strategy to screen any new datasets to determine their biological relevance.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chromophore concentrations, absorption and scattering properties of human skin in-vivo

Sheng-Hao Tseng, Paulo Bargo, Anthony Durkin, and Nikiforos Kollias
Opt. Express 17(17) 14599-14617 (2009)

Physiological and structural characterization of human skin in vivo using combined photothermal radiometry and diffuse reflectance spectroscopy

Nina Verdel, Ana Marin, Matija Milanič, and Boris Majaron
Biomed. Opt. Express 10(2) 944-960 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Krutmann and A. Morita, “Mechanisms of Ultraviolet (UV) B and UVA Phototherapy,” J. Invest. Dermatol. Symposium Proceedings 4(1) 7–72, (1999).
    [Crossref]
  2. R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
    [Crossref] [PubMed]
  3. F. Vatansever and M.R. Hamblin, “Far infrared radiation (FIR): its biological effects and medical applications,” Photonics Lasers Med. 4, 255–266 (2012).
  4. D. Manstein, G. Herron, R. Sink, H. Tanner, and R.R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg Med 34(5), 426–438 (2004).
    [Crossref] [PubMed]
  5. H. Chung, T. Dai, S.K. Sharma, Y. Huang, J.D. Carroll, and M.R. Hamblin, “The nuts and bolts of low-level laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
    [Crossref]
  6. L.O. Svaasand, L.T.T. Norvang, E.J.J. Fiskerstrand, E.K.S Stopps, M.W Berns, and J.S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
    [Crossref]
  7. O. A. Ibrahimi, M. M. Avram, C. W. Hanke, S. L. Kilmer, and R. R. Anderson, “Laser hair removal,” Dermatologic Therapy 24(1), 107 (2011).
    [Crossref] [PubMed]
  8. M. Kupermanbeade, V.J. Levine, and R. Ashinoff, “Laser Removal of Tattoos,” Am. J. Clin. Dermatol. 2(1), 21–25 (2001).
    [Crossref]
  9. L.D. Woodruff, J.M. Bounkeo, W.M. Brannon, K.S. Dawes, C.D. Barham, D.L. Waddell, and C.S. Enwemeka, “The efficacy of laser therapy in wound repair: a meta-analysis of the literature,” Photomed. Laser. Surg. 22(3), 241 (2004).
    [Crossref]
  10. J. Preissig, K. Hamilton, and R. Markus, “Current Laser Resurfacing Technologies: A Review that Delves Beneath the Surface,” Seminars in plastic surgery 26(3), 109–116 (2012).
    [Crossref]
  11. C. Mignon, A.H. Rodriguez, J.A. Palero, B. Varghese, and M. Jurna, “Fractional laser photothermolysis using Bessel beams,” Biomed. Opt. Express 7(12), 4974 (2016).
    [Crossref] [PubMed]
  12. B. Varghese, V. Bonito, S. Turco, and R. Verhagen, “Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation,” International Society for Optics and Photonics, 97400I (2016).
  13. C. Mignon, N. V. Botchkareva, N. E. Uzunbajakava, and D. J. Tobin, “Photobiomodulation devices for hair regrowth and wound healing: a therapy full of promise but a literature full of confusion,” Exp Dermatol 251600–1625 (2016).
  14. R. J. Lanzafame, R. R. Blanche, R. P. Chiacchierini, E. R. Kazmirek, and J. A. Sklar, “The growth of human scalp hair in females using visible red light laser and LED sources,” Lasers Surg. Med. 46(8), 601–607 (2016).
    [Crossref]
  15. S. Buscone, A. N. Mardaryev, B. Raafs, J. W. Bikker, C. Sticht, N. Gretz, N. Farjo, N.E. Uzunbajakava, and N.V. Botchkareva, “A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle,” Lasers Surg. Med. 100222673 (2017).
    [Crossref] [PubMed]
  16. A. Weinstabl, S. Hoff-Lesch, H. F. Merk, and V. von Felbert, “Prospective Randomized Study on the Efficacy of Blue Light in the Treatment of Psoriasis Vulgaris,” Dermatology 223(3) 251 (2011).
    [PubMed]
  17. S. Pfaff, J. Liebmann, M. Born, H. F. Merk, and V. von Felbert, “Prospective Randomized Long-Term Study on the Efficacy and Safety of UV-Free Blue Light for Treating Mild Psoriasis Vulgaris,” Dermatology 231(1), 24–34 (2015).
    [Crossref] [PubMed]
  18. K. Nouri, “Lasers in dermatology and medicine,” (2012).
  19. S. L. Jacques, “Laser-tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am. 72(3), 531–558 (1992).
    [Crossref] [PubMed]
  20. C. Raulin, B. Greve, and H. Grema, “IPL technology: A review,” Lasers Surg. Med. 32(2), 78–87 (2003).
    [Crossref] [PubMed]
  21. A. I. Metelitsa and J. B. Green, “Home-use laser and light devices for the skin: an update,” Seminars in cutaneous medicine and surgery 30(3), 144–147 (2011).
    [Crossref] [PubMed]
  22. A.H. Gandjbakhche, R.F. Bonner, and R. Nossal, “Scaling relationships for anisotropic random walks,” J. Stat. Phys. 69(1), 35–53 (1992).
    [Crossref]
  23. L. Wang, S.L. Jacques, and L. Zheng, L, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131 (1995).
    [Crossref]
  24. I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741 (2002).
    [Crossref] [PubMed]
  25. C. Mignon, N.E. Uzunbajakava, N.V. Botchkareva, D.J. Tobin, and M. Zeitouny, “Impact of variability of the optical properties of skin layers on prediction of photon density using a Monte Carlo model,” Lasers Surg. Med., Wiley-Blackwell, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA, (2016).
  26. S. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–617 (2009).
    [Crossref] [PubMed]
  27. S.L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  28. V. Raicu and Y. Feldman, “Dielectric Relaxation in Biological Systems,” (2015).
  29. S. L. Jacques, R. D. Glickman, and J. A. Schwartz, “Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium,” Proc. SPIE 2681(1), 468–477 (2016).
    [Crossref]
  30. T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
    [Crossref] [PubMed]
  31. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin. Res. Technol. 7(1), 1–9 (2016).
    [Crossref]
  32. P.J.J. Dykes, M.B. Marks, and R. Marks, “Measurement of skin thickness: a comparison of two in vivo techniques with a conventional histometric method,” J. Invest. Dermatol. 69(3), 275–278 (1977).
    [Crossref] [PubMed]
  33. R.A.D. Booth, B.A. Goddard, and A. Paton, “Measurement of fat thickness in man: a comparison of ultrasound, Harpenden calipers and electrical conductivity,” Br. J. Nutr. 20(4), 719–725 (1966).
    [Crossref] [PubMed]
  34. R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol. B. Biol. 16(2), 127–140 (1992).
    [Crossref]
  35. S. Wan, R. R. Anderson, and J. A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol. 34(4), 493–499 (1981).
    [Crossref] [PubMed]
  36. R. R. Anderson and J. A. Parrish, “The Optics of Human Skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
    [Crossref] [PubMed]
  37. E. Salomatina, B. Jiang, J. Novak, and A.N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 64026–64029 (2006).
    [Crossref]
  38. C.R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
    [Crossref] [PubMed]
  39. A.N. Bashkatov, E.A. Genina, V.I. Kochubey, and V.V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
    [Crossref]
  40. G. Altshuler, M. Smirnov, and I. Yaroslavsky, “Lattice of optical islets: a novel treatment modality in photomedicine,” J. Phys. D 38(15), 2732–2747 (2005).
    [Crossref]
  41. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 16510957 (2006).
    [Crossref]
  42. L.F. Douven and G.W. Lucassen, “Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance,” Proc. SPIE 3914(1), 312–323 (2000).
    [Crossref]
  43. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34(31), 7410 (1995).
    [Crossref] [PubMed]
  44. F. A. Duck, “Physical Properties of Tissue,” (1990).
  45. F. Hillenkamp, “Lasers in Biology and Medicine,” (1980).
  46. G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-μm Wavelength Region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  47. M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin optics,” IEEE Transactions on Biomedical Engineering 36(12), 1146–1154 (1989).
    [Crossref] [PubMed]
  48. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
    [Crossref] [PubMed]
  49. S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporisation and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
    [Crossref] [PubMed]
  50. A. E. Karsten and J. E. Smit, “Modeling and Verification of Melanin Concentration on Human Skin Type,” Photochem. Photobiol. 88(2), 469–474 (2012).
    [Crossref]
  51. T. Sarna and R. C. Sealy, “Photoinduced oxygen consumption in melanin systems. Action spectra and quantum yields for eumelanin and synthetic melanin,” Photochem. Photobiol. 39(1), 69–74 (1984).
    [Crossref] [PubMed]
  52. A. Roggan, M. Friebel, K. Dörschel, M. Andreas, G. Müller, and G. Gerhard, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
    [Crossref] [PubMed]
  53. H.Q. Woodard and D.R. White, “The composition of body tissues,” Br. J. Radiol. 59(708), 7–1285, (1986).
    [Crossref]
  54. R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Determination of VIS-NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy,” Biomedical Topical Meeting SF4 (2004).
  55. C.C. Cooksey, B.K. Tsai, and D.W. Allen, “A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range,” Proceedings of SPIE 9082908206 (2014).
  56. N. Otberg, H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, and J. Lademann, “Variations of hair follicle size and distribution in different body sites,” The J. Invest. Dermatol. 122(1), 14–19 (2004).
    [Crossref] [PubMed]
  57. A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, “Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation,” Physiol. Rev. 84(4), 1155–1228 (2004).
    [Crossref] [PubMed]
  58. N. Joly-Tonetti, J. I. Wibawa, M. Bell, and D. J. Tobin, “Melanin fate in the human epidermis: a reassessment of how best to detect and analyse histologically,” Experimental. Dermatol. 25(7), 501–504 (2016).
    [Crossref]
  59. A. Huijser, A. Pezzellab, and V. Sundström, “Functionality of epidermal melanin pigments: current knowledge on UV-dissipative mechanisms and research perspectives,” Phys. Chem. Chem. Phys. 20(13), 9119–9127 (2011).
    [Crossref]

2017 (1)

S. Buscone, A. N. Mardaryev, B. Raafs, J. W. Bikker, C. Sticht, N. Gretz, N. Farjo, N.E. Uzunbajakava, and N.V. Botchkareva, “A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle,” Lasers Surg. Med. 100222673 (2017).
[Crossref] [PubMed]

2016 (6)

C. Mignon, A.H. Rodriguez, J.A. Palero, B. Varghese, and M. Jurna, “Fractional laser photothermolysis using Bessel beams,” Biomed. Opt. Express 7(12), 4974 (2016).
[Crossref] [PubMed]

C. Mignon, N. V. Botchkareva, N. E. Uzunbajakava, and D. J. Tobin, “Photobiomodulation devices for hair regrowth and wound healing: a therapy full of promise but a literature full of confusion,” Exp Dermatol 251600–1625 (2016).

R. J. Lanzafame, R. R. Blanche, R. P. Chiacchierini, E. R. Kazmirek, and J. A. Sklar, “The growth of human scalp hair in females using visible red light laser and LED sources,” Lasers Surg. Med. 46(8), 601–607 (2016).
[Crossref]

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, “Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium,” Proc. SPIE 2681(1), 468–477 (2016).
[Crossref]

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin. Res. Technol. 7(1), 1–9 (2016).
[Crossref]

N. Joly-Tonetti, J. I. Wibawa, M. Bell, and D. J. Tobin, “Melanin fate in the human epidermis: a reassessment of how best to detect and analyse histologically,” Experimental. Dermatol. 25(7), 501–504 (2016).
[Crossref]

2015 (1)

S. Pfaff, J. Liebmann, M. Born, H. F. Merk, and V. von Felbert, “Prospective Randomized Long-Term Study on the Efficacy and Safety of UV-Free Blue Light for Treating Mild Psoriasis Vulgaris,” Dermatology 231(1), 24–34 (2015).
[Crossref] [PubMed]

2014 (1)

C.C. Cooksey, B.K. Tsai, and D.W. Allen, “A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range,” Proceedings of SPIE 9082908206 (2014).

2013 (1)

S.L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (4)

A. E. Karsten and J. E. Smit, “Modeling and Verification of Melanin Concentration on Human Skin Type,” Photochem. Photobiol. 88(2), 469–474 (2012).
[Crossref]

J. Preissig, K. Hamilton, and R. Markus, “Current Laser Resurfacing Technologies: A Review that Delves Beneath the Surface,” Seminars in plastic surgery 26(3), 109–116 (2012).
[Crossref]

F. Vatansever and M.R. Hamblin, “Far infrared radiation (FIR): its biological effects and medical applications,” Photonics Lasers Med. 4, 255–266 (2012).

H. Chung, T. Dai, S.K. Sharma, Y. Huang, J.D. Carroll, and M.R. Hamblin, “The nuts and bolts of low-level laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

2011 (4)

O. A. Ibrahimi, M. M. Avram, C. W. Hanke, S. L. Kilmer, and R. R. Anderson, “Laser hair removal,” Dermatologic Therapy 24(1), 107 (2011).
[Crossref] [PubMed]

A. Weinstabl, S. Hoff-Lesch, H. F. Merk, and V. von Felbert, “Prospective Randomized Study on the Efficacy of Blue Light in the Treatment of Psoriasis Vulgaris,” Dermatology 223(3) 251 (2011).
[PubMed]

A. I. Metelitsa and J. B. Green, “Home-use laser and light devices for the skin: an update,” Seminars in cutaneous medicine and surgery 30(3), 144–147 (2011).
[Crossref] [PubMed]

A. Huijser, A. Pezzellab, and V. Sundström, “Functionality of epidermal melanin pigments: current knowledge on UV-dissipative mechanisms and research perspectives,” Phys. Chem. Chem. Phys. 20(13), 9119–9127 (2011).
[Crossref]

2009 (1)

2006 (3)

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A.N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 64026–64029 (2006).
[Crossref]

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 16510957 (2006).
[Crossref]

2005 (2)

A.N. Bashkatov, E.A. Genina, V.I. Kochubey, and V.V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
[Crossref]

G. Altshuler, M. Smirnov, and I. Yaroslavsky, “Lattice of optical islets: a novel treatment modality in photomedicine,” J. Phys. D 38(15), 2732–2747 (2005).
[Crossref]

2004 (4)

L.D. Woodruff, J.M. Bounkeo, W.M. Brannon, K.S. Dawes, C.D. Barham, D.L. Waddell, and C.S. Enwemeka, “The efficacy of laser therapy in wound repair: a meta-analysis of the literature,” Photomed. Laser. Surg. 22(3), 241 (2004).
[Crossref]

D. Manstein, G. Herron, R. Sink, H. Tanner, and R.R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg Med 34(5), 426–438 (2004).
[Crossref] [PubMed]

N. Otberg, H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, and J. Lademann, “Variations of hair follicle size and distribution in different body sites,” The J. Invest. Dermatol. 122(1), 14–19 (2004).
[Crossref] [PubMed]

A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, “Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation,” Physiol. Rev. 84(4), 1155–1228 (2004).
[Crossref] [PubMed]

2003 (1)

C. Raulin, B. Greve, and H. Grema, “IPL technology: A review,” Lasers Surg. Med. 32(2), 78–87 (2003).
[Crossref] [PubMed]

2002 (1)

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741 (2002).
[Crossref] [PubMed]

2001 (2)

M. Kupermanbeade, V.J. Levine, and R. Ashinoff, “Laser Removal of Tattoos,” Am. J. Clin. Dermatol. 2(1), 21–25 (2001).
[Crossref]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

2000 (1)

L.F. Douven and G.W. Lucassen, “Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance,” Proc. SPIE 3914(1), 312–323 (2000).
[Crossref]

1999 (2)

A. Roggan, M. Friebel, K. Dörschel, M. Andreas, G. Müller, and G. Gerhard, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

J. Krutmann and A. Morita, “Mechanisms of Ultraviolet (UV) B and UVA Phototherapy,” J. Invest. Dermatol. Symposium Proceedings 4(1) 7–72, (1999).
[Crossref]

1998 (1)

C.R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

1995 (3)

L. Wang, S.L. Jacques, and L. Zheng, L, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131 (1995).
[Crossref]

L.O. Svaasand, L.T.T. Norvang, E.J.J. Fiskerstrand, E.K.S Stopps, M.W Berns, and J.S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34(31), 7410 (1995).
[Crossref] [PubMed]

1992 (3)

S. L. Jacques, “Laser-tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am. 72(3), 531–558 (1992).
[Crossref] [PubMed]

A.H. Gandjbakhche, R.F. Bonner, and R. Nossal, “Scaling relationships for anisotropic random walks,” J. Stat. Phys. 69(1), 35–53 (1992).
[Crossref]

R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol. B. Biol. 16(2), 127–140 (1992).
[Crossref]

1991 (1)

S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporisation and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[Crossref] [PubMed]

1989 (1)

M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin optics,” IEEE Transactions on Biomedical Engineering 36(12), 1146–1154 (1989).
[Crossref] [PubMed]

1986 (1)

H.Q. Woodard and D.R. White, “The composition of body tissues,” Br. J. Radiol. 59(708), 7–1285, (1986).
[Crossref]

1984 (1)

T. Sarna and R. C. Sealy, “Photoinduced oxygen consumption in melanin systems. Action spectra and quantum yields for eumelanin and synthetic melanin,” Photochem. Photobiol. 39(1), 69–74 (1984).
[Crossref] [PubMed]

1983 (1)

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[Crossref] [PubMed]

1981 (2)

S. Wan, R. R. Anderson, and J. A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol. 34(4), 493–499 (1981).
[Crossref] [PubMed]

R. R. Anderson and J. A. Parrish, “The Optics of Human Skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[Crossref] [PubMed]

1977 (1)

P.J.J. Dykes, M.B. Marks, and R. Marks, “Measurement of skin thickness: a comparison of two in vivo techniques with a conventional histometric method,” J. Invest. Dermatol. 69(3), 275–278 (1977).
[Crossref] [PubMed]

1973 (1)

1966 (1)

R.A.D. Booth, B.A. Goddard, and A. Paton, “Measurement of fat thickness in man: a comparison of ultrasound, Harpenden calipers and electrical conductivity,” Br. J. Nutr. 20(4), 719–725 (1966).
[Crossref] [PubMed]

Allen, D.W.

C.C. Cooksey, B.K. Tsai, and D.W. Allen, “A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range,” Proceedings of SPIE 9082908206 (2014).

Altmeyer, P.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

Altshuler, G.

G. Altshuler, M. Smirnov, and I. Yaroslavsky, “Lattice of optical islets: a novel treatment modality in photomedicine,” J. Phys. D 38(15), 2732–2747 (2005).
[Crossref]

Anderson, R. R.

O. A. Ibrahimi, M. M. Avram, C. W. Hanke, S. L. Kilmer, and R. R. Anderson, “Laser hair removal,” Dermatologic Therapy 24(1), 107 (2011).
[Crossref] [PubMed]

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[Crossref] [PubMed]

S. Wan, R. R. Anderson, and J. A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol. 34(4), 493–499 (1981).
[Crossref] [PubMed]

R. R. Anderson and J. A. Parrish, “The Optics of Human Skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[Crossref] [PubMed]

Anderson, R.R.

D. Manstein, G. Herron, R. Sink, H. Tanner, and R.R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg Med 34(5), 426–438 (2004).
[Crossref] [PubMed]

Andreas, M.

A. Roggan, M. Friebel, K. Dörschel, M. Andreas, G. Müller, and G. Gerhard, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Ashinoff, R.

M. Kupermanbeade, V.J. Levine, and R. Ashinoff, “Laser Removal of Tattoos,” Am. J. Clin. Dermatol. 2(1), 21–25 (2001).
[Crossref]

Avram, M. M.

O. A. Ibrahimi, M. M. Avram, C. W. Hanke, S. L. Kilmer, and R. R. Anderson, “Laser hair removal,” Dermatologic Therapy 24(1), 107 (2011).
[Crossref] [PubMed]

Bargo, P.

Barham, C.D.

L.D. Woodruff, J.M. Bounkeo, W.M. Brannon, K.S. Dawes, C.D. Barham, D.L. Waddell, and C.S. Enwemeka, “The efficacy of laser therapy in wound repair: a meta-analysis of the literature,” Photomed. Laser. Surg. 22(3), 241 (2004).
[Crossref]

Bashkatov, A.N.

A.N. Bashkatov, E.A. Genina, V.I. Kochubey, and V.V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
[Crossref]

Bell, M.

N. Joly-Tonetti, J. I. Wibawa, M. Bell, and D. J. Tobin, “Melanin fate in the human epidermis: a reassessment of how best to detect and analyse histologically,” Experimental. Dermatol. 25(7), 501–504 (2016).
[Crossref]

Berns, M.W

L.O. Svaasand, L.T.T. Norvang, E.J.J. Fiskerstrand, E.K.S Stopps, M.W Berns, and J.S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Bikker, J. W.

S. Buscone, A. N. Mardaryev, B. Raafs, J. W. Bikker, C. Sticht, N. Gretz, N. Farjo, N.E. Uzunbajakava, and N.V. Botchkareva, “A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle,” Lasers Surg. Med. 100222673 (2017).
[Crossref] [PubMed]

Blanche, R. R.

R. J. Lanzafame, R. R. Blanche, R. P. Chiacchierini, E. R. Kazmirek, and J. A. Sklar, “The growth of human scalp hair in females using visible red light laser and LED sources,” Lasers Surg. Med. 46(8), 601–607 (2016).
[Crossref]

Blume-Peytavi, U.

N. Otberg, H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, and J. Lademann, “Variations of hair follicle size and distribution in different body sites,” The J. Invest. Dermatol. 122(1), 14–19 (2004).
[Crossref] [PubMed]

Bonito, V.

B. Varghese, V. Bonito, S. Turco, and R. Verhagen, “Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation,” International Society for Optics and Photonics, 97400I (2016).

Bonner, R.F.

A.H. Gandjbakhche, R.F. Bonner, and R. Nossal, “Scaling relationships for anisotropic random walks,” J. Stat. Phys. 69(1), 35–53 (1992).
[Crossref]

Booth, R.A.D.

R.A.D. Booth, B.A. Goddard, and A. Paton, “Measurement of fat thickness in man: a comparison of ultrasound, Harpenden calipers and electrical conductivity,” Br. J. Nutr. 20(4), 719–725 (1966).
[Crossref] [PubMed]

Born, M.

S. Pfaff, J. Liebmann, M. Born, H. F. Merk, and V. von Felbert, “Prospective Randomized Long-Term Study on the Efficacy and Safety of UV-Free Blue Light for Treating Mild Psoriasis Vulgaris,” Dermatology 231(1), 24–34 (2015).
[Crossref] [PubMed]

Botchkareva, N. V.

C. Mignon, N. V. Botchkareva, N. E. Uzunbajakava, and D. J. Tobin, “Photobiomodulation devices for hair regrowth and wound healing: a therapy full of promise but a literature full of confusion,” Exp Dermatol 251600–1625 (2016).

Botchkareva, N.V.

S. Buscone, A. N. Mardaryev, B. Raafs, J. W. Bikker, C. Sticht, N. Gretz, N. Farjo, N.E. Uzunbajakava, and N.V. Botchkareva, “A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle,” Lasers Surg. Med. 100222673 (2017).
[Crossref] [PubMed]

C. Mignon, N.E. Uzunbajakava, N.V. Botchkareva, D.J. Tobin, and M. Zeitouny, “Impact of variability of the optical properties of skin layers on prediction of photon density using a Monte Carlo model,” Lasers Surg. Med., Wiley-Blackwell, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA, (2016).

Bounkeo, J.M.

L.D. Woodruff, J.M. Bounkeo, W.M. Brannon, K.S. Dawes, C.D. Barham, D.L. Waddell, and C.S. Enwemeka, “The efficacy of laser therapy in wound repair: a meta-analysis of the literature,” Photomed. Laser. Surg. 22(3), 241 (2004).
[Crossref]

Brambilla, M.

R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol. B. Biol. 16(2), 127–140 (1992).
[Crossref]

Brannon, W.M.

L.D. Woodruff, J.M. Bounkeo, W.M. Brannon, K.S. Dawes, C.D. Barham, D.L. Waddell, and C.S. Enwemeka, “The efficacy of laser therapy in wound repair: a meta-analysis of the literature,” Photomed. Laser. Surg. 22(3), 241 (2004).
[Crossref]

Buscone, S.

S. Buscone, A. N. Mardaryev, B. Raafs, J. W. Bikker, C. Sticht, N. Gretz, N. Farjo, N.E. Uzunbajakava, and N.V. Botchkareva, “A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle,” Lasers Surg. Med. 100222673 (2017).
[Crossref] [PubMed]

Carroll, J.D.

H. Chung, T. Dai, S.K. Sharma, Y. Huang, J.D. Carroll, and M.R. Hamblin, “The nuts and bolts of low-level laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Chiacchierini, R. P.

R. J. Lanzafame, R. R. Blanche, R. P. Chiacchierini, E. R. Kazmirek, and J. A. Sklar, “The growth of human scalp hair in females using visible red light laser and LED sources,” Lasers Surg. Med. 46(8), 601–607 (2016).
[Crossref]

Chung, H.

H. Chung, T. Dai, S.K. Sharma, Y. Huang, J.D. Carroll, and M.R. Hamblin, “The nuts and bolts of low-level laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Clemente, C.

R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol. B. Biol. 16(2), 127–140 (1992).
[Crossref]

Cooksey, C.C.

C.C. Cooksey, B.K. Tsai, and D.W. Allen, “A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range,” Proceedings of SPIE 9082908206 (2014).

Cope, M.

C.R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Cubeddu, R.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Determination of VIS-NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy,” Biomedical Topical Meeting SF4 (2004).

Dai, T.

H. Chung, T. Dai, S.K. Sharma, Y. Huang, J.D. Carroll, and M.R. Hamblin, “The nuts and bolts of low-level laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Dawes, K.S.

L.D. Woodruff, J.M. Bounkeo, W.M. Brannon, K.S. Dawes, C.D. Barham, D.L. Waddell, and C.S. Enwemeka, “The efficacy of laser therapy in wound repair: a meta-analysis of the literature,” Photomed. Laser. Surg. 22(3), 241 (2004).
[Crossref]

Ding, H.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 16510957 (2006).
[Crossref]

Dörschel, K.

A. Roggan, M. Friebel, K. Dörschel, M. Andreas, G. Müller, and G. Gerhard, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Douven, L.F.

L.F. Douven and G.W. Lucassen, “Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance,” Proc. SPIE 3914(1), 312–323 (2000).
[Crossref]

Duck, F. A.

F. A. Duck, “Physical Properties of Tissue,” (1990).

Durkin, A.

Dykes, P.J.J.

P.J.J. Dykes, M.B. Marks, and R. Marks, “Measurement of skin thickness: a comparison of two in vivo techniques with a conventional histometric method,” J. Invest. Dermatol. 69(3), 275–278 (1977).
[Crossref] [PubMed]

Enwemeka, C.S.

L.D. Woodruff, J.M. Bounkeo, W.M. Brannon, K.S. Dawes, C.D. Barham, D.L. Waddell, and C.S. Enwemeka, “The efficacy of laser therapy in wound repair: a meta-analysis of the literature,” Photomed. Laser. Surg. 22(3), 241 (2004).
[Crossref]

Essenpreis, M.

C.R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Farjo, N.

S. Buscone, A. N. Mardaryev, B. Raafs, J. W. Bikker, C. Sticht, N. Gretz, N. Farjo, N.E. Uzunbajakava, and N.V. Botchkareva, “A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle,” Lasers Surg. Med. 100222673 (2017).
[Crossref] [PubMed]

Feldman, Y.

V. Raicu and Y. Feldman, “Dielectric Relaxation in Biological Systems,” (2015).

Fiskerstrand, E.J.J.

L.O. Svaasand, L.T.T. Norvang, E.J.J. Fiskerstrand, E.K.S Stopps, M.W Berns, and J.S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Friebel, M.

A. Roggan, M. Friebel, K. Dörschel, M. Andreas, G. Müller, and G. Gerhard, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Gambichler, T.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

Gandjbakhche, A.H.

A.H. Gandjbakhche, R.F. Bonner, and R. Nossal, “Scaling relationships for anisotropic random walks,” J. Stat. Phys. 69(1), 35–53 (1992).
[Crossref]

Genina, E.A.

A.N. Bashkatov, E.A. Genina, V.I. Kochubey, and V.V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
[Crossref]

Gerhard, G.

A. Roggan, M. Friebel, K. Dörschel, M. Andreas, G. Müller, and G. Gerhard, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Glickman, R. D.

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, “Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium,” Proc. SPIE 2681(1), 468–477 (2016).
[Crossref]

Goddard, B.A.

R.A.D. Booth, B.A. Goddard, and A. Paton, “Measurement of fat thickness in man: a comparison of ultrasound, Harpenden calipers and electrical conductivity,” Br. J. Nutr. 20(4), 719–725 (1966).
[Crossref] [PubMed]

Green, J. B.

A. I. Metelitsa and J. B. Green, “Home-use laser and light devices for the skin: an update,” Seminars in cutaneous medicine and surgery 30(3), 144–147 (2011).
[Crossref] [PubMed]

Grema, H.

C. Raulin, B. Greve, and H. Grema, “IPL technology: A review,” Lasers Surg. Med. 32(2), 78–87 (2003).
[Crossref] [PubMed]

Gretz, N.

S. Buscone, A. N. Mardaryev, B. Raafs, J. W. Bikker, C. Sticht, N. Gretz, N. Farjo, N.E. Uzunbajakava, and N.V. Botchkareva, “A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle,” Lasers Surg. Med. 100222673 (2017).
[Crossref] [PubMed]

Greve, B.

C. Raulin, B. Greve, and H. Grema, “IPL technology: A review,” Lasers Surg. Med. 32(2), 78–87 (2003).
[Crossref] [PubMed]

Hale, G. M.

Hamblin, M.R.

H. Chung, T. Dai, S.K. Sharma, Y. Huang, J.D. Carroll, and M.R. Hamblin, “The nuts and bolts of low-level laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

F. Vatansever and M.R. Hamblin, “Far infrared radiation (FIR): its biological effects and medical applications,” Photonics Lasers Med. 4, 255–266 (2012).

Hamilton, K.

J. Preissig, K. Hamilton, and R. Markus, “Current Laser Resurfacing Technologies: A Review that Delves Beneath the Surface,” Seminars in plastic surgery 26(3), 109–116 (2012).
[Crossref]

Hanke, C. W.

O. A. Ibrahimi, M. M. Avram, C. W. Hanke, S. L. Kilmer, and R. R. Anderson, “Laser hair removal,” Dermatologic Therapy 24(1), 107 (2011).
[Crossref] [PubMed]

Herron, G.

D. Manstein, G. Herron, R. Sink, H. Tanner, and R.R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg Med 34(5), 426–438 (2004).
[Crossref] [PubMed]

Hillenkamp, F.

F. Hillenkamp, “Lasers in Biology and Medicine,” (1980).

Hoff-Lesch, S.

A. Weinstabl, S. Hoff-Lesch, H. F. Merk, and V. von Felbert, “Prospective Randomized Study on the Efficacy of Blue Light in the Treatment of Psoriasis Vulgaris,” Dermatology 223(3) 251 (2011).
[PubMed]

Hoffmann, K.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

Hu, X.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 16510957 (2006).
[Crossref]

Huang, Y.

H. Chung, T. Dai, S.K. Sharma, Y. Huang, J.D. Carroll, and M.R. Hamblin, “The nuts and bolts of low-level laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Huijser, A.

A. Huijser, A. Pezzellab, and V. Sundström, “Functionality of epidermal melanin pigments: current knowledge on UV-dissipative mechanisms and research perspectives,” Phys. Chem. Chem. Phys. 20(13), 9119–9127 (2011).
[Crossref]

Ibrahimi, O. A.

O. A. Ibrahimi, M. M. Avram, C. W. Hanke, S. L. Kilmer, and R. R. Anderson, “Laser hair removal,” Dermatologic Therapy 24(1), 107 (2011).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, “Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium,” Proc. SPIE 2681(1), 468–477 (2016).
[Crossref]

I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34(31), 7410 (1995).
[Crossref] [PubMed]

S. L. Jacques, “Laser-tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am. 72(3), 531–558 (1992).
[Crossref] [PubMed]

S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporisation and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[Crossref] [PubMed]

Jacques, S.L.

S.L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

L. Wang, S.L. Jacques, and L. Zheng, L, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131 (1995).
[Crossref]

M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin optics,” IEEE Transactions on Biomedical Engineering 36(12), 1146–1154 (1989).
[Crossref] [PubMed]

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A.N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 64026–64029 (2006).
[Crossref]

Joly-Tonetti, N.

N. Joly-Tonetti, J. I. Wibawa, M. Bell, and D. J. Tobin, “Melanin fate in the human epidermis: a reassessment of how best to detect and analyse histologically,” Experimental. Dermatol. 25(7), 501–504 (2016).
[Crossref]

Jurna, M.

Karsten, A. E.

A. E. Karsten and J. E. Smit, “Modeling and Verification of Melanin Concentration on Human Skin Type,” Photochem. Photobiol. 88(2), 469–474 (2012).
[Crossref]

Kazmirek, E. R.

R. J. Lanzafame, R. R. Blanche, R. P. Chiacchierini, E. R. Kazmirek, and J. A. Sklar, “The growth of human scalp hair in females using visible red light laser and LED sources,” Lasers Surg. Med. 46(8), 601–607 (2016).
[Crossref]

Kilmer, S. L.

O. A. Ibrahimi, M. M. Avram, C. W. Hanke, S. L. Kilmer, and R. R. Anderson, “Laser hair removal,” Dermatologic Therapy 24(1), 107 (2011).
[Crossref] [PubMed]

Kochubey, V.I.

A.N. Bashkatov, E.A. Genina, V.I. Kochubey, and V.V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
[Crossref]

Kohl, M.

C.R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Kollias, N.

Kragel, P. J.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 16510957 (2006).
[Crossref]

Krutmann, J.

J. Krutmann and A. Morita, “Mechanisms of Ultraviolet (UV) B and UVA Phototherapy,” J. Invest. Dermatol. Symposium Proceedings 4(1) 7–72, (1999).
[Crossref]

Kupermanbeade, M.

M. Kupermanbeade, V.J. Levine, and R. Ashinoff, “Laser Removal of Tattoos,” Am. J. Clin. Dermatol. 2(1), 21–25 (2001).
[Crossref]

Lademann, J.

N. Otberg, H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, and J. Lademann, “Variations of hair follicle size and distribution in different body sites,” The J. Invest. Dermatol. 122(1), 14–19 (2004).
[Crossref] [PubMed]

Lanzafame, R. J.

R. J. Lanzafame, R. R. Blanche, R. P. Chiacchierini, E. R. Kazmirek, and J. A. Sklar, “The growth of human scalp hair in females using visible red light laser and LED sources,” Lasers Surg. Med. 46(8), 601–607 (2016).
[Crossref]

Levine, V.J.

M. Kupermanbeade, V.J. Levine, and R. Ashinoff, “Laser Removal of Tattoos,” Am. J. Clin. Dermatol. 2(1), 21–25 (2001).
[Crossref]

Liebmann, J.

S. Pfaff, J. Liebmann, M. Born, H. F. Merk, and V. von Felbert, “Prospective Randomized Long-Term Study on the Efficacy and Safety of UV-Free Blue Light for Treating Mild Psoriasis Vulgaris,” Dermatology 231(1), 24–34 (2015).
[Crossref] [PubMed]

Lu, J. Q.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 16510957 (2006).
[Crossref]

Lucassen, G.W.

L.F. Douven and G.W. Lucassen, “Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance,” Proc. SPIE 3914(1), 312–323 (2000).
[Crossref]

Manstein, D.

D. Manstein, G. Herron, R. Sink, H. Tanner, and R.R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg Med 34(5), 426–438 (2004).
[Crossref] [PubMed]

Marchesini, R.

R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol. B. Biol. 16(2), 127–140 (1992).
[Crossref]

Mardaryev, A. N.

S. Buscone, A. N. Mardaryev, B. Raafs, J. W. Bikker, C. Sticht, N. Gretz, N. Farjo, N.E. Uzunbajakava, and N.V. Botchkareva, “A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle,” Lasers Surg. Med. 100222673 (2017).
[Crossref] [PubMed]

Marks, M.B.

P.J.J. Dykes, M.B. Marks, and R. Marks, “Measurement of skin thickness: a comparison of two in vivo techniques with a conventional histometric method,” J. Invest. Dermatol. 69(3), 275–278 (1977).
[Crossref] [PubMed]

Marks, R.

P.J.J. Dykes, M.B. Marks, and R. Marks, “Measurement of skin thickness: a comparison of two in vivo techniques with a conventional histometric method,” J. Invest. Dermatol. 69(3), 275–278 (1977).
[Crossref] [PubMed]

Markus, R.

J. Preissig, K. Hamilton, and R. Markus, “Current Laser Resurfacing Technologies: A Review that Delves Beneath the Surface,” Seminars in plastic surgery 26(3), 109–116 (2012).
[Crossref]

Matcher, S. J.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741 (2002).
[Crossref] [PubMed]

Matip, R.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

McAuliffe, D. J.

S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporisation and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[Crossref] [PubMed]

Meglinski, I. V.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741 (2002).
[Crossref] [PubMed]

Merk, H. F.

S. Pfaff, J. Liebmann, M. Born, H. F. Merk, and V. von Felbert, “Prospective Randomized Long-Term Study on the Efficacy and Safety of UV-Free Blue Light for Treating Mild Psoriasis Vulgaris,” Dermatology 231(1), 24–34 (2015).
[Crossref] [PubMed]

A. Weinstabl, S. Hoff-Lesch, H. F. Merk, and V. von Felbert, “Prospective Randomized Study on the Efficacy of Blue Light in the Treatment of Psoriasis Vulgaris,” Dermatology 223(3) 251 (2011).
[PubMed]

Metelitsa, A. I.

A. I. Metelitsa and J. B. Green, “Home-use laser and light devices for the skin: an update,” Seminars in cutaneous medicine and surgery 30(3), 144–147 (2011).
[Crossref] [PubMed]

Mignon, C.

C. Mignon, N. V. Botchkareva, N. E. Uzunbajakava, and D. J. Tobin, “Photobiomodulation devices for hair regrowth and wound healing: a therapy full of promise but a literature full of confusion,” Exp Dermatol 251600–1625 (2016).

C. Mignon, A.H. Rodriguez, J.A. Palero, B. Varghese, and M. Jurna, “Fractional laser photothermolysis using Bessel beams,” Biomed. Opt. Express 7(12), 4974 (2016).
[Crossref] [PubMed]

C. Mignon, N.E. Uzunbajakava, N.V. Botchkareva, D.J. Tobin, and M. Zeitouny, “Impact of variability of the optical properties of skin layers on prediction of photon density using a Monte Carlo model,” Lasers Surg. Med., Wiley-Blackwell, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA, (2016).

Morita, A.

J. Krutmann and A. Morita, “Mechanisms of Ultraviolet (UV) B and UVA Phototherapy,” J. Invest. Dermatol. Symposium Proceedings 4(1) 7–72, (1999).
[Crossref]

Moussa, G.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

Müller, G.

A. Roggan, M. Friebel, K. Dörschel, M. Andreas, G. Müller, and G. Gerhard, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Nelson, J.S.

L.O. Svaasand, L.T.T. Norvang, E.J.J. Fiskerstrand, E.K.S Stopps, M.W Berns, and J.S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Norvang, L.T.T.

L.O. Svaasand, L.T.T. Norvang, E.J.J. Fiskerstrand, E.K.S Stopps, M.W Berns, and J.S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Nossal, R.

A.H. Gandjbakhche, R.F. Bonner, and R. Nossal, “Scaling relationships for anisotropic random walks,” J. Stat. Phys. 69(1), 35–53 (1992).
[Crossref]

Nouri, K.

K. Nouri, “Lasers in dermatology and medicine,” (2012).

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A.N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 64026–64029 (2006).
[Crossref]

Otberg, N.

N. Otberg, H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, and J. Lademann, “Variations of hair follicle size and distribution in different body sites,” The J. Invest. Dermatol. 122(1), 14–19 (2004).
[Crossref] [PubMed]

Palero, J.A.

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[Crossref] [PubMed]

R. R. Anderson and J. A. Parrish, “The Optics of Human Skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[Crossref] [PubMed]

S. Wan, R. R. Anderson, and J. A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol. 34(4), 493–499 (1981).
[Crossref] [PubMed]

Paton, A.

R.A.D. Booth, B.A. Goddard, and A. Paton, “Measurement of fat thickness in man: a comparison of ultrasound, Harpenden calipers and electrical conductivity,” Br. J. Nutr. 20(4), 719–725 (1966).
[Crossref] [PubMed]

Pezzellab, A.

A. Huijser, A. Pezzellab, and V. Sundström, “Functionality of epidermal melanin pigments: current knowledge on UV-dissipative mechanisms and research perspectives,” Phys. Chem. Chem. Phys. 20(13), 9119–9127 (2011).
[Crossref]

Pfaff, S.

S. Pfaff, J. Liebmann, M. Born, H. F. Merk, and V. von Felbert, “Prospective Randomized Long-Term Study on the Efficacy and Safety of UV-Free Blue Light for Treating Mild Psoriasis Vulgaris,” Dermatology 231(1), 24–34 (2015).
[Crossref] [PubMed]

Pifferi, A.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Determination of VIS-NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy,” Biomedical Topical Meeting SF4 (2004).

Pignoli, E.

R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol. B. Biol. 16(2), 127–140 (1992).
[Crossref]

Preissig, J.

J. Preissig, K. Hamilton, and R. Markus, “Current Laser Resurfacing Technologies: A Review that Delves Beneath the Surface,” Seminars in plastic surgery 26(3), 109–116 (2012).
[Crossref]

Querry, M. R.

Raafs, B.

S. Buscone, A. N. Mardaryev, B. Raafs, J. W. Bikker, C. Sticht, N. Gretz, N. Farjo, N.E. Uzunbajakava, and N.V. Botchkareva, “A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle,” Lasers Surg. Med. 100222673 (2017).
[Crossref] [PubMed]

Raicu, V.

V. Raicu and Y. Feldman, “Dielectric Relaxation in Biological Systems,” (2015).

Raulin, C.

C. Raulin, B. Greve, and H. Grema, “IPL technology: A review,” Lasers Surg. Med. 32(2), 78–87 (2003).
[Crossref] [PubMed]

Richter, H.

N. Otberg, H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, and J. Lademann, “Variations of hair follicle size and distribution in different body sites,” The J. Invest. Dermatol. 122(1), 14–19 (2004).
[Crossref] [PubMed]

Rodriguez, A.H.

Roggan, A.

A. Roggan, M. Friebel, K. Dörschel, M. Andreas, G. Müller, and G. Gerhard, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Saidi, I. S.

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A.N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 64026–64029 (2006).
[Crossref]

Sarna, T.

T. Sarna and R. C. Sealy, “Photoinduced oxygen consumption in melanin systems. Action spectra and quantum yields for eumelanin and synthetic melanin,” Photochem. Photobiol. 39(1), 69–74 (1984).
[Crossref] [PubMed]

Schaefer, H.

N. Otberg, H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, and J. Lademann, “Variations of hair follicle size and distribution in different body sites,” The J. Invest. Dermatol. 122(1), 14–19 (2004).
[Crossref] [PubMed]

Schwartz, J. A.

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, “Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium,” Proc. SPIE 2681(1), 468–477 (2016).
[Crossref]

Sealy, R. C.

T. Sarna and R. C. Sealy, “Photoinduced oxygen consumption in melanin systems. Action spectra and quantum yields for eumelanin and synthetic melanin,” Photochem. Photobiol. 39(1), 69–74 (1984).
[Crossref] [PubMed]

Sharma, S.K.

H. Chung, T. Dai, S.K. Sharma, Y. Huang, J.D. Carroll, and M.R. Hamblin, “The nuts and bolts of low-level laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Shibahara, S.

A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, “Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation,” Physiol. Rev. 84(4), 1155–1228 (2004).
[Crossref] [PubMed]

Simpson, C.R.

C.R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Sink, R.

D. Manstein, G. Herron, R. Sink, H. Tanner, and R.R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg Med 34(5), 426–438 (2004).
[Crossref] [PubMed]

Sklar, J. A.

R. J. Lanzafame, R. R. Blanche, R. P. Chiacchierini, E. R. Kazmirek, and J. A. Sklar, “The growth of human scalp hair in females using visible red light laser and LED sources,” Lasers Surg. Med. 46(8), 601–607 (2016).
[Crossref]

Slominski, A.

A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, “Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation,” Physiol. Rev. 84(4), 1155–1228 (2004).
[Crossref] [PubMed]

Smirnov, M.

G. Altshuler, M. Smirnov, and I. Yaroslavsky, “Lattice of optical islets: a novel treatment modality in photomedicine,” J. Phys. D 38(15), 2732–2747 (2005).
[Crossref]

Smit, J. E.

A. E. Karsten and J. E. Smit, “Modeling and Verification of Melanin Concentration on Human Skin Type,” Photochem. Photobiol. 88(2), 469–474 (2012).
[Crossref]

Star, W.M.

M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin optics,” IEEE Transactions on Biomedical Engineering 36(12), 1146–1154 (1989).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Determination of VIS-NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy,” Biomedical Topical Meeting SF4 (2004).

Sterenborg, H.J.C.M.

M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin optics,” IEEE Transactions on Biomedical Engineering 36(12), 1146–1154 (1989).
[Crossref] [PubMed]

Sterry, W.

N. Otberg, H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, and J. Lademann, “Variations of hair follicle size and distribution in different body sites,” The J. Invest. Dermatol. 122(1), 14–19 (2004).
[Crossref] [PubMed]

Sticht, C.

S. Buscone, A. N. Mardaryev, B. Raafs, J. W. Bikker, C. Sticht, N. Gretz, N. Farjo, N.E. Uzunbajakava, and N.V. Botchkareva, “A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle,” Lasers Surg. Med. 100222673 (2017).
[Crossref] [PubMed]

Stopps, E.K.S

L.O. Svaasand, L.T.T. Norvang, E.J.J. Fiskerstrand, E.K.S Stopps, M.W Berns, and J.S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Sundström, V.

A. Huijser, A. Pezzellab, and V. Sundström, “Functionality of epidermal melanin pigments: current knowledge on UV-dissipative mechanisms and research perspectives,” Phys. Chem. Chem. Phys. 20(13), 9119–9127 (2011).
[Crossref]

Svaasand, L.O.

L.O. Svaasand, L.T.T. Norvang, E.J.J. Fiskerstrand, E.K.S Stopps, M.W Berns, and J.S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Tanner, H.

D. Manstein, G. Herron, R. Sink, H. Tanner, and R.R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg Med 34(5), 426–438 (2004).
[Crossref] [PubMed]

Thennadil, S. N.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

Tittel, F. K.

Tobin, D. J.

N. Joly-Tonetti, J. I. Wibawa, M. Bell, and D. J. Tobin, “Melanin fate in the human epidermis: a reassessment of how best to detect and analyse histologically,” Experimental. Dermatol. 25(7), 501–504 (2016).
[Crossref]

C. Mignon, N. V. Botchkareva, N. E. Uzunbajakava, and D. J. Tobin, “Photobiomodulation devices for hair regrowth and wound healing: a therapy full of promise but a literature full of confusion,” Exp Dermatol 251600–1625 (2016).

A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, “Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation,” Physiol. Rev. 84(4), 1155–1228 (2004).
[Crossref] [PubMed]

Tobin, D.J.

C. Mignon, N.E. Uzunbajakava, N.V. Botchkareva, D.J. Tobin, and M. Zeitouny, “Impact of variability of the optical properties of skin layers on prediction of photon density using a Monte Carlo model,” Lasers Surg. Med., Wiley-Blackwell, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA, (2016).

Torricelli, A.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Determination of VIS-NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy,” Biomedical Topical Meeting SF4 (2004).

Troy, T. L.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

Tsai, B.K.

C.C. Cooksey, B.K. Tsai, and D.W. Allen, “A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range,” Proceedings of SPIE 9082908206 (2014).

Tseng, S.

Tuchin, V.V.

A.N. Bashkatov, E.A. Genina, V.I. Kochubey, and V.V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
[Crossref]

Turco, S.

B. Varghese, V. Bonito, S. Turco, and R. Verhagen, “Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation,” International Society for Optics and Photonics, 97400I (2016).

Uzunbajakava, N. E.

C. Mignon, N. V. Botchkareva, N. E. Uzunbajakava, and D. J. Tobin, “Photobiomodulation devices for hair regrowth and wound healing: a therapy full of promise but a literature full of confusion,” Exp Dermatol 251600–1625 (2016).

Uzunbajakava, N.E.

S. Buscone, A. N. Mardaryev, B. Raafs, J. W. Bikker, C. Sticht, N. Gretz, N. Farjo, N.E. Uzunbajakava, and N.V. Botchkareva, “A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle,” Lasers Surg. Med. 100222673 (2017).
[Crossref] [PubMed]

C. Mignon, N.E. Uzunbajakava, N.V. Botchkareva, D.J. Tobin, and M. Zeitouny, “Impact of variability of the optical properties of skin layers on prediction of photon density using a Monte Carlo model,” Lasers Surg. Med., Wiley-Blackwell, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA, (2016).

Van Gemert, M.J.C.

M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin optics,” IEEE Transactions on Biomedical Engineering 36(12), 1146–1154 (1989).
[Crossref] [PubMed]

van Veen, R. L. P.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Determination of VIS-NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy,” Biomedical Topical Meeting SF4 (2004).

Varghese, B.

C. Mignon, A.H. Rodriguez, J.A. Palero, B. Varghese, and M. Jurna, “Fractional laser photothermolysis using Bessel beams,” Biomed. Opt. Express 7(12), 4974 (2016).
[Crossref] [PubMed]

B. Varghese, V. Bonito, S. Turco, and R. Verhagen, “Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation,” International Society for Optics and Photonics, 97400I (2016).

Vatansever, F.

F. Vatansever and M.R. Hamblin, “Far infrared radiation (FIR): its biological effects and medical applications,” Photonics Lasers Med. 4, 255–266 (2012).

Verhagen, R.

B. Varghese, V. Bonito, S. Turco, and R. Verhagen, “Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation,” International Society for Optics and Photonics, 97400I (2016).

von Felbert, V.

S. Pfaff, J. Liebmann, M. Born, H. F. Merk, and V. von Felbert, “Prospective Randomized Long-Term Study on the Efficacy and Safety of UV-Free Blue Light for Treating Mild Psoriasis Vulgaris,” Dermatology 231(1), 24–34 (2015).
[Crossref] [PubMed]

A. Weinstabl, S. Hoff-Lesch, H. F. Merk, and V. von Felbert, “Prospective Randomized Study on the Efficacy of Blue Light in the Treatment of Psoriasis Vulgaris,” Dermatology 223(3) 251 (2011).
[PubMed]

Waddell, D.L.

L.D. Woodruff, J.M. Bounkeo, W.M. Brannon, K.S. Dawes, C.D. Barham, D.L. Waddell, and C.S. Enwemeka, “The efficacy of laser therapy in wound repair: a meta-analysis of the literature,” Photomed. Laser. Surg. 22(3), 241 (2004).
[Crossref]

Wan, S.

S. Wan, R. R. Anderson, and J. A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol. 34(4), 493–499 (1981).
[Crossref] [PubMed]

Wang, L.

L. Wang, S.L. Jacques, and L. Zheng, L, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131 (1995).
[Crossref]

Weinstabl, A.

A. Weinstabl, S. Hoff-Lesch, H. F. Merk, and V. von Felbert, “Prospective Randomized Study on the Efficacy of Blue Light in the Treatment of Psoriasis Vulgaris,” Dermatology 223(3) 251 (2011).
[PubMed]

Welzel, J.

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin. Res. Technol. 7(1), 1–9 (2016).
[Crossref]

White, D.R.

H.Q. Woodard and D.R. White, “The composition of body tissues,” Br. J. Radiol. 59(708), 7–1285, (1986).
[Crossref]

Wibawa, J. I.

N. Joly-Tonetti, J. I. Wibawa, M. Bell, and D. J. Tobin, “Melanin fate in the human epidermis: a reassessment of how best to detect and analyse histologically,” Experimental. Dermatol. 25(7), 501–504 (2016).
[Crossref]

Woodard, H.Q.

H.Q. Woodard and D.R. White, “The composition of body tissues,” Br. J. Radiol. 59(708), 7–1285, (1986).
[Crossref]

Wooden, W. A.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 16510957 (2006).
[Crossref]

Woodruff, L.D.

L.D. Woodruff, J.M. Bounkeo, W.M. Brannon, K.S. Dawes, C.D. Barham, D.L. Waddell, and C.S. Enwemeka, “The efficacy of laser therapy in wound repair: a meta-analysis of the literature,” Photomed. Laser. Surg. 22(3), 241 (2004).
[Crossref]

Wortsman, J.

A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, “Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation,” Physiol. Rev. 84(4), 1155–1228 (2004).
[Crossref] [PubMed]

Yaroslavsky, A.N.

E. Salomatina, B. Jiang, J. Novak, and A.N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 64026–64029 (2006).
[Crossref]

Yaroslavsky, I.

G. Altshuler, M. Smirnov, and I. Yaroslavsky, “Lattice of optical islets: a novel treatment modality in photomedicine,” J. Phys. D 38(15), 2732–2747 (2005).
[Crossref]

Zeitouny, M.

C. Mignon, N.E. Uzunbajakava, N.V. Botchkareva, D.J. Tobin, and M. Zeitouny, “Impact of variability of the optical properties of skin layers on prediction of photon density using a Monte Carlo model,” Lasers Surg. Med., Wiley-Blackwell, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA, (2016).

Zheng, L.

L. Wang, S.L. Jacques, and L. Zheng, L, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131 (1995).
[Crossref]

Am. J. Clin. Dermatol. (1)

M. Kupermanbeade, V.J. Levine, and R. Ashinoff, “Laser Removal of Tattoos,” Am. J. Clin. Dermatol. 2(1), 21–25 (2001).
[Crossref]

Ann. Biomed. Eng. (1)

H. Chung, T. Dai, S.K. Sharma, Y. Huang, J.D. Carroll, and M.R. Hamblin, “The nuts and bolts of low-level laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Br. J. Nutr. (1)

R.A.D. Booth, B.A. Goddard, and A. Paton, “Measurement of fat thickness in man: a comparison of ultrasound, Harpenden calipers and electrical conductivity,” Br. J. Nutr. 20(4), 719–725 (1966).
[Crossref] [PubMed]

Br. J. Radiol. (1)

H.Q. Woodard and D.R. White, “The composition of body tissues,” Br. J. Radiol. 59(708), 7–1285, (1986).
[Crossref]

Comput. Methods Programs Biomed. (1)

L. Wang, S.L. Jacques, and L. Zheng, L, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131 (1995).
[Crossref]

Dermatologic Therapy (1)

O. A. Ibrahimi, M. M. Avram, C. W. Hanke, S. L. Kilmer, and R. R. Anderson, “Laser hair removal,” Dermatologic Therapy 24(1), 107 (2011).
[Crossref] [PubMed]

Dermatology (2)

A. Weinstabl, S. Hoff-Lesch, H. F. Merk, and V. von Felbert, “Prospective Randomized Study on the Efficacy of Blue Light in the Treatment of Psoriasis Vulgaris,” Dermatology 223(3) 251 (2011).
[PubMed]

S. Pfaff, J. Liebmann, M. Born, H. F. Merk, and V. von Felbert, “Prospective Randomized Long-Term Study on the Efficacy and Safety of UV-Free Blue Light for Treating Mild Psoriasis Vulgaris,” Dermatology 231(1), 24–34 (2015).
[Crossref] [PubMed]

Exp Dermatol (1)

C. Mignon, N. V. Botchkareva, N. E. Uzunbajakava, and D. J. Tobin, “Photobiomodulation devices for hair regrowth and wound healing: a therapy full of promise but a literature full of confusion,” Exp Dermatol 251600–1625 (2016).

Experimental. Dermatol. (1)

N. Joly-Tonetti, J. I. Wibawa, M. Bell, and D. J. Tobin, “Melanin fate in the human epidermis: a reassessment of how best to detect and analyse histologically,” Experimental. Dermatol. 25(7), 501–504 (2016).
[Crossref]

IEEE Transactions on Biomedical Engineering (1)

M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin optics,” IEEE Transactions on Biomedical Engineering 36(12), 1146–1154 (1989).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

A. Roggan, M. Friebel, K. Dörschel, M. Andreas, G. Müller, and G. Gerhard, “Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A.N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 64026–64029 (2006).
[Crossref]

J. Dermatol. Sci. (1)

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

J. Invest. Dermatol. (2)

P.J.J. Dykes, M.B. Marks, and R. Marks, “Measurement of skin thickness: a comparison of two in vivo techniques with a conventional histometric method,” J. Invest. Dermatol. 69(3), 275–278 (1977).
[Crossref] [PubMed]

R. R. Anderson and J. A. Parrish, “The Optics of Human Skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[Crossref] [PubMed]

J. Invest. Dermatol. Symposium Proceedings (1)

J. Krutmann and A. Morita, “Mechanisms of Ultraviolet (UV) B and UVA Phototherapy,” J. Invest. Dermatol. Symposium Proceedings 4(1) 7–72, (1999).
[Crossref]

J. Photochem. Photobiol. B. Biol. (1)

R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol. B. Biol. 16(2), 127–140 (1992).
[Crossref]

J. Phys. D (2)

A.N. Bashkatov, E.A. Genina, V.I. Kochubey, and V.V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
[Crossref]

G. Altshuler, M. Smirnov, and I. Yaroslavsky, “Lattice of optical islets: a novel treatment modality in photomedicine,” J. Phys. D 38(15), 2732–2747 (2005).
[Crossref]

J. Stat. Phys. (1)

A.H. Gandjbakhche, R.F. Bonner, and R. Nossal, “Scaling relationships for anisotropic random walks,” J. Stat. Phys. 69(1), 35–53 (1992).
[Crossref]

Lasers Med. Sci. (1)

L.O. Svaasand, L.T.T. Norvang, E.J.J. Fiskerstrand, E.K.S Stopps, M.W Berns, and J.S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Lasers Surg Med (1)

D. Manstein, G. Herron, R. Sink, H. Tanner, and R.R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg Med 34(5), 426–438 (2004).
[Crossref] [PubMed]

Lasers Surg. Med. (3)

R. J. Lanzafame, R. R. Blanche, R. P. Chiacchierini, E. R. Kazmirek, and J. A. Sklar, “The growth of human scalp hair in females using visible red light laser and LED sources,” Lasers Surg. Med. 46(8), 601–607 (2016).
[Crossref]

S. Buscone, A. N. Mardaryev, B. Raafs, J. W. Bikker, C. Sticht, N. Gretz, N. Farjo, N.E. Uzunbajakava, and N.V. Botchkareva, “A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle,” Lasers Surg. Med. 100222673 (2017).
[Crossref] [PubMed]

C. Raulin, B. Greve, and H. Grema, “IPL technology: A review,” Lasers Surg. Med. 32(2), 78–87 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Photochem. Photobiol. (4)

S. Wan, R. R. Anderson, and J. A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol. 34(4), 493–499 (1981).
[Crossref] [PubMed]

S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporisation and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[Crossref] [PubMed]

A. E. Karsten and J. E. Smit, “Modeling and Verification of Melanin Concentration on Human Skin Type,” Photochem. Photobiol. 88(2), 469–474 (2012).
[Crossref]

T. Sarna and R. C. Sealy, “Photoinduced oxygen consumption in melanin systems. Action spectra and quantum yields for eumelanin and synthetic melanin,” Photochem. Photobiol. 39(1), 69–74 (1984).
[Crossref] [PubMed]

Photomed. Laser. Surg. (1)

L.D. Woodruff, J.M. Bounkeo, W.M. Brannon, K.S. Dawes, C.D. Barham, D.L. Waddell, and C.S. Enwemeka, “The efficacy of laser therapy in wound repair: a meta-analysis of the literature,” Photomed. Laser. Surg. 22(3), 241 (2004).
[Crossref]

Photonics Lasers Med. (1)

F. Vatansever and M.R. Hamblin, “Far infrared radiation (FIR): its biological effects and medical applications,” Photonics Lasers Med. 4, 255–266 (2012).

Phys. Chem. Chem. Phys. (1)

A. Huijser, A. Pezzellab, and V. Sundström, “Functionality of epidermal melanin pigments: current knowledge on UV-dissipative mechanisms and research perspectives,” Phys. Chem. Chem. Phys. 20(13), 9119–9127 (2011).
[Crossref]

Phys. Med. Biol. (3)

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 16510957 (2006).
[Crossref]

C.R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

S.L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Physiol. Meas. (1)

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741 (2002).
[Crossref] [PubMed]

Physiol. Rev. (1)

A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, “Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation,” Physiol. Rev. 84(4), 1155–1228 (2004).
[Crossref] [PubMed]

Proc. SPIE (2)

L.F. Douven and G.W. Lucassen, “Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance,” Proc. SPIE 3914(1), 312–323 (2000).
[Crossref]

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, “Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium,” Proc. SPIE 2681(1), 468–477 (2016).
[Crossref]

Proceedings of SPIE (1)

C.C. Cooksey, B.K. Tsai, and D.W. Allen, “A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range,” Proceedings of SPIE 9082908206 (2014).

Science (1)

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[Crossref] [PubMed]

Seminars in cutaneous medicine and surgery (1)

A. I. Metelitsa and J. B. Green, “Home-use laser and light devices for the skin: an update,” Seminars in cutaneous medicine and surgery 30(3), 144–147 (2011).
[Crossref] [PubMed]

Seminars in plastic surgery (1)

J. Preissig, K. Hamilton, and R. Markus, “Current Laser Resurfacing Technologies: A Review that Delves Beneath the Surface,” Seminars in plastic surgery 26(3), 109–116 (2012).
[Crossref]

Skin. Res. Technol. (1)

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin. Res. Technol. 7(1), 1–9 (2016).
[Crossref]

Surg. Clin. North Am. (1)

S. L. Jacques, “Laser-tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am. 72(3), 531–558 (1992).
[Crossref] [PubMed]

The J. Invest. Dermatol. (1)

N. Otberg, H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, and J. Lademann, “Variations of hair follicle size and distribution in different body sites,” The J. Invest. Dermatol. 122(1), 14–19 (2004).
[Crossref] [PubMed]

Other (7)

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Determination of VIS-NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy,” Biomedical Topical Meeting SF4 (2004).

F. A. Duck, “Physical Properties of Tissue,” (1990).

F. Hillenkamp, “Lasers in Biology and Medicine,” (1980).

K. Nouri, “Lasers in dermatology and medicine,” (2012).

B. Varghese, V. Bonito, S. Turco, and R. Verhagen, “Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation,” International Society for Optics and Photonics, 97400I (2016).

C. Mignon, N.E. Uzunbajakava, N.V. Botchkareva, D.J. Tobin, and M. Zeitouny, “Impact of variability of the optical properties of skin layers on prediction of photon density using a Monte Carlo model,” Lasers Surg. Med., Wiley-Blackwell, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA, (2016).

V. Raicu and Y. Feldman, “Dielectric Relaxation in Biological Systems,” (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Absorption and scattering coefficients versus wavelength from bibliographic sources for epidermis (A, D), dermis (B, E) and subcutaneous fat layer (C, F). Solid lines represent data extracted from the experimental measurements, dashed-lines - from the mathematical models.
Fig. 2
Fig. 2 Relative photon density versus depth obtained from the Monte Carlo predictions of optical transport in a three-layer human skin model using the selected optical properties datasets, shown in semi-logarithmic scale. The photon density presented was extracted from a rectangular cylinder of sizes 400 μm by 400 μm centered around the propagation axis.
Fig. 3
Fig. 3 Beam profile in the dermal layer (photon density) versus radial axis obtained from the Monte Carlo predictions of optical transport in a three-layer human skin model using the selected optical properties datasets, shown in semi-logarithmic scale. The photon density presented is the beam profile measured at 700 μm under the skin surface and averaged over 164 μm in the direction perpendicular to the propagation axis
Fig. 4
Fig. 4 Absorption versus scattering coefficients corresponding to datasets 1, 2, 3 and 4 for the epidermis (left) and dermis (right). The symbol indicates the dataset: 1 (○), 2 (+), 3 (x) and 4 (□). The colour of the dots indicates the wavelength, blue 450 nm, green 530 nm, red 655 nm and black 850 nm.
Fig. 5
Fig. 5 Diffuse reflectance of human skin computed based on the Monte Carlo predictions of the propagation of light in a three-layer skin model using the selected optical properties datasets. Also shown is an empirical measurement of the diffuse reflectance of human Caucasian skin as measured by the NIST [55]

Tables (6)

Tables Icon

Table 1 Factors accounted by the mathematical models for estimating the absorption coefficient of the skin layers in the bibliographic references included in the study.

Tables Icon

Table 2 Factors explained by the mathematical models for estimating the scattering coefficient of the skin layers in the bibliographic references included in the study.

Tables Icon

Table 3 Sample origin and methods used in the experimental measurements of the optical properties of the skin layers in the bibliographic references included in the study. Nsample represents the number of samples used for the measurement.

Tables Icon

Table 4 Summary of the rational for the inclusion or exclusion of bibliographic references from analysis

Tables Icon

Table 5 Selected datasets used in simulations together with the bibliographic references for the absorption and scattering coefficients (absorption / scattering) of epidermis, dermis and subcutaneous fat layer

Tables Icon

Table 6 Ratios between the maximum of photon density reached in the skin with the datasets 1 (Jacques [27]), 2 (Wan [35]/Simpson [38]) and 3 (Meglinski [24]) over the maximum obtained with the dataset 4 (Altshuler [40])

Metrics