Abstract

This study presents differentiation in milk samples of mother’s feeding male and female infants using Raman spectroscopy combined with a support vector machine (SVM). Major differences have been observed in the Raman spectra of both types of milk based on their chemical compositions. Overall, it has been found that milk samples of mother’s having a female infant are richer in fatty acids, phospholipids, and tryptophan. In contrast, milk samples of mother’s having a male infant contain more carotenoids and saccharides. Principal component analysis and SVM further highlighted the differences between the two groups on the basis of differentiating features obtained from their Raman spectra. The SVM model with two different kernels, i.e. polynomial kernel function (order-2) and Gaussian radial basis function (RBF sigma-2), are used for gender based milk differentiations. The performance of the proposed model in terms of accuracy, precision, sensitivity, and specificity using the polynomial kernel function of order-2 have been found to be 86%, 88%, 85% and 88%, respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM)

Saranjam Khan, Rahat Ullah, Asifullah Khan, Noorul Wahab, Muhammad Bilal, and Mushtaq Ahmed
Biomed. Opt. Express 7(6) 2249-2256 (2016)

Label-free detection of nasopharyngeal and liver cancer using surface-enhanced Raman spectroscopy and partial lease squares combined with support vector machine

Yun Yu, Yating Lin, Chaoxian Xu, Kecan Lin, Qing Ye, Xiaoyan Wang, Shusen Xie, Rong Chen, and Juqiang Lin
Biomed. Opt. Express 9(12) 6053-6066 (2018)

Optical properties of human milk

Colin Veenstra, Anki Lenferink, Wilma Petersen, Wiendelt Steenbergen, and Nienke Bosschaart
Biomed. Opt. Express 10(8) 4059-4074 (2019)

References

  • View by:
  • |
  • |
  • |

  1. O. Ballard and A. L. Morrow, “Human milk composition: Nutrients and bioactive factors,” Pediatr. Clin. North Am. 60(1), 49–74 (2013).
    [Crossref] [PubMed]
  2. D. Tomé, J. Schwarz, N. Darcel, and G. Fromentin, “Protein, amino acids, vagus nerve signaling, and the brain,” Am. J. Clin. Nutr. 90(3), 838S–843S (2009).
    [Crossref] [PubMed]
  3. K. Hinde and L. A. Milligan, “Primate milk: Proximate mechanisms and ultimate perspectives,” Evol. Anthropol. 20(1), 9–23 (2011).
    [Crossref] [PubMed]
  4. S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express. 7, 2249 (2016).
  5. S. Marouzi, A. Sharifi Rad, S. Beigoli, P. Teimoori Baghaee, R. Assaran Darban, and J. Chamani, “Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches,” Int. J. Biol. Macromol. 97, 688–699 (2017).
    [Crossref] [PubMed]
  6. K. Duchén and L. Thorell, “Nucleotide and polyamine levels in colostrum and mature milk in relation to maternal atopy and atopic development in the children,” Acta Paediatr. 88(12), 1338–1343 (1999).
    [Crossref] [PubMed]
  7. H. L. Månsson, R. Fondén, and H. E. Pettersson, “Composition of Swedish dairy milk,” Int. Dairy J. 13(6), 409–425 (2003).
    [Crossref]
  8. P. Parodi, “Milk fats in human nutrition,” Aust. J. Dairy Technol. 59, 3–59 (2004).
  9. S. M. Innis, “The Role of Dietary n-6 and n-3 Fatty Acids in the Developing Brain,” Dev. Neurosci. 22(5-6), 474–480 (2000).
    [Crossref] [PubMed]
  10. W. Heine, M. Radke, and K. D. Wutzke, “The significance of tryptophan in human nutrition,” Amino Acids 9(3), 91–205 (1995).
    [Crossref] [PubMed]
  11. K. Hinde, M. L. Power, and O. T. Oftedal, “Rhesus macaque milk: magnitude, sources, and consequences of individual variation over lactation,” Am. J. Phys. Anthropol. 138(2), 148–157 (2009).
    [Crossref] [PubMed]
  12. R. K. Chen, L. W. Chang, Y. Y. Chung, M. H. Lee, and Y. C. Ling, “Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionisation mass spectrometry.,” Rapid Commun. Mass Spectrom. 18, 1167–1171 (2004).
    [Crossref] [PubMed]
  13. G. Maccabiani, E. Pavoni, M. Tilola, E. Agnelli, M. Simoni, F. D’Abrosca, and P. Boni, “Setting-up a PCR-based method for species identification in milk products,” Vet. Res. Commun. 29(S2Suppl 2), 327–329 (2005).
    [Crossref] [PubMed]
  14. S. Khorsand Ahmadi, M. Mahmoodian Moghadam, P. Mokaberi, M. Reza Saberi, and J. Chamani, “A comparison study of the interaction between β-lactoglobulin and retinol at two different conditions: spectroscopic and molecular modeling approaches,” J. Biomol. Struct. Dyn. 33(9), 1880–1898 (2015).
    [Crossref] [PubMed]
  15. M. M. Moghaddam, M. Pirouzi, M. R. Saberi, and J. Chamani, “Comparison of the binding behavior of FCCP with HSA and HTF as determined by spectroscopic and molecular modeling techniques,” Luminescence 29(4), 314–331 (2014).
    [Crossref] [PubMed]
  16. K. Saranjam, U. Rahat, M. Saleem, M. Bilal, R. Rashad, and K. Inamullah, “Raman spectroscopy analysis of dengue virus infection in human blood sera,” J. Opt. 127(4), 2086–2088 (2016).
  17. S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express 7(6), 2249–2256 (2016).
    [Crossref] [PubMed]
  18. C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
    [Crossref] [PubMed]
  19. B. F. J. Manly, “ Multivariate Statistical Methods: A Primer,” 3rd Edition, (Chapman and Hall) 224–234, (2005).
  20. R. Ullah, S. Khan, A. Khan, M. Saleem, H. Ali, M. Bilal, and M. Ahmed, “Infant gender-based differentiation in concentration of milk fats using near infrared Raman spectroscopy,” J. Raman Spectrosc. 48(3), 363–367 (2017).
    [Crossref]
  21. M. F. Mrozek and M. J. Weaver, “Detection and identification of aqueous saccharides by using surface-enhanced Raman spectroscopy,” Anal. Chem. 74(16), 4069–4075 (2002).
    [Crossref] [PubMed]
  22. C. Barbosa-Cesnik, K. Schwartz, and B. Foxman, “Lactation mastitis,” JAMA 289(13), 1609–1612 (2003).
    [Crossref] [PubMed]
  23. M. A. Conlon and A. R. Bird, “The impact of diet and lifestyle on gut microbiota and human health,” Nutrients 7(1), 17–44 (2014).
    [Crossref] [PubMed]
  24. B. Koletzko and M. Rodriguez-Palmero, “Polyunsaturated fatty acids in human milk and their role in early infant development,” J. Mammary Gland Biol. Neoplasia 4(3), 269–284 (1999).
    [Crossref] [PubMed]
  25. S. M. Innis, “Dietary omega 3 fatty acids and the developing brain,” Brain Res. 1237, 35–43 (2008).
    [Crossref] [PubMed]
  26. R. M. El-Abassy, P. J. Eravuchira, P. Donfack, B. Kammer, and A. Matey, “Fast determination of milk fat content using Raman spectroscopy,” J. Vibrational Spectroscopy 56(1), 3–8 (2011).
    [Crossref]
  27. I. Stefanov, V. Baeten, B. De Baets, and V. Fievez, “Towards combinatorial spectroscopy: the case of minor milk fatty acids determination,” Talanta 112, 101–110 (2013).
    [Crossref] [PubMed]
  28. A. Tankiewicz, D. Dziemiańczyk, P. Buczko, I. J. Szarmach, S. Z. Grabowska, and D. Pawlak, “Tryptophan and its metabolites in patients with oral squamous cell carcinoma: preliminary study,” Adv. Med. Sci. 51(Suppl 1), 221–224 (2006).
    [PubMed]
  29. J. D. Carver, B. Pimentel, W. I. Cox, and L. A. Barness, “Dietary nucleotide effects upon immune function in infants,” Pediatrics 88(2), 359–363 (1991).
    [PubMed]
  30. C. L. Sánchez, J. Cubero, J. Sánchez, B. Chanclón, M. Rivero, A. B. Rodríguez, and C. Barriga, “The possible role of human milk nucleotides as sleep inducers,” Nutr. Neurosci. 12(1), 2–8 (2009).
    [Crossref] [PubMed]
  31. S. A. Atkinson, G. H. Anderson, and M. H. Bryan, “Human milk: comparison of the nitrogen composition in milk from mothers of premature and full-term infants,” Am. J. Clin. Nutr. 33(4), 811–815 (1980).
    [PubMed]
  32. E. Schlimme, D. Martin, and H. Meisel, “Nucleosides and nucleotides: natural bioactive substances in milk and colostrum,” Br. J. Nutr. 84(S1Suppl 1), S59–S68 (2000).
    [Crossref] [PubMed]

2017 (2)

S. Marouzi, A. Sharifi Rad, S. Beigoli, P. Teimoori Baghaee, R. Assaran Darban, and J. Chamani, “Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches,” Int. J. Biol. Macromol. 97, 688–699 (2017).
[Crossref] [PubMed]

R. Ullah, S. Khan, A. Khan, M. Saleem, H. Ali, M. Bilal, and M. Ahmed, “Infant gender-based differentiation in concentration of milk fats using near infrared Raman spectroscopy,” J. Raman Spectrosc. 48(3), 363–367 (2017).
[Crossref]

2016 (3)

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express. 7, 2249 (2016).

K. Saranjam, U. Rahat, M. Saleem, M. Bilal, R. Rashad, and K. Inamullah, “Raman spectroscopy analysis of dengue virus infection in human blood sera,” J. Opt. 127(4), 2086–2088 (2016).

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express 7(6), 2249–2256 (2016).
[Crossref] [PubMed]

2015 (1)

S. Khorsand Ahmadi, M. Mahmoodian Moghadam, P. Mokaberi, M. Reza Saberi, and J. Chamani, “A comparison study of the interaction between β-lactoglobulin and retinol at two different conditions: spectroscopic and molecular modeling approaches,” J. Biomol. Struct. Dyn. 33(9), 1880–1898 (2015).
[Crossref] [PubMed]

2014 (2)

M. M. Moghaddam, M. Pirouzi, M. R. Saberi, and J. Chamani, “Comparison of the binding behavior of FCCP with HSA and HTF as determined by spectroscopic and molecular modeling techniques,” Luminescence 29(4), 314–331 (2014).
[Crossref] [PubMed]

M. A. Conlon and A. R. Bird, “The impact of diet and lifestyle on gut microbiota and human health,” Nutrients 7(1), 17–44 (2014).
[Crossref] [PubMed]

2013 (2)

I. Stefanov, V. Baeten, B. De Baets, and V. Fievez, “Towards combinatorial spectroscopy: the case of minor milk fatty acids determination,” Talanta 112, 101–110 (2013).
[Crossref] [PubMed]

O. Ballard and A. L. Morrow, “Human milk composition: Nutrients and bioactive factors,” Pediatr. Clin. North Am. 60(1), 49–74 (2013).
[Crossref] [PubMed]

2011 (2)

K. Hinde and L. A. Milligan, “Primate milk: Proximate mechanisms and ultimate perspectives,” Evol. Anthropol. 20(1), 9–23 (2011).
[Crossref] [PubMed]

R. M. El-Abassy, P. J. Eravuchira, P. Donfack, B. Kammer, and A. Matey, “Fast determination of milk fat content using Raman spectroscopy,” J. Vibrational Spectroscopy 56(1), 3–8 (2011).
[Crossref]

2009 (4)

C. L. Sánchez, J. Cubero, J. Sánchez, B. Chanclón, M. Rivero, A. B. Rodríguez, and C. Barriga, “The possible role of human milk nucleotides as sleep inducers,” Nutr. Neurosci. 12(1), 2–8 (2009).
[Crossref] [PubMed]

D. Tomé, J. Schwarz, N. Darcel, and G. Fromentin, “Protein, amino acids, vagus nerve signaling, and the brain,” Am. J. Clin. Nutr. 90(3), 838S–843S (2009).
[Crossref] [PubMed]

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
[Crossref] [PubMed]

K. Hinde, M. L. Power, and O. T. Oftedal, “Rhesus macaque milk: magnitude, sources, and consequences of individual variation over lactation,” Am. J. Phys. Anthropol. 138(2), 148–157 (2009).
[Crossref] [PubMed]

2008 (1)

S. M. Innis, “Dietary omega 3 fatty acids and the developing brain,” Brain Res. 1237, 35–43 (2008).
[Crossref] [PubMed]

2006 (1)

A. Tankiewicz, D. Dziemiańczyk, P. Buczko, I. J. Szarmach, S. Z. Grabowska, and D. Pawlak, “Tryptophan and its metabolites in patients with oral squamous cell carcinoma: preliminary study,” Adv. Med. Sci. 51(Suppl 1), 221–224 (2006).
[PubMed]

2005 (1)

G. Maccabiani, E. Pavoni, M. Tilola, E. Agnelli, M. Simoni, F. D’Abrosca, and P. Boni, “Setting-up a PCR-based method for species identification in milk products,” Vet. Res. Commun. 29(S2Suppl 2), 327–329 (2005).
[Crossref] [PubMed]

2004 (2)

R. K. Chen, L. W. Chang, Y. Y. Chung, M. H. Lee, and Y. C. Ling, “Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionisation mass spectrometry.,” Rapid Commun. Mass Spectrom. 18, 1167–1171 (2004).
[Crossref] [PubMed]

P. Parodi, “Milk fats in human nutrition,” Aust. J. Dairy Technol. 59, 3–59 (2004).

2003 (2)

H. L. Månsson, R. Fondén, and H. E. Pettersson, “Composition of Swedish dairy milk,” Int. Dairy J. 13(6), 409–425 (2003).
[Crossref]

C. Barbosa-Cesnik, K. Schwartz, and B. Foxman, “Lactation mastitis,” JAMA 289(13), 1609–1612 (2003).
[Crossref] [PubMed]

2002 (1)

M. F. Mrozek and M. J. Weaver, “Detection and identification of aqueous saccharides by using surface-enhanced Raman spectroscopy,” Anal. Chem. 74(16), 4069–4075 (2002).
[Crossref] [PubMed]

2000 (2)

E. Schlimme, D. Martin, and H. Meisel, “Nucleosides and nucleotides: natural bioactive substances in milk and colostrum,” Br. J. Nutr. 84(S1Suppl 1), S59–S68 (2000).
[Crossref] [PubMed]

S. M. Innis, “The Role of Dietary n-6 and n-3 Fatty Acids in the Developing Brain,” Dev. Neurosci. 22(5-6), 474–480 (2000).
[Crossref] [PubMed]

1999 (2)

K. Duchén and L. Thorell, “Nucleotide and polyamine levels in colostrum and mature milk in relation to maternal atopy and atopic development in the children,” Acta Paediatr. 88(12), 1338–1343 (1999).
[Crossref] [PubMed]

B. Koletzko and M. Rodriguez-Palmero, “Polyunsaturated fatty acids in human milk and their role in early infant development,” J. Mammary Gland Biol. Neoplasia 4(3), 269–284 (1999).
[Crossref] [PubMed]

1995 (1)

W. Heine, M. Radke, and K. D. Wutzke, “The significance of tryptophan in human nutrition,” Amino Acids 9(3), 91–205 (1995).
[Crossref] [PubMed]

1991 (1)

J. D. Carver, B. Pimentel, W. I. Cox, and L. A. Barness, “Dietary nucleotide effects upon immune function in infants,” Pediatrics 88(2), 359–363 (1991).
[PubMed]

1980 (1)

S. A. Atkinson, G. H. Anderson, and M. H. Bryan, “Human milk: comparison of the nitrogen composition in milk from mothers of premature and full-term infants,” Am. J. Clin. Nutr. 33(4), 811–815 (1980).
[PubMed]

Agnelli, E.

G. Maccabiani, E. Pavoni, M. Tilola, E. Agnelli, M. Simoni, F. D’Abrosca, and P. Boni, “Setting-up a PCR-based method for species identification in milk products,” Vet. Res. Commun. 29(S2Suppl 2), 327–329 (2005).
[Crossref] [PubMed]

Ahmed, M.

R. Ullah, S. Khan, A. Khan, M. Saleem, H. Ali, M. Bilal, and M. Ahmed, “Infant gender-based differentiation in concentration of milk fats using near infrared Raman spectroscopy,” J. Raman Spectrosc. 48(3), 363–367 (2017).
[Crossref]

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express 7(6), 2249–2256 (2016).
[Crossref] [PubMed]

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express. 7, 2249 (2016).

Ali, H.

R. Ullah, S. Khan, A. Khan, M. Saleem, H. Ali, M. Bilal, and M. Ahmed, “Infant gender-based differentiation in concentration of milk fats using near infrared Raman spectroscopy,” J. Raman Spectrosc. 48(3), 363–367 (2017).
[Crossref]

Anderson, G. H.

S. A. Atkinson, G. H. Anderson, and M. H. Bryan, “Human milk: comparison of the nitrogen composition in milk from mothers of premature and full-term infants,” Am. J. Clin. Nutr. 33(4), 811–815 (1980).
[PubMed]

Assaran Darban, R.

S. Marouzi, A. Sharifi Rad, S. Beigoli, P. Teimoori Baghaee, R. Assaran Darban, and J. Chamani, “Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches,” Int. J. Biol. Macromol. 97, 688–699 (2017).
[Crossref] [PubMed]

Atkinson, S. A.

S. A. Atkinson, G. H. Anderson, and M. H. Bryan, “Human milk: comparison of the nitrogen composition in milk from mothers of premature and full-term infants,” Am. J. Clin. Nutr. 33(4), 811–815 (1980).
[PubMed]

Baeten, V.

I. Stefanov, V. Baeten, B. De Baets, and V. Fievez, “Towards combinatorial spectroscopy: the case of minor milk fatty acids determination,” Talanta 112, 101–110 (2013).
[Crossref] [PubMed]

Ballard, O.

O. Ballard and A. L. Morrow, “Human milk composition: Nutrients and bioactive factors,” Pediatr. Clin. North Am. 60(1), 49–74 (2013).
[Crossref] [PubMed]

Barbosa-Cesnik, C.

C. Barbosa-Cesnik, K. Schwartz, and B. Foxman, “Lactation mastitis,” JAMA 289(13), 1609–1612 (2003).
[Crossref] [PubMed]

Barness, L. A.

J. D. Carver, B. Pimentel, W. I. Cox, and L. A. Barness, “Dietary nucleotide effects upon immune function in infants,” Pediatrics 88(2), 359–363 (1991).
[PubMed]

Barriga, C.

C. L. Sánchez, J. Cubero, J. Sánchez, B. Chanclón, M. Rivero, A. B. Rodríguez, and C. Barriga, “The possible role of human milk nucleotides as sleep inducers,” Nutr. Neurosci. 12(1), 2–8 (2009).
[Crossref] [PubMed]

Beigoli, S.

S. Marouzi, A. Sharifi Rad, S. Beigoli, P. Teimoori Baghaee, R. Assaran Darban, and J. Chamani, “Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches,” Int. J. Biol. Macromol. 97, 688–699 (2017).
[Crossref] [PubMed]

Beleites, C.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
[Crossref] [PubMed]

Bilal, M.

R. Ullah, S. Khan, A. Khan, M. Saleem, H. Ali, M. Bilal, and M. Ahmed, “Infant gender-based differentiation in concentration of milk fats using near infrared Raman spectroscopy,” J. Raman Spectrosc. 48(3), 363–367 (2017).
[Crossref]

K. Saranjam, U. Rahat, M. Saleem, M. Bilal, R. Rashad, and K. Inamullah, “Raman spectroscopy analysis of dengue virus infection in human blood sera,” J. Opt. 127(4), 2086–2088 (2016).

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express 7(6), 2249–2256 (2016).
[Crossref] [PubMed]

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express. 7, 2249 (2016).

Bird, A. R.

M. A. Conlon and A. R. Bird, “The impact of diet and lifestyle on gut microbiota and human health,” Nutrients 7(1), 17–44 (2014).
[Crossref] [PubMed]

Boni, P.

G. Maccabiani, E. Pavoni, M. Tilola, E. Agnelli, M. Simoni, F. D’Abrosca, and P. Boni, “Setting-up a PCR-based method for species identification in milk products,” Vet. Res. Commun. 29(S2Suppl 2), 327–329 (2005).
[Crossref] [PubMed]

Bryan, M. H.

S. A. Atkinson, G. H. Anderson, and M. H. Bryan, “Human milk: comparison of the nitrogen composition in milk from mothers of premature and full-term infants,” Am. J. Clin. Nutr. 33(4), 811–815 (1980).
[PubMed]

Buczko, P.

A. Tankiewicz, D. Dziemiańczyk, P. Buczko, I. J. Szarmach, S. Z. Grabowska, and D. Pawlak, “Tryptophan and its metabolites in patients with oral squamous cell carcinoma: preliminary study,” Adv. Med. Sci. 51(Suppl 1), 221–224 (2006).
[PubMed]

Carver, J. D.

J. D. Carver, B. Pimentel, W. I. Cox, and L. A. Barness, “Dietary nucleotide effects upon immune function in infants,” Pediatrics 88(2), 359–363 (1991).
[PubMed]

Chamani, J.

S. Marouzi, A. Sharifi Rad, S. Beigoli, P. Teimoori Baghaee, R. Assaran Darban, and J. Chamani, “Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches,” Int. J. Biol. Macromol. 97, 688–699 (2017).
[Crossref] [PubMed]

S. Khorsand Ahmadi, M. Mahmoodian Moghadam, P. Mokaberi, M. Reza Saberi, and J. Chamani, “A comparison study of the interaction between β-lactoglobulin and retinol at two different conditions: spectroscopic and molecular modeling approaches,” J. Biomol. Struct. Dyn. 33(9), 1880–1898 (2015).
[Crossref] [PubMed]

M. M. Moghaddam, M. Pirouzi, M. R. Saberi, and J. Chamani, “Comparison of the binding behavior of FCCP with HSA and HTF as determined by spectroscopic and molecular modeling techniques,” Luminescence 29(4), 314–331 (2014).
[Crossref] [PubMed]

Chanclón, B.

C. L. Sánchez, J. Cubero, J. Sánchez, B. Chanclón, M. Rivero, A. B. Rodríguez, and C. Barriga, “The possible role of human milk nucleotides as sleep inducers,” Nutr. Neurosci. 12(1), 2–8 (2009).
[Crossref] [PubMed]

Chang, L. W.

R. K. Chen, L. W. Chang, Y. Y. Chung, M. H. Lee, and Y. C. Ling, “Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionisation mass spectrometry.,” Rapid Commun. Mass Spectrom. 18, 1167–1171 (2004).
[Crossref] [PubMed]

Chen, R. K.

R. K. Chen, L. W. Chang, Y. Y. Chung, M. H. Lee, and Y. C. Ling, “Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionisation mass spectrometry.,” Rapid Commun. Mass Spectrom. 18, 1167–1171 (2004).
[Crossref] [PubMed]

Chung, Y. Y.

R. K. Chen, L. W. Chang, Y. Y. Chung, M. H. Lee, and Y. C. Ling, “Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionisation mass spectrometry.,” Rapid Commun. Mass Spectrom. 18, 1167–1171 (2004).
[Crossref] [PubMed]

Conlon, M. A.

M. A. Conlon and A. R. Bird, “The impact of diet and lifestyle on gut microbiota and human health,” Nutrients 7(1), 17–44 (2014).
[Crossref] [PubMed]

Cox, W. I.

J. D. Carver, B. Pimentel, W. I. Cox, and L. A. Barness, “Dietary nucleotide effects upon immune function in infants,” Pediatrics 88(2), 359–363 (1991).
[PubMed]

Cubero, J.

C. L. Sánchez, J. Cubero, J. Sánchez, B. Chanclón, M. Rivero, A. B. Rodríguez, and C. Barriga, “The possible role of human milk nucleotides as sleep inducers,” Nutr. Neurosci. 12(1), 2–8 (2009).
[Crossref] [PubMed]

D’Abrosca, F.

G. Maccabiani, E. Pavoni, M. Tilola, E. Agnelli, M. Simoni, F. D’Abrosca, and P. Boni, “Setting-up a PCR-based method for species identification in milk products,” Vet. Res. Commun. 29(S2Suppl 2), 327–329 (2005).
[Crossref] [PubMed]

Darcel, N.

D. Tomé, J. Schwarz, N. Darcel, and G. Fromentin, “Protein, amino acids, vagus nerve signaling, and the brain,” Am. J. Clin. Nutr. 90(3), 838S–843S (2009).
[Crossref] [PubMed]

De Baets, B.

I. Stefanov, V. Baeten, B. De Baets, and V. Fievez, “Towards combinatorial spectroscopy: the case of minor milk fatty acids determination,” Talanta 112, 101–110 (2013).
[Crossref] [PubMed]

Donfack, P.

R. M. El-Abassy, P. J. Eravuchira, P. Donfack, B. Kammer, and A. Matey, “Fast determination of milk fat content using Raman spectroscopy,” J. Vibrational Spectroscopy 56(1), 3–8 (2011).
[Crossref]

Duchén, K.

K. Duchén and L. Thorell, “Nucleotide and polyamine levels in colostrum and mature milk in relation to maternal atopy and atopic development in the children,” Acta Paediatr. 88(12), 1338–1343 (1999).
[Crossref] [PubMed]

Dziemianczyk, D.

A. Tankiewicz, D. Dziemiańczyk, P. Buczko, I. J. Szarmach, S. Z. Grabowska, and D. Pawlak, “Tryptophan and its metabolites in patients with oral squamous cell carcinoma: preliminary study,” Adv. Med. Sci. 51(Suppl 1), 221–224 (2006).
[PubMed]

El-Abassy, R. M.

R. M. El-Abassy, P. J. Eravuchira, P. Donfack, B. Kammer, and A. Matey, “Fast determination of milk fat content using Raman spectroscopy,” J. Vibrational Spectroscopy 56(1), 3–8 (2011).
[Crossref]

Eravuchira, P. J.

R. M. El-Abassy, P. J. Eravuchira, P. Donfack, B. Kammer, and A. Matey, “Fast determination of milk fat content using Raman spectroscopy,” J. Vibrational Spectroscopy 56(1), 3–8 (2011).
[Crossref]

Fievez, V.

I. Stefanov, V. Baeten, B. De Baets, and V. Fievez, “Towards combinatorial spectroscopy: the case of minor milk fatty acids determination,” Talanta 112, 101–110 (2013).
[Crossref] [PubMed]

Fondén, R.

H. L. Månsson, R. Fondén, and H. E. Pettersson, “Composition of Swedish dairy milk,” Int. Dairy J. 13(6), 409–425 (2003).
[Crossref]

Foxman, B.

C. Barbosa-Cesnik, K. Schwartz, and B. Foxman, “Lactation mastitis,” JAMA 289(13), 1609–1612 (2003).
[Crossref] [PubMed]

Fromentin, G.

D. Tomé, J. Schwarz, N. Darcel, and G. Fromentin, “Protein, amino acids, vagus nerve signaling, and the brain,” Am. J. Clin. Nutr. 90(3), 838S–843S (2009).
[Crossref] [PubMed]

Grabowska, S. Z.

A. Tankiewicz, D. Dziemiańczyk, P. Buczko, I. J. Szarmach, S. Z. Grabowska, and D. Pawlak, “Tryptophan and its metabolites in patients with oral squamous cell carcinoma: preliminary study,” Adv. Med. Sci. 51(Suppl 1), 221–224 (2006).
[PubMed]

Heine, W.

W. Heine, M. Radke, and K. D. Wutzke, “The significance of tryptophan in human nutrition,” Amino Acids 9(3), 91–205 (1995).
[Crossref] [PubMed]

Hinde, K.

K. Hinde and L. A. Milligan, “Primate milk: Proximate mechanisms and ultimate perspectives,” Evol. Anthropol. 20(1), 9–23 (2011).
[Crossref] [PubMed]

K. Hinde, M. L. Power, and O. T. Oftedal, “Rhesus macaque milk: magnitude, sources, and consequences of individual variation over lactation,” Am. J. Phys. Anthropol. 138(2), 148–157 (2009).
[Crossref] [PubMed]

Inamullah, K.

K. Saranjam, U. Rahat, M. Saleem, M. Bilal, R. Rashad, and K. Inamullah, “Raman spectroscopy analysis of dengue virus infection in human blood sera,” J. Opt. 127(4), 2086–2088 (2016).

Innis, S. M.

S. M. Innis, “Dietary omega 3 fatty acids and the developing brain,” Brain Res. 1237, 35–43 (2008).
[Crossref] [PubMed]

S. M. Innis, “The Role of Dietary n-6 and n-3 Fatty Acids in the Developing Brain,” Dev. Neurosci. 22(5-6), 474–480 (2000).
[Crossref] [PubMed]

Kammer, B.

R. M. El-Abassy, P. J. Eravuchira, P. Donfack, B. Kammer, and A. Matey, “Fast determination of milk fat content using Raman spectroscopy,” J. Vibrational Spectroscopy 56(1), 3–8 (2011).
[Crossref]

Khan, A.

R. Ullah, S. Khan, A. Khan, M. Saleem, H. Ali, M. Bilal, and M. Ahmed, “Infant gender-based differentiation in concentration of milk fats using near infrared Raman spectroscopy,” J. Raman Spectrosc. 48(3), 363–367 (2017).
[Crossref]

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express 7(6), 2249–2256 (2016).
[Crossref] [PubMed]

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express. 7, 2249 (2016).

Khan, S.

R. Ullah, S. Khan, A. Khan, M. Saleem, H. Ali, M. Bilal, and M. Ahmed, “Infant gender-based differentiation in concentration of milk fats using near infrared Raman spectroscopy,” J. Raman Spectrosc. 48(3), 363–367 (2017).
[Crossref]

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express 7(6), 2249–2256 (2016).
[Crossref] [PubMed]

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express. 7, 2249 (2016).

Khorsand Ahmadi, S.

S. Khorsand Ahmadi, M. Mahmoodian Moghadam, P. Mokaberi, M. Reza Saberi, and J. Chamani, “A comparison study of the interaction between β-lactoglobulin and retinol at two different conditions: spectroscopic and molecular modeling approaches,” J. Biomol. Struct. Dyn. 33(9), 1880–1898 (2015).
[Crossref] [PubMed]

Koletzko, B.

B. Koletzko and M. Rodriguez-Palmero, “Polyunsaturated fatty acids in human milk and their role in early infant development,” J. Mammary Gland Biol. Neoplasia 4(3), 269–284 (1999).
[Crossref] [PubMed]

Krafft, C.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
[Crossref] [PubMed]

Lee, M. H.

R. K. Chen, L. W. Chang, Y. Y. Chung, M. H. Lee, and Y. C. Ling, “Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionisation mass spectrometry.,” Rapid Commun. Mass Spectrom. 18, 1167–1171 (2004).
[Crossref] [PubMed]

Ling, Y. C.

R. K. Chen, L. W. Chang, Y. Y. Chung, M. H. Lee, and Y. C. Ling, “Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionisation mass spectrometry.,” Rapid Commun. Mass Spectrom. 18, 1167–1171 (2004).
[Crossref] [PubMed]

Maccabiani, G.

G. Maccabiani, E. Pavoni, M. Tilola, E. Agnelli, M. Simoni, F. D’Abrosca, and P. Boni, “Setting-up a PCR-based method for species identification in milk products,” Vet. Res. Commun. 29(S2Suppl 2), 327–329 (2005).
[Crossref] [PubMed]

Mahmoodian Moghadam, M.

S. Khorsand Ahmadi, M. Mahmoodian Moghadam, P. Mokaberi, M. Reza Saberi, and J. Chamani, “A comparison study of the interaction between β-lactoglobulin and retinol at two different conditions: spectroscopic and molecular modeling approaches,” J. Biomol. Struct. Dyn. 33(9), 1880–1898 (2015).
[Crossref] [PubMed]

Månsson, H. L.

H. L. Månsson, R. Fondén, and H. E. Pettersson, “Composition of Swedish dairy milk,” Int. Dairy J. 13(6), 409–425 (2003).
[Crossref]

Marouzi, S.

S. Marouzi, A. Sharifi Rad, S. Beigoli, P. Teimoori Baghaee, R. Assaran Darban, and J. Chamani, “Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches,” Int. J. Biol. Macromol. 97, 688–699 (2017).
[Crossref] [PubMed]

Martin, D.

E. Schlimme, D. Martin, and H. Meisel, “Nucleosides and nucleotides: natural bioactive substances in milk and colostrum,” Br. J. Nutr. 84(S1Suppl 1), S59–S68 (2000).
[Crossref] [PubMed]

Matey, A.

R. M. El-Abassy, P. J. Eravuchira, P. Donfack, B. Kammer, and A. Matey, “Fast determination of milk fat content using Raman spectroscopy,” J. Vibrational Spectroscopy 56(1), 3–8 (2011).
[Crossref]

Meisel, H.

E. Schlimme, D. Martin, and H. Meisel, “Nucleosides and nucleotides: natural bioactive substances in milk and colostrum,” Br. J. Nutr. 84(S1Suppl 1), S59–S68 (2000).
[Crossref] [PubMed]

Milligan, L. A.

K. Hinde and L. A. Milligan, “Primate milk: Proximate mechanisms and ultimate perspectives,” Evol. Anthropol. 20(1), 9–23 (2011).
[Crossref] [PubMed]

Moghaddam, M. M.

M. M. Moghaddam, M. Pirouzi, M. R. Saberi, and J. Chamani, “Comparison of the binding behavior of FCCP with HSA and HTF as determined by spectroscopic and molecular modeling techniques,” Luminescence 29(4), 314–331 (2014).
[Crossref] [PubMed]

Mokaberi, P.

S. Khorsand Ahmadi, M. Mahmoodian Moghadam, P. Mokaberi, M. Reza Saberi, and J. Chamani, “A comparison study of the interaction between β-lactoglobulin and retinol at two different conditions: spectroscopic and molecular modeling approaches,” J. Biomol. Struct. Dyn. 33(9), 1880–1898 (2015).
[Crossref] [PubMed]

Morrow, A. L.

O. Ballard and A. L. Morrow, “Human milk composition: Nutrients and bioactive factors,” Pediatr. Clin. North Am. 60(1), 49–74 (2013).
[Crossref] [PubMed]

Mrozek, M. F.

M. F. Mrozek and M. J. Weaver, “Detection and identification of aqueous saccharides by using surface-enhanced Raman spectroscopy,” Anal. Chem. 74(16), 4069–4075 (2002).
[Crossref] [PubMed]

Oftedal, O. T.

K. Hinde, M. L. Power, and O. T. Oftedal, “Rhesus macaque milk: magnitude, sources, and consequences of individual variation over lactation,” Am. J. Phys. Anthropol. 138(2), 148–157 (2009).
[Crossref] [PubMed]

Parodi, P.

P. Parodi, “Milk fats in human nutrition,” Aust. J. Dairy Technol. 59, 3–59 (2004).

Pavoni, E.

G. Maccabiani, E. Pavoni, M. Tilola, E. Agnelli, M. Simoni, F. D’Abrosca, and P. Boni, “Setting-up a PCR-based method for species identification in milk products,” Vet. Res. Commun. 29(S2Suppl 2), 327–329 (2005).
[Crossref] [PubMed]

Pawlak, D.

A. Tankiewicz, D. Dziemiańczyk, P. Buczko, I. J. Szarmach, S. Z. Grabowska, and D. Pawlak, “Tryptophan and its metabolites in patients with oral squamous cell carcinoma: preliminary study,” Adv. Med. Sci. 51(Suppl 1), 221–224 (2006).
[PubMed]

Pettersson, H. E.

H. L. Månsson, R. Fondén, and H. E. Pettersson, “Composition of Swedish dairy milk,” Int. Dairy J. 13(6), 409–425 (2003).
[Crossref]

Pimentel, B.

J. D. Carver, B. Pimentel, W. I. Cox, and L. A. Barness, “Dietary nucleotide effects upon immune function in infants,” Pediatrics 88(2), 359–363 (1991).
[PubMed]

Pirouzi, M.

M. M. Moghaddam, M. Pirouzi, M. R. Saberi, and J. Chamani, “Comparison of the binding behavior of FCCP with HSA and HTF as determined by spectroscopic and molecular modeling techniques,” Luminescence 29(4), 314–331 (2014).
[Crossref] [PubMed]

Power, M. L.

K. Hinde, M. L. Power, and O. T. Oftedal, “Rhesus macaque milk: magnitude, sources, and consequences of individual variation over lactation,” Am. J. Phys. Anthropol. 138(2), 148–157 (2009).
[Crossref] [PubMed]

Radke, M.

W. Heine, M. Radke, and K. D. Wutzke, “The significance of tryptophan in human nutrition,” Amino Acids 9(3), 91–205 (1995).
[Crossref] [PubMed]

Rahat, U.

K. Saranjam, U. Rahat, M. Saleem, M. Bilal, R. Rashad, and K. Inamullah, “Raman spectroscopy analysis of dengue virus infection in human blood sera,” J. Opt. 127(4), 2086–2088 (2016).

Rashad, R.

K. Saranjam, U. Rahat, M. Saleem, M. Bilal, R. Rashad, and K. Inamullah, “Raman spectroscopy analysis of dengue virus infection in human blood sera,” J. Opt. 127(4), 2086–2088 (2016).

Reza Saberi, M.

S. Khorsand Ahmadi, M. Mahmoodian Moghadam, P. Mokaberi, M. Reza Saberi, and J. Chamani, “A comparison study of the interaction between β-lactoglobulin and retinol at two different conditions: spectroscopic and molecular modeling approaches,” J. Biomol. Struct. Dyn. 33(9), 1880–1898 (2015).
[Crossref] [PubMed]

Rivero, M.

C. L. Sánchez, J. Cubero, J. Sánchez, B. Chanclón, M. Rivero, A. B. Rodríguez, and C. Barriga, “The possible role of human milk nucleotides as sleep inducers,” Nutr. Neurosci. 12(1), 2–8 (2009).
[Crossref] [PubMed]

Rodríguez, A. B.

C. L. Sánchez, J. Cubero, J. Sánchez, B. Chanclón, M. Rivero, A. B. Rodríguez, and C. Barriga, “The possible role of human milk nucleotides as sleep inducers,” Nutr. Neurosci. 12(1), 2–8 (2009).
[Crossref] [PubMed]

Rodriguez-Palmero, M.

B. Koletzko and M. Rodriguez-Palmero, “Polyunsaturated fatty acids in human milk and their role in early infant development,” J. Mammary Gland Biol. Neoplasia 4(3), 269–284 (1999).
[Crossref] [PubMed]

Saberi, M. R.

M. M. Moghaddam, M. Pirouzi, M. R. Saberi, and J. Chamani, “Comparison of the binding behavior of FCCP with HSA and HTF as determined by spectroscopic and molecular modeling techniques,” Luminescence 29(4), 314–331 (2014).
[Crossref] [PubMed]

Saleem, M.

R. Ullah, S. Khan, A. Khan, M. Saleem, H. Ali, M. Bilal, and M. Ahmed, “Infant gender-based differentiation in concentration of milk fats using near infrared Raman spectroscopy,” J. Raman Spectrosc. 48(3), 363–367 (2017).
[Crossref]

K. Saranjam, U. Rahat, M. Saleem, M. Bilal, R. Rashad, and K. Inamullah, “Raman spectroscopy analysis of dengue virus infection in human blood sera,” J. Opt. 127(4), 2086–2088 (2016).

Salzer, R.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
[Crossref] [PubMed]

Sánchez, C. L.

C. L. Sánchez, J. Cubero, J. Sánchez, B. Chanclón, M. Rivero, A. B. Rodríguez, and C. Barriga, “The possible role of human milk nucleotides as sleep inducers,” Nutr. Neurosci. 12(1), 2–8 (2009).
[Crossref] [PubMed]

Sánchez, J.

C. L. Sánchez, J. Cubero, J. Sánchez, B. Chanclón, M. Rivero, A. B. Rodríguez, and C. Barriga, “The possible role of human milk nucleotides as sleep inducers,” Nutr. Neurosci. 12(1), 2–8 (2009).
[Crossref] [PubMed]

Saranjam, K.

K. Saranjam, U. Rahat, M. Saleem, M. Bilal, R. Rashad, and K. Inamullah, “Raman spectroscopy analysis of dengue virus infection in human blood sera,” J. Opt. 127(4), 2086–2088 (2016).

Schlimme, E.

E. Schlimme, D. Martin, and H. Meisel, “Nucleosides and nucleotides: natural bioactive substances in milk and colostrum,” Br. J. Nutr. 84(S1Suppl 1), S59–S68 (2000).
[Crossref] [PubMed]

Schwartz, K.

C. Barbosa-Cesnik, K. Schwartz, and B. Foxman, “Lactation mastitis,” JAMA 289(13), 1609–1612 (2003).
[Crossref] [PubMed]

Schwarz, J.

D. Tomé, J. Schwarz, N. Darcel, and G. Fromentin, “Protein, amino acids, vagus nerve signaling, and the brain,” Am. J. Clin. Nutr. 90(3), 838S–843S (2009).
[Crossref] [PubMed]

Sharifi Rad, A.

S. Marouzi, A. Sharifi Rad, S. Beigoli, P. Teimoori Baghaee, R. Assaran Darban, and J. Chamani, “Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches,” Int. J. Biol. Macromol. 97, 688–699 (2017).
[Crossref] [PubMed]

Simoni, M.

G. Maccabiani, E. Pavoni, M. Tilola, E. Agnelli, M. Simoni, F. D’Abrosca, and P. Boni, “Setting-up a PCR-based method for species identification in milk products,” Vet. Res. Commun. 29(S2Suppl 2), 327–329 (2005).
[Crossref] [PubMed]

Stefanov, I.

I. Stefanov, V. Baeten, B. De Baets, and V. Fievez, “Towards combinatorial spectroscopy: the case of minor milk fatty acids determination,” Talanta 112, 101–110 (2013).
[Crossref] [PubMed]

Steiner, G.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
[Crossref] [PubMed]

Szarmach, I. J.

A. Tankiewicz, D. Dziemiańczyk, P. Buczko, I. J. Szarmach, S. Z. Grabowska, and D. Pawlak, “Tryptophan and its metabolites in patients with oral squamous cell carcinoma: preliminary study,” Adv. Med. Sci. 51(Suppl 1), 221–224 (2006).
[PubMed]

Tankiewicz, A.

A. Tankiewicz, D. Dziemiańczyk, P. Buczko, I. J. Szarmach, S. Z. Grabowska, and D. Pawlak, “Tryptophan and its metabolites in patients with oral squamous cell carcinoma: preliminary study,” Adv. Med. Sci. 51(Suppl 1), 221–224 (2006).
[PubMed]

Teimoori Baghaee, P.

S. Marouzi, A. Sharifi Rad, S. Beigoli, P. Teimoori Baghaee, R. Assaran Darban, and J. Chamani, “Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches,” Int. J. Biol. Macromol. 97, 688–699 (2017).
[Crossref] [PubMed]

Thorell, L.

K. Duchén and L. Thorell, “Nucleotide and polyamine levels in colostrum and mature milk in relation to maternal atopy and atopic development in the children,” Acta Paediatr. 88(12), 1338–1343 (1999).
[Crossref] [PubMed]

Tilola, M.

G. Maccabiani, E. Pavoni, M. Tilola, E. Agnelli, M. Simoni, F. D’Abrosca, and P. Boni, “Setting-up a PCR-based method for species identification in milk products,” Vet. Res. Commun. 29(S2Suppl 2), 327–329 (2005).
[Crossref] [PubMed]

Tomé, D.

D. Tomé, J. Schwarz, N. Darcel, and G. Fromentin, “Protein, amino acids, vagus nerve signaling, and the brain,” Am. J. Clin. Nutr. 90(3), 838S–843S (2009).
[Crossref] [PubMed]

Ullah, R.

R. Ullah, S. Khan, A. Khan, M. Saleem, H. Ali, M. Bilal, and M. Ahmed, “Infant gender-based differentiation in concentration of milk fats using near infrared Raman spectroscopy,” J. Raman Spectrosc. 48(3), 363–367 (2017).
[Crossref]

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express 7(6), 2249–2256 (2016).
[Crossref] [PubMed]

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express. 7, 2249 (2016).

Wahab, N.

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express. 7, 2249 (2016).

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express 7(6), 2249–2256 (2016).
[Crossref] [PubMed]

Weaver, M. J.

M. F. Mrozek and M. J. Weaver, “Detection and identification of aqueous saccharides by using surface-enhanced Raman spectroscopy,” Anal. Chem. 74(16), 4069–4075 (2002).
[Crossref] [PubMed]

Wutzke, K. D.

W. Heine, M. Radke, and K. D. Wutzke, “The significance of tryptophan in human nutrition,” Amino Acids 9(3), 91–205 (1995).
[Crossref] [PubMed]

Acta Paediatr. (1)

K. Duchén and L. Thorell, “Nucleotide and polyamine levels in colostrum and mature milk in relation to maternal atopy and atopic development in the children,” Acta Paediatr. 88(12), 1338–1343 (1999).
[Crossref] [PubMed]

Adv. Med. Sci. (1)

A. Tankiewicz, D. Dziemiańczyk, P. Buczko, I. J. Szarmach, S. Z. Grabowska, and D. Pawlak, “Tryptophan and its metabolites in patients with oral squamous cell carcinoma: preliminary study,” Adv. Med. Sci. 51(Suppl 1), 221–224 (2006).
[PubMed]

Am. J. Clin. Nutr. (2)

S. A. Atkinson, G. H. Anderson, and M. H. Bryan, “Human milk: comparison of the nitrogen composition in milk from mothers of premature and full-term infants,” Am. J. Clin. Nutr. 33(4), 811–815 (1980).
[PubMed]

D. Tomé, J. Schwarz, N. Darcel, and G. Fromentin, “Protein, amino acids, vagus nerve signaling, and the brain,” Am. J. Clin. Nutr. 90(3), 838S–843S (2009).
[Crossref] [PubMed]

Am. J. Phys. Anthropol. (1)

K. Hinde, M. L. Power, and O. T. Oftedal, “Rhesus macaque milk: magnitude, sources, and consequences of individual variation over lactation,” Am. J. Phys. Anthropol. 138(2), 148–157 (2009).
[Crossref] [PubMed]

Amino Acids (1)

W. Heine, M. Radke, and K. D. Wutzke, “The significance of tryptophan in human nutrition,” Amino Acids 9(3), 91–205 (1995).
[Crossref] [PubMed]

Anal. Chem. (1)

M. F. Mrozek and M. J. Weaver, “Detection and identification of aqueous saccharides by using surface-enhanced Raman spectroscopy,” Anal. Chem. 74(16), 4069–4075 (2002).
[Crossref] [PubMed]

Aust. J. Dairy Technol. (1)

P. Parodi, “Milk fats in human nutrition,” Aust. J. Dairy Technol. 59, 3–59 (2004).

Biomed. Opt. Express (1)

Biomed. Opt. Express. (1)

S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M. Ahmed, “Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM),” Biomed. Opt. Express. 7, 2249 (2016).

Br. J. Nutr. (1)

E. Schlimme, D. Martin, and H. Meisel, “Nucleosides and nucleotides: natural bioactive substances in milk and colostrum,” Br. J. Nutr. 84(S1Suppl 1), S59–S68 (2000).
[Crossref] [PubMed]

Brain Res. (1)

S. M. Innis, “Dietary omega 3 fatty acids and the developing brain,” Brain Res. 1237, 35–43 (2008).
[Crossref] [PubMed]

Dev. Neurosci. (1)

S. M. Innis, “The Role of Dietary n-6 and n-3 Fatty Acids in the Developing Brain,” Dev. Neurosci. 22(5-6), 474–480 (2000).
[Crossref] [PubMed]

Evol. Anthropol. (1)

K. Hinde and L. A. Milligan, “Primate milk: Proximate mechanisms and ultimate perspectives,” Evol. Anthropol. 20(1), 9–23 (2011).
[Crossref] [PubMed]

Int. Dairy J. (1)

H. L. Månsson, R. Fondén, and H. E. Pettersson, “Composition of Swedish dairy milk,” Int. Dairy J. 13(6), 409–425 (2003).
[Crossref]

Int. J. Biol. Macromol. (1)

S. Marouzi, A. Sharifi Rad, S. Beigoli, P. Teimoori Baghaee, R. Assaran Darban, and J. Chamani, “Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches,” Int. J. Biol. Macromol. 97, 688–699 (2017).
[Crossref] [PubMed]

J. Biomol. Struct. Dyn. (1)

S. Khorsand Ahmadi, M. Mahmoodian Moghadam, P. Mokaberi, M. Reza Saberi, and J. Chamani, “A comparison study of the interaction between β-lactoglobulin and retinol at two different conditions: spectroscopic and molecular modeling approaches,” J. Biomol. Struct. Dyn. 33(9), 1880–1898 (2015).
[Crossref] [PubMed]

J. Biophotonics (1)

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
[Crossref] [PubMed]

J. Mammary Gland Biol. Neoplasia (1)

B. Koletzko and M. Rodriguez-Palmero, “Polyunsaturated fatty acids in human milk and their role in early infant development,” J. Mammary Gland Biol. Neoplasia 4(3), 269–284 (1999).
[Crossref] [PubMed]

J. Opt. (1)

K. Saranjam, U. Rahat, M. Saleem, M. Bilal, R. Rashad, and K. Inamullah, “Raman spectroscopy analysis of dengue virus infection in human blood sera,” J. Opt. 127(4), 2086–2088 (2016).

J. Raman Spectrosc. (1)

R. Ullah, S. Khan, A. Khan, M. Saleem, H. Ali, M. Bilal, and M. Ahmed, “Infant gender-based differentiation in concentration of milk fats using near infrared Raman spectroscopy,” J. Raman Spectrosc. 48(3), 363–367 (2017).
[Crossref]

J. Vibrational Spectroscopy (1)

R. M. El-Abassy, P. J. Eravuchira, P. Donfack, B. Kammer, and A. Matey, “Fast determination of milk fat content using Raman spectroscopy,” J. Vibrational Spectroscopy 56(1), 3–8 (2011).
[Crossref]

JAMA (1)

C. Barbosa-Cesnik, K. Schwartz, and B. Foxman, “Lactation mastitis,” JAMA 289(13), 1609–1612 (2003).
[Crossref] [PubMed]

Luminescence (1)

M. M. Moghaddam, M. Pirouzi, M. R. Saberi, and J. Chamani, “Comparison of the binding behavior of FCCP with HSA and HTF as determined by spectroscopic and molecular modeling techniques,” Luminescence 29(4), 314–331 (2014).
[Crossref] [PubMed]

Nutr. Neurosci. (1)

C. L. Sánchez, J. Cubero, J. Sánchez, B. Chanclón, M. Rivero, A. B. Rodríguez, and C. Barriga, “The possible role of human milk nucleotides as sleep inducers,” Nutr. Neurosci. 12(1), 2–8 (2009).
[Crossref] [PubMed]

Nutrients (1)

M. A. Conlon and A. R. Bird, “The impact of diet and lifestyle on gut microbiota and human health,” Nutrients 7(1), 17–44 (2014).
[Crossref] [PubMed]

Pediatr. Clin. North Am. (1)

O. Ballard and A. L. Morrow, “Human milk composition: Nutrients and bioactive factors,” Pediatr. Clin. North Am. 60(1), 49–74 (2013).
[Crossref] [PubMed]

Pediatrics (1)

J. D. Carver, B. Pimentel, W. I. Cox, and L. A. Barness, “Dietary nucleotide effects upon immune function in infants,” Pediatrics 88(2), 359–363 (1991).
[PubMed]

Rapid Commun. Mass Spectrom. (1)

R. K. Chen, L. W. Chang, Y. Y. Chung, M. H. Lee, and Y. C. Ling, “Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionisation mass spectrometry.,” Rapid Commun. Mass Spectrom. 18, 1167–1171 (2004).
[Crossref] [PubMed]

Talanta (1)

I. Stefanov, V. Baeten, B. De Baets, and V. Fievez, “Towards combinatorial spectroscopy: the case of minor milk fatty acids determination,” Talanta 112, 101–110 (2013).
[Crossref] [PubMed]

Vet. Res. Commun. (1)

G. Maccabiani, E. Pavoni, M. Tilola, E. Agnelli, M. Simoni, F. D’Abrosca, and P. Boni, “Setting-up a PCR-based method for species identification in milk products,” Vet. Res. Commun. 29(S2Suppl 2), 327–329 (2005).
[Crossref] [PubMed]

Other (1)

B. F. J. Manly, “ Multivariate Statistical Methods: A Primer,” 3rd Edition, (Chapman and Hall) 224–234, (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Raman spectra of overall mothers milk samples of (a) female infant and (b) male infant genders. Shaded region depicts variations in the data while solid line depicts mean for both types of milk.
Fig. 2
Fig. 2 Vector normalized mean Raman spectra of human milk samples having different infant genders.
Fig. 3
Fig. 3 Comparision of two types of milk samples showing different stages of lactation period. Dotted line represents milk feeding male infant and solid line female infants.
Fig. 4
Fig. 4 Principal component scattered plot of human milk feeding male infant (open circle) and female infant (open star).
Fig. 5
Fig. 5 polynomial kernel of order 2 separating boundaries for one of the 10-folds using the first two PCA transformed features; (a) training (b) classified.

Tables (1)

Tables Icon

Table 1 SVM- model results using polynomial and Gaussian radial basis kernel functions.

Metrics