Abstract

Infrared (IR) spectroscopic microscopes provide the potential for label-free quantitative molecular imaging of biological samples, which can be used to aid in histology, forensics, and pharmaceutical analysis. Most IR imaging systems use broadband illumination combined with a spectrometer to separate the signal into spectral components. This technique is currently too slow for many biomedical applications such as clinical diagnosis, primarily due to the availability of bright mid-infrared sources and sensitive MCT detectors. There has been a recent push to increase throughput using coherent light sources, such as synchrotron radiation and quantum cascade lasers. While these sources provide a significant increase in intensity, the coherence introduces fringing artifacts in the final image. We demonstrate that applying time-delayed integration in one dimension can dramatically reduce fringing artifacts with minimal alterations to the standard infrared imaging pipeline. The proposed technique also offers the potential for less expensive focal plane array detectors, since linear arrays can be more readily incorporated into the proposed framework.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide-field FTIR microscopy using mid-IR pulse shaping

Arnaldo L. Serrano, Ayanjeet Ghosh, Joshua S. Ostrander, and Martin T. Zanni
Opt. Express 23(14) 17815-17827 (2015)

Fourier-transform infrared imaging using a rapid-scan spectrometer

C. M. Snively, S. Katzenberger, G. Oskarsdottir, and J. Lauterbach
Opt. Lett. 24(24) 1841-1843 (1999)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Alturkistani, F. M. Tashkandi, and Z. M. Mohammedsaleh, “Histological stains: A literature review and case study,” Global J Health Sci. 8, 72 (2016).
    [Crossref]
  2. J. D. Pallua, S. Unterberger, N. Pemberger, C. Woess, C. Ensinger, B. Zelger, C. Lass-Flörl, and M. Lackner, “Retrospective case study on the suitability of mid-infrared microscopic imaging for the diagnosis of mucormycosis in human tissue sections,” Anal. Methods 9, 4135–4142 (2017).
    [Crossref]
  3. S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77, 247–256 (2017).
    [Crossref] [PubMed]
  4. M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
    [Crossref] [PubMed]
  5. G. Bellisola and C. Sorio, “Infrared spectroscopy and microscopy in cancer research and diagnosis,” American Journal of Cancer Research 2, 1–21 (2011).
    [PubMed]
  6. M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-Free Biomedical Imaging With Mid-IR Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1502–1513 (2012).
    [Crossref]
  7. P. Lasch, W. Haensch, D. Naumann, and M. Diem, “Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis,” Biochim. Biophys. Acta, Mol. Basis Dis. 1688, 176–186 (2004).
    [Crossref]
  8. T. Zhou, T. Dong, Y. Su, and Y. He, “A CMOS Readout With High-Precision and Low-Temperature-Coefficient Background Current Skimming for Infrared Focal Plane Array,” IEEE Trans. Circuits Syst. Video Technol. 25, 1447–1455 (2015).
    [Crossref]
  9. E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier Transform Spectroscopic Imaging Using an Infrared Focal-Plane Array Detector,” Anal. Chem. 67, 3377–3381 (1995).
    [Crossref] [PubMed]
  10. I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56, 429–474 (2005).
    [Crossref] [PubMed]
  11. C. J. Hirschmugl and K. M. Gough, “Fourier Transform Infrared Spectrochemical Imaging: Review of Design and Applications with a Focal Plane Array and Multiple Beam Synchrotron Radiation Source,” Appl. Spectrosc. 66, 475–491 (2012).
    [Crossref] [PubMed]
  12. M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8, 413–416 (2011).
    [Crossref] [PubMed]
  13. M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
    [Crossref] [PubMed]
  14. A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82, 5697–5706 (2010).
    [Crossref] [PubMed]
  15. J.-N. Liu, M. V. Schulmerich, R. Bhargava, and B. T. Cunningham, “Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy,” Opt. Express 19, 24182–24197 (2011).
    [Crossref] [PubMed]
  16. M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
    [Crossref] [PubMed]
  17. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
    [Crossref]
  18. M. J. Weida, P. R. Buerki, M. Pushkarsky, and T. Day, “QCL-assisted infrared chemical imaging,” Proc. SPIE 8031, 803127 (2011).
    [Crossref]
  19. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science (New York, N.Y.) 264, 553–556 (1994).
    [Crossref]
  20. F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49, 111102 (2010).
    [Crossref]
  21. M. C. Phillips and N. Hô, “Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array,” Opt. Express 16, 1836 (2008).
    [Crossref] [PubMed]
  22. B. Bird and J. Rowlette, “High definition infrared chemical imaging of colorectal tissue using a spero qcl microscope,” Analyst 142, 1381–1386 (2017).
    [Crossref] [PubMed]
  23. P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (tmas) using a tunable quantum cascade laser (qcl) based microscope,” Analyst 139, 3856–3859 (2014).
    [Crossref] [PubMed]
  24. K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87, 485–493 (2015).
    [Crossref]
  25. H. Sreedhar, V. K. Varma, F. V. Gambacorta, G. Guzman, and M. J. Walsh, “Infrared spectroscopic imaging detects chemical modifications in liver fibrosis due to diabetes and disease,” Biomed. Opt. Express 7, 2419–2424 (2016).
    [Crossref] [PubMed]
  26. I. Patel, V. P. Rajamanickam, A. Bertoncini, F. Pagliari, L. Tirinato, S. P. Laptenok, and C. Liberale, “Quantum cascade laser infrared spectroscopy of single cancer cells,” in “Optical Trapping Applications,” (Optical Society of America, 2017), JTu4A.21.
  27. M. J. Pilling, A. Henderson, B. Bird, M. D. Brown, N. W. Clarke, and P. Gardner, “High-throughput quantum cascade laser (qcl) spectral histopathology: a practical approach towards clinical translation,” Faraday Discuss. 187, 135–154 (2016).
    [Crossref] [PubMed]
  28. M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84, 10366–10372 (2012).
    [Crossref] [PubMed]
  29. K. Yeh and R. Bhargava, “Discrete frequency infrared imaging using quantum cascade lasers for biological tissue analysis,” in “SPIE BiOS,” (International Society for Optics and Photonics, Bellingham, WA, 970406, 2016).
  30. H. C. Hulst and H. C. van de Hulst, Light scattering by small particles (Courier Corporation, 1957).
  31. S. Berisha, T. van Dijk, R. Bhargava, P. S. Carney, and D. Mayerich, “BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory,” Front. Phys. 55 (2017).
    [Crossref] [PubMed]
  32. R. Mankar, V. Verma, M. Walsh, C. Bueso-Ramos, and D. Mayerich, “Imaging and Feature Selection Using GA-FDA Algorithm for the Classification of Mid-Infrared Biomedical Images,” Microsc. Microanal. 22, 1008–1009 (2016).
    [Crossref]

2017 (4)

J. D. Pallua, S. Unterberger, N. Pemberger, C. Woess, C. Ensinger, B. Zelger, C. Lass-Flörl, and M. Lackner, “Retrospective case study on the suitability of mid-infrared microscopic imaging for the diagnosis of mucormycosis in human tissue sections,” Anal. Methods 9, 4135–4142 (2017).
[Crossref]

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77, 247–256 (2017).
[Crossref] [PubMed]

B. Bird and J. Rowlette, “High definition infrared chemical imaging of colorectal tissue using a spero qcl microscope,” Analyst 142, 1381–1386 (2017).
[Crossref] [PubMed]

S. Berisha, T. van Dijk, R. Bhargava, P. S. Carney, and D. Mayerich, “BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory,” Front. Phys. 55 (2017).
[Crossref] [PubMed]

2016 (4)

R. Mankar, V. Verma, M. Walsh, C. Bueso-Ramos, and D. Mayerich, “Imaging and Feature Selection Using GA-FDA Algorithm for the Classification of Mid-Infrared Biomedical Images,” Microsc. Microanal. 22, 1008–1009 (2016).
[Crossref]

M. J. Pilling, A. Henderson, B. Bird, M. D. Brown, N. W. Clarke, and P. Gardner, “High-throughput quantum cascade laser (qcl) spectral histopathology: a practical approach towards clinical translation,” Faraday Discuss. 187, 135–154 (2016).
[Crossref] [PubMed]

H. Sreedhar, V. K. Varma, F. V. Gambacorta, G. Guzman, and M. J. Walsh, “Infrared spectroscopic imaging detects chemical modifications in liver fibrosis due to diabetes and disease,” Biomed. Opt. Express 7, 2419–2424 (2016).
[Crossref] [PubMed]

H. A. Alturkistani, F. M. Tashkandi, and Z. M. Mohammedsaleh, “Histological stains: A literature review and case study,” Global J Health Sci. 8, 72 (2016).
[Crossref]

2015 (2)

T. Zhou, T. Dong, Y. Su, and Y. He, “A CMOS Readout With High-Precision and Low-Temperature-Coefficient Background Current Skimming for Infrared Focal Plane Array,” IEEE Trans. Circuits Syst. Video Technol. 25, 1447–1455 (2015).
[Crossref]

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87, 485–493 (2015).
[Crossref]

2014 (2)

P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (tmas) using a tunable quantum cascade laser (qcl) based microscope,” Analyst 139, 3856–3859 (2014).
[Crossref] [PubMed]

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

2013 (1)

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

2012 (4)

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-Free Biomedical Imaging With Mid-IR Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1502–1513 (2012).
[Crossref]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

C. J. Hirschmugl and K. M. Gough, “Fourier Transform Infrared Spectrochemical Imaging: Review of Design and Applications with a Focal Plane Array and Multiple Beam Synchrotron Radiation Source,” Appl. Spectrosc. 66, 475–491 (2012).
[Crossref] [PubMed]

2011 (4)

J.-N. Liu, M. V. Schulmerich, R. Bhargava, and B. T. Cunningham, “Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy,” Opt. Express 19, 24182–24197 (2011).
[Crossref] [PubMed]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8, 413–416 (2011).
[Crossref] [PubMed]

G. Bellisola and C. Sorio, “Infrared spectroscopy and microscopy in cancer research and diagnosis,” American Journal of Cancer Research 2, 1–21 (2011).
[PubMed]

M. J. Weida, P. R. Buerki, M. Pushkarsky, and T. Day, “QCL-assisted infrared chemical imaging,” Proc. SPIE 8031, 803127 (2011).
[Crossref]

2010 (2)

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82, 5697–5706 (2010).
[Crossref] [PubMed]

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49, 111102 (2010).
[Crossref]

2008 (1)

2005 (2)

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56, 429–474 (2005).
[Crossref] [PubMed]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[Crossref]

2004 (1)

P. Lasch, W. Haensch, D. Naumann, and M. Diem, “Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis,” Biochim. Biophys. Acta, Mol. Basis Dis. 1688, 176–186 (2004).
[Crossref]

1995 (1)

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier Transform Spectroscopic Imaging Using an Infrared Focal-Plane Array Detector,” Anal. Chem. 67, 3377–3381 (1995).
[Crossref] [PubMed]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science (New York, N.Y.) 264, 553–556 (1994).
[Crossref]

Alturkistani, H. A.

H. A. Alturkistani, F. M. Tashkandi, and Z. M. Mohammedsaleh, “Histological stains: A literature review and case study,” Global J Health Sci. 8, 72 (2016).
[Crossref]

Baker, M. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Barman, I.

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77, 247–256 (2017).
[Crossref] [PubMed]

Bassan, P.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (tmas) using a tunable quantum cascade laser (qcl) based microscope,” Analyst 139, 3856–3859 (2014).
[Crossref] [PubMed]

Bechtel, H. A.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Bellisola, G.

G. Bellisola and C. Sorio, “Infrared spectroscopy and microscopy in cancer research and diagnosis,” American Journal of Cancer Research 2, 1–21 (2011).
[PubMed]

Berisha, S.

S. Berisha, T. van Dijk, R. Bhargava, P. S. Carney, and D. Mayerich, “BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory,” Front. Phys. 55 (2017).
[Crossref] [PubMed]

Bertoncini, A.

I. Patel, V. P. Rajamanickam, A. Bertoncini, F. Pagliari, L. Tirinato, S. P. Laptenok, and C. Liberale, “Quantum cascade laser infrared spectroscopy of single cancer cells,” in “Optical Trapping Applications,” (Optical Society of America, 2017), JTu4A.21.

Bhargava, R.

S. Berisha, T. van Dijk, R. Bhargava, P. S. Carney, and D. Mayerich, “BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory,” Front. Phys. 55 (2017).
[Crossref] [PubMed]

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87, 485–493 (2015).
[Crossref]

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-Free Biomedical Imaging With Mid-IR Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1502–1513 (2012).
[Crossref]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8, 413–416 (2011).
[Crossref] [PubMed]

J.-N. Liu, M. V. Schulmerich, R. Bhargava, and B. T. Cunningham, “Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy,” Opt. Express 19, 24182–24197 (2011).
[Crossref] [PubMed]

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82, 5697–5706 (2010).
[Crossref] [PubMed]

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56, 429–474 (2005).
[Crossref] [PubMed]

K. Yeh and R. Bhargava, “Discrete frequency infrared imaging using quantum cascade lasers for biological tissue analysis,” in “SPIE BiOS,” (International Society for Optics and Photonics, Bellingham, WA, 970406, 2016).

Bird, B.

B. Bird and J. Rowlette, “High definition infrared chemical imaging of colorectal tissue using a spero qcl microscope,” Analyst 142, 1381–1386 (2017).
[Crossref] [PubMed]

M. J. Pilling, A. Henderson, B. Bird, M. D. Brown, N. W. Clarke, and P. Gardner, “High-throughput quantum cascade laser (qcl) spectral histopathology: a practical approach towards clinical translation,” Faraday Discuss. 187, 135–154 (2016).
[Crossref] [PubMed]

Brown, M. D.

M. J. Pilling, A. Henderson, B. Bird, M. D. Brown, N. W. Clarke, and P. Gardner, “High-throughput quantum cascade laser (qcl) spectral histopathology: a practical approach towards clinical translation,” Faraday Discuss. 187, 135–154 (2016).
[Crossref] [PubMed]

Buerki, P. R.

M. J. Weida, P. R. Buerki, M. Pushkarsky, and T. Day, “QCL-assisted infrared chemical imaging,” Proc. SPIE 8031, 803127 (2011).
[Crossref]

Bueso-Ramos, C.

R. Mankar, V. Verma, M. Walsh, C. Bueso-Ramos, and D. Mayerich, “Imaging and Feature Selection Using GA-FDA Algorithm for the Classification of Mid-Infrared Biomedical Images,” Microsc. Microanal. 22, 1008–1009 (2016).
[Crossref]

Bulliard, J. M.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[Crossref]

Buschke, D.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Butler, H. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Capasso, F.

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49, 111102 (2010).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science (New York, N.Y.) 264, 553–556 (1994).
[Crossref]

Carney, P. S.

S. Berisha, T. van Dijk, R. Bhargava, P. S. Carney, and D. Mayerich, “BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory,” Front. Phys. 55 (2017).
[Crossref] [PubMed]

Castro, J. M.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Cheng, M.

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77, 247–256 (2017).
[Crossref] [PubMed]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science (New York, N.Y.) 264, 553–556 (1994).
[Crossref]

Clarke, N. W.

M. J. Pilling, A. Henderson, B. Bird, M. D. Brown, N. W. Clarke, and P. Gardner, “High-throughput quantum cascade laser (qcl) spectral histopathology: a practical approach towards clinical translation,” Faraday Discuss. 187, 135–154 (2016).
[Crossref] [PubMed]

Cunningham, B. T.

J.-N. Liu, M. V. Schulmerich, R. Bhargava, and B. T. Cunningham, “Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy,” Opt. Express 19, 24182–24197 (2011).
[Crossref] [PubMed]

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82, 5697–5706 (2010).
[Crossref] [PubMed]

Curl, R. F.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[Crossref]

Dabat-Blondeau, C.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Day, T.

M. J. Weida, P. R. Buerki, M. Pushkarsky, and T. Day, “QCL-assisted infrared chemical imaging,” Proc. SPIE 8031, 803127 (2011).
[Crossref]

Diem, M.

P. Lasch, W. Haensch, D. Naumann, and M. Diem, “Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis,” Biochim. Biophys. Acta, Mol. Basis Dis. 1688, 176–186 (2004).
[Crossref]

Dong, T.

T. Zhou, T. Dong, Y. Su, and Y. He, “A CMOS Readout With High-Precision and Low-Temperature-Coefficient Background Current Skimming for Infrared Focal Plane Array,” IEEE Trans. Circuits Syst. Video Technol. 25, 1447–1455 (2015).
[Crossref]

Dorling, K. M.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Dowrey, A. E.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier Transform Spectroscopic Imaging Using an Infrared Focal-Plane Array Detector,” Anal. Chem. 67, 3377–3381 (1995).
[Crossref] [PubMed]

Ensinger, C.

J. D. Pallua, S. Unterberger, N. Pemberger, C. Woess, C. Ensinger, B. Zelger, C. Lass-Flörl, and M. Lackner, “Retrospective case study on the suitability of mid-infrared microscopic imaging for the diagnosis of mucormycosis in human tissue sections,” Anal. Methods 9, 4135–4142 (2017).
[Crossref]

Faist, J.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science (New York, N.Y.) 264, 553–556 (1994).
[Crossref]

Fielden, P. R.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Fogarty, S. W.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Fullwood, N. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Gambacorta, F. V.

Gardner, P.

M. J. Pilling, A. Henderson, B. Bird, M. D. Brown, N. W. Clarke, and P. Gardner, “High-throughput quantum cascade laser (qcl) spectral histopathology: a practical approach towards clinical translation,” Faraday Discuss. 187, 135–154 (2016).
[Crossref] [PubMed]

P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (tmas) using a tunable quantum cascade laser (qcl) based microscope,” Analyst 139, 3856–3859 (2014).
[Crossref] [PubMed]

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Gelber, M. K.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

Glunde, K.

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77, 247–256 (2017).
[Crossref] [PubMed]

Gough, K. M.

Guzman, G.

Haensch, W.

P. Lasch, W. Haensch, D. Naumann, and M. Diem, “Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis,” Biochim. Biophys. Acta, Mol. Basis Dis. 1688, 176–186 (2004).
[Crossref]

He, Y.

T. Zhou, T. Dong, Y. Su, and Y. He, “A CMOS Readout With High-Precision and Low-Temperature-Coefficient Background Current Skimming for Infrared Focal Plane Array,” IEEE Trans. Circuits Syst. Video Technol. 25, 1447–1455 (2015).
[Crossref]

Henderson, A.

M. J. Pilling, A. Henderson, B. Bird, M. D. Brown, N. W. Clarke, and P. Gardner, “High-throughput quantum cascade laser (qcl) spectral histopathology: a practical approach towards clinical translation,” Faraday Discuss. 187, 135–154 (2016).
[Crossref] [PubMed]

Heys, K. A.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Hirschmugl, C.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Hirschmugl, C. J.

C. J. Hirschmugl and K. M. Gough, “Fourier Transform Infrared Spectrochemical Imaging: Review of Design and Applications with a Focal Plane Array and Multiple Beam Synchrotron Radiation Source,” Appl. Spectrosc. 66, 475–491 (2012).
[Crossref] [PubMed]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8, 413–416 (2011).
[Crossref] [PubMed]

Hô, N.

Hughes, C.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Hulst, H. C.

H. C. Hulst and H. C. van de Hulst, Light scattering by small particles (Courier Corporation, 1957).

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science (New York, N.Y.) 264, 553–556 (1994).
[Crossref]

Illman, B.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Ip, J.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82, 5697–5706 (2010).
[Crossref] [PubMed]

Kajdacsy-Balla, A.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8, 413–416 (2011).
[Crossref] [PubMed]

Keiluweit, M.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Kenkel, S.

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87, 485–493 (2015).
[Crossref]

Kodali, A. K.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82, 5697–5706 (2010).
[Crossref] [PubMed]

Kole, M. R.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

Lackner, M.

J. D. Pallua, S. Unterberger, N. Pemberger, C. Woess, C. Ensinger, B. Zelger, C. Lass-Flörl, and M. Lackner, “Retrospective case study on the suitability of mid-infrared microscopic imaging for the diagnosis of mucormycosis in human tissue sections,” Anal. Methods 9, 4135–4142 (2017).
[Crossref]

Laptenok, S. P.

I. Patel, V. P. Rajamanickam, A. Bertoncini, F. Pagliari, L. Tirinato, S. P. Laptenok, and C. Liberale, “Quantum cascade laser infrared spectroscopy of single cancer cells,” in “Optical Trapping Applications,” (Optical Society of America, 2017), JTu4A.21.

Lasch, P.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

P. Lasch, W. Haensch, D. Naumann, and M. Diem, “Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis,” Biochim. Biophys. Acta, Mol. Basis Dis. 1688, 176–186 (2004).
[Crossref]

Lass-Flörl, C.

J. D. Pallua, S. Unterberger, N. Pemberger, C. Woess, C. Ensinger, B. Zelger, C. Lass-Flörl, and M. Lackner, “Retrospective case study on the suitability of mid-infrared microscopic imaging for the diagnosis of mucormycosis in human tissue sections,” Anal. Methods 9, 4135–4142 (2017).
[Crossref]

Levin, I. W.

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56, 429–474 (2005).
[Crossref] [PubMed]

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier Transform Spectroscopic Imaging Using an Infrared Focal-Plane Array Detector,” Anal. Chem. 67, 3377–3381 (1995).
[Crossref] [PubMed]

Lewis, E. N.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier Transform Spectroscopic Imaging Using an Infrared Focal-Plane Array Detector,” Anal. Chem. 67, 3377–3381 (1995).
[Crossref] [PubMed]

Liberale, C.

I. Patel, V. P. Rajamanickam, A. Bertoncini, F. Pagliari, L. Tirinato, S. P. Laptenok, and C. Liberale, “Quantum cascade laser infrared spectroscopy of single cancer cells,” in “Optical Trapping Applications,” (Optical Society of America, 2017), JTu4A.21.

Liu, J.-N.

Macias, V.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8, 413–416 (2011).
[Crossref] [PubMed]

Mankar, R.

R. Mankar, V. Verma, M. Walsh, C. Bueso-Ramos, and D. Mayerich, “Imaging and Feature Selection Using GA-FDA Algorithm for the Classification of Mid-Infrared Biomedical Images,” Microsc. Microanal. 22, 1008–1009 (2016).
[Crossref]

Marcott, C.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier Transform Spectroscopic Imaging Using an Infrared Focal-Plane Array Detector,” Anal. Chem. 67, 3377–3381 (1995).
[Crossref] [PubMed]

Martin, F. L.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Martin, M. C.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Martin-Hirsch, P. L.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Mattson, E. C.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8, 413–416 (2011).
[Crossref] [PubMed]

Maulini, R.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[Crossref]

Mayerich, D.

S. Berisha, T. van Dijk, R. Bhargava, P. S. Carney, and D. Mayerich, “BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory,” Front. Phys. 55 (2017).
[Crossref] [PubMed]

R. Mankar, V. Verma, M. Walsh, C. Bueso-Ramos, and D. Mayerich, “Imaging and Feature Selection Using GA-FDA Algorithm for the Classification of Mid-Infrared Biomedical Images,” Microsc. Microanal. 22, 1008–1009 (2016).
[Crossref]

Mohammedsaleh, Z. M.

H. A. Alturkistani, F. M. Tashkandi, and Z. M. Mohammedsaleh, “Histological stains: A literature review and case study,” Global J Health Sci. 8, 72 (2016).
[Crossref]

Nasse, M.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Nasse, M. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8, 413–416 (2011).
[Crossref] [PubMed]

Naumann, D.

P. Lasch, W. Haensch, D. Naumann, and M. Diem, “Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis,” Biochim. Biophys. Acta, Mol. Basis Dis. 1688, 176–186 (2004).
[Crossref]

Obinaju, B.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Ogle, B.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Pagliari, F.

I. Patel, V. P. Rajamanickam, A. Bertoncini, F. Pagliari, L. Tirinato, S. P. Laptenok, and C. Liberale, “Quantum cascade laser infrared spectroscopy of single cancer cells,” in “Optical Trapping Applications,” (Optical Society of America, 2017), JTu4A.21.

Paidi, S. K.

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77, 247–256 (2017).
[Crossref] [PubMed]

Pallua, J. D.

J. D. Pallua, S. Unterberger, N. Pemberger, C. Woess, C. Ensinger, B. Zelger, C. Lass-Flörl, and M. Lackner, “Retrospective case study on the suitability of mid-infrared microscopic imaging for the diagnosis of mucormycosis in human tissue sections,” Anal. Methods 9, 4135–4142 (2017).
[Crossref]

Parkinson, D. Y.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Patel, I.

I. Patel, V. P. Rajamanickam, A. Bertoncini, F. Pagliari, L. Tirinato, S. P. Laptenok, and C. Liberale, “Quantum cascade laser infrared spectroscopy of single cancer cells,” in “Optical Trapping Applications,” (Optical Society of America, 2017), JTu4A.21.

Pemberger, N.

J. D. Pallua, S. Unterberger, N. Pemberger, C. Woess, C. Ensinger, B. Zelger, C. Lass-Flörl, and M. Lackner, “Retrospective case study on the suitability of mid-infrared microscopic imaging for the diagnosis of mucormycosis in human tissue sections,” Anal. Methods 9, 4135–4142 (2017).
[Crossref]

Phillips, M. C.

Pilling, M. J.

M. J. Pilling, A. Henderson, B. Bird, M. D. Brown, N. W. Clarke, and P. Gardner, “High-throughput quantum cascade laser (qcl) spectral histopathology: a practical approach towards clinical translation,” Faraday Discuss. 187, 135–154 (2016).
[Crossref] [PubMed]

Pushkarsky, M.

M. J. Weida, P. R. Buerki, M. Pushkarsky, and T. Day, “QCL-assisted infrared chemical imaging,” Proc. SPIE 8031, 803127 (2011).
[Crossref]

Rajamanickam, V. P.

I. Patel, V. P. Rajamanickam, A. Bertoncini, F. Pagliari, L. Tirinato, S. P. Laptenok, and C. Liberale, “Quantum cascade laser infrared spectroscopy of single cancer cells,” in “Optical Trapping Applications,” (Optical Society of America, 2017), JTu4A.21.

Reddy, R. K.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-Free Biomedical Imaging With Mid-IR Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1502–1513 (2012).
[Crossref]

Reeder, R. C.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier Transform Spectroscopic Imaging Using an Infrared Focal-Plane Array Detector,” Anal. Chem. 67, 3377–3381 (1995).
[Crossref] [PubMed]

Reininger, R.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8, 413–416 (2011).
[Crossref] [PubMed]

Rizwan, A.

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77, 247–256 (2017).
[Crossref] [PubMed]

Rowlette, J.

B. Bird and J. Rowlette, “High definition infrared chemical imaging of colorectal tissue using a spero qcl microscope,” Analyst 142, 1381–1386 (2017).
[Crossref] [PubMed]

P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (tmas) using a tunable quantum cascade laser (qcl) based microscope,” Analyst 139, 3856–3859 (2014).
[Crossref] [PubMed]

Schulmerich, M.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82, 5697–5706 (2010).
[Crossref] [PubMed]

Schulmerich, M. V.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

J.-N. Liu, M. V. Schulmerich, R. Bhargava, and B. T. Cunningham, “Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy,” Opt. Express 19, 24182–24197 (2011).
[Crossref] [PubMed]

Sedlmair, J.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science (New York, N.Y.) 264, 553–556 (1994).
[Crossref]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science (New York, N.Y.) 264, 553–556 (1994).
[Crossref]

Sockalingum, G. D.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Sorio, C.

G. Bellisola and C. Sorio, “Infrared spectroscopy and microscopy in cancer research and diagnosis,” American Journal of Cancer Research 2, 1–21 (2011).
[PubMed]

Sreedhar, H.

Story, G. M.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier Transform Spectroscopic Imaging Using an Infrared Focal-Plane Array Detector,” Anal. Chem. 67, 3377–3381 (1995).
[Crossref] [PubMed]

Strong, R. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Su, Y.

T. Zhou, T. Dong, Y. Su, and Y. He, “A CMOS Readout With High-Precision and Low-Temperature-Coefficient Background Current Skimming for Infrared Focal Plane Array,” IEEE Trans. Circuits Syst. Video Technol. 25, 1447–1455 (2015).
[Crossref]

Sulé-Suso, J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Tashkandi, F. M.

H. A. Alturkistani, F. M. Tashkandi, and Z. M. Mohammedsaleh, “Histological stains: A literature review and case study,” Global J Health Sci. 8, 72 (2016).
[Crossref]

Tirinato, L.

I. Patel, V. P. Rajamanickam, A. Bertoncini, F. Pagliari, L. Tirinato, S. P. Laptenok, and C. Liberale, “Quantum cascade laser infrared spectroscopy of single cancer cells,” in “Optical Trapping Applications,” (Optical Society of America, 2017), JTu4A.21.

Tittel, F. K.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[Crossref]

Treado, P. J.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier Transform Spectroscopic Imaging Using an Infrared Focal-Plane Array Detector,” Anal. Chem. 67, 3377–3381 (1995).
[Crossref] [PubMed]

Trevisan, J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Unger, M.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Unterberger, S.

J. D. Pallua, S. Unterberger, N. Pemberger, C. Woess, C. Ensinger, B. Zelger, C. Lass-Flörl, and M. Lackner, “Retrospective case study on the suitability of mid-infrared microscopic imaging for the diagnosis of mucormycosis in human tissue sections,” Anal. Methods 9, 4135–4142 (2017).
[Crossref]

van de Hulst, H. C.

H. C. Hulst and H. C. van de Hulst, Light scattering by small particles (Courier Corporation, 1957).

van Dijk, T.

S. Berisha, T. van Dijk, R. Bhargava, P. S. Carney, and D. Mayerich, “BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory,” Front. Phys. 55 (2017).
[Crossref] [PubMed]

Varma, V. K.

Verma, V.

R. Mankar, V. Verma, M. Walsh, C. Bueso-Ramos, and D. Mayerich, “Imaging and Feature Selection Using GA-FDA Algorithm for the Classification of Mid-Infrared Biomedical Images,” Microsc. Microanal. 22, 1008–1009 (2016).
[Crossref]

Walsh, M.

R. Mankar, V. Verma, M. Walsh, C. Bueso-Ramos, and D. Mayerich, “Imaging and Feature Selection Using GA-FDA Algorithm for the Classification of Mid-Infrared Biomedical Images,” Microsc. Microanal. 22, 1008–1009 (2016).
[Crossref]

Walsh, M. J.

H. Sreedhar, V. K. Varma, F. V. Gambacorta, G. Guzman, and M. J. Walsh, “Infrared spectroscopic imaging detects chemical modifications in liver fibrosis due to diabetes and disease,” Biomed. Opt. Express 7, 2419–2424 (2016).
[Crossref] [PubMed]

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-Free Biomedical Imaging With Mid-IR Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1502–1513 (2012).
[Crossref]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8, 413–416 (2011).
[Crossref] [PubMed]

Weida, M. J.

P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (tmas) using a tunable quantum cascade laser (qcl) based microscope,” Analyst 139, 3856–3859 (2014).
[Crossref] [PubMed]

M. J. Weida, P. R. Buerki, M. Pushkarsky, and T. Day, “QCL-assisted infrared chemical imaging,” Proc. SPIE 8031, 803127 (2011).
[Crossref]

Woess, C.

J. D. Pallua, S. Unterberger, N. Pemberger, C. Woess, C. Ensinger, B. Zelger, C. Lass-Flörl, and M. Lackner, “Retrospective case study on the suitability of mid-infrared microscopic imaging for the diagnosis of mucormycosis in human tissue sections,” Anal. Methods 9, 4135–4142 (2017).
[Crossref]

Wood, B. R.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Wysocki, G.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[Crossref]

Yeh, K.

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87, 485–493 (2015).
[Crossref]

K. Yeh and R. Bhargava, “Discrete frequency infrared imaging using quantum cascade lasers for biological tissue analysis,” in “SPIE BiOS,” (International Society for Optics and Photonics, Bellingham, WA, 970406, 2016).

Yen, G.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82, 5697–5706 (2010).
[Crossref] [PubMed]

Zelger, B.

J. D. Pallua, S. Unterberger, N. Pemberger, C. Woess, C. Ensinger, B. Zelger, C. Lass-Flörl, and M. Lackner, “Retrospective case study on the suitability of mid-infrared microscopic imaging for the diagnosis of mucormycosis in human tissue sections,” Anal. Methods 9, 4135–4142 (2017).
[Crossref]

Zheng, C.

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77, 247–256 (2017).
[Crossref] [PubMed]

Zhou, T.

T. Zhou, T. Dong, Y. Su, and Y. He, “A CMOS Readout With High-Precision and Low-Temperature-Coefficient Background Current Skimming for Infrared Focal Plane Array,” IEEE Trans. Circuits Syst. Video Technol. 25, 1447–1455 (2015).
[Crossref]

American Journal of Cancer Research (1)

G. Bellisola and C. Sorio, “Infrared spectroscopy and microscopy in cancer research and diagnosis,” American Journal of Cancer Research 2, 1–21 (2011).
[PubMed]

Anal. Chem. (5)

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier Transform Spectroscopic Imaging Using an Infrared Focal-Plane Array Detector,” Anal. Chem. 67, 3377–3381 (1995).
[Crossref] [PubMed]

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82, 5697–5706 (2010).
[Crossref] [PubMed]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast Infrared Chemical Imaging with a Quantum Cascade Laser,” Anal. Chem. 87, 485–493 (2015).
[Crossref]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

Anal. Methods (1)

J. D. Pallua, S. Unterberger, N. Pemberger, C. Woess, C. Ensinger, B. Zelger, C. Lass-Flörl, and M. Lackner, “Retrospective case study on the suitability of mid-infrared microscopic imaging for the diagnosis of mucormycosis in human tissue sections,” Anal. Methods 9, 4135–4142 (2017).
[Crossref]

Analyst (2)

B. Bird and J. Rowlette, “High definition infrared chemical imaging of colorectal tissue using a spero qcl microscope,” Analyst 142, 1381–1386 (2017).
[Crossref] [PubMed]

P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (tmas) using a tunable quantum cascade laser (qcl) based microscope,” Analyst 139, 3856–3859 (2014).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56, 429–474 (2005).
[Crossref] [PubMed]

Appl. Phys. B (1)

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[Crossref]

Appl. Spectrosc. (1)

Biochim. Biophys. Acta, Mol. Basis Dis. (1)

P. Lasch, W. Haensch, D. Naumann, and M. Diem, “Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis,” Biochim. Biophys. Acta, Mol. Basis Dis. 1688, 176–186 (2004).
[Crossref]

Biomed. Opt. Express (1)

Cancer Res. (1)

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77, 247–256 (2017).
[Crossref] [PubMed]

Faraday Discuss. (1)

M. J. Pilling, A. Henderson, B. Bird, M. D. Brown, N. W. Clarke, and P. Gardner, “High-throughput quantum cascade laser (qcl) spectral histopathology: a practical approach towards clinical translation,” Faraday Discuss. 187, 135–154 (2016).
[Crossref] [PubMed]

Front. Phys. (1)

S. Berisha, T. van Dijk, R. Bhargava, P. S. Carney, and D. Mayerich, “BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory,” Front. Phys. 55 (2017).
[Crossref] [PubMed]

Global J Health Sci. (1)

H. A. Alturkistani, F. M. Tashkandi, and Z. M. Mohammedsaleh, “Histological stains: A literature review and case study,” Global J Health Sci. 8, 72 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-Free Biomedical Imaging With Mid-IR Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1502–1513 (2012).
[Crossref]

IEEE Trans. Circuits Syst. Video Technol. (1)

T. Zhou, T. Dong, Y. Su, and Y. He, “A CMOS Readout With High-Precision and Low-Temperature-Coefficient Background Current Skimming for Infrared Focal Plane Array,” IEEE Trans. Circuits Syst. Video Technol. 25, 1447–1455 (2015).
[Crossref]

Microsc. Microanal. (1)

R. Mankar, V. Verma, M. Walsh, C. Bueso-Ramos, and D. Mayerich, “Imaging and Feature Selection Using GA-FDA Algorithm for the Classification of Mid-Infrared Biomedical Images,” Microsc. Microanal. 22, 1008–1009 (2016).
[Crossref]

Nat. Methods (2)

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8, 413–416 (2011).
[Crossref] [PubMed]

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. Nasse, and C. Hirschmugl, “3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref] [PubMed]

Nat. Protoc. (1)

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref] [PubMed]

Opt. Eng. (1)

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49, 111102 (2010).
[Crossref]

Opt. Express (2)

Proc. SPIE (1)

M. J. Weida, P. R. Buerki, M. Pushkarsky, and T. Day, “QCL-assisted infrared chemical imaging,” Proc. SPIE 8031, 803127 (2011).
[Crossref]

Science (New York, N.Y.) (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science (New York, N.Y.) 264, 553–556 (1994).
[Crossref]

Other (3)

I. Patel, V. P. Rajamanickam, A. Bertoncini, F. Pagliari, L. Tirinato, S. P. Laptenok, and C. Liberale, “Quantum cascade laser infrared spectroscopy of single cancer cells,” in “Optical Trapping Applications,” (Optical Society of America, 2017), JTu4A.21.

K. Yeh and R. Bhargava, “Discrete frequency infrared imaging using quantum cascade lasers for biological tissue analysis,” in “SPIE BiOS,” (International Society for Optics and Photonics, Bellingham, WA, 970406, 2016).

H. C. Hulst and H. C. van de Hulst, Light scattering by small particles (Courier Corporation, 1957).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Examples of fringing artifacts in Gaussian beam coherent imaging systems. (a) Transmission image of SU-8 patterned US air forth 1951 optical resolution target on barium fluoride (BaF2) substrate imaged with single diverged QCL beam on FLIR A305 thermal camera (FLIR Systems, Nashua, NH, USA), (b) Absorbance image of breast tissue cores at 1050 cm−1.
Fig. 2
Fig. 2 Bim-Sim simulation of spheres illuminated by Gaussian beam and extended source I0 integrated by multiple point sources. (a) 6 spheres with the same size but different refractive indexes. (b) 4 × 8 Extended source. (c) Transmission image of spheres illuminated by Gaussian beam with NA = 0. (d) Absorbance image, Gaussian beam, NA = 0. (e) Transmission image, 4 × 16 extended source, NA = 0.2. (f) Absorbance image, 4 × 16 extended source, NA = 0.2. (g) Transmission image, 32 × 32 extended source, NA = 0.8. (h) Absorbance image, 32 × 32 extended source, NA = 0.8.
Fig. 3
Fig. 3 System Diagram. The QCL-based DFIR imaging system is coupled to a 4 channel ultra-broadly tunable mid-IR external-cavity pulsed quantum cascade laser and a SBF161 128 × 128 pixel focal plane array (FPA) mercury cadmium telluride (MCT) detector.
Fig. 4
Fig. 4 (a) Flow chart of TDI (time delay integration) algorithm. (b) Intermediate image from TDI post process. The top and bottom part of the image demonstrates the SNR difference between images before TDI and after fully applied TDI (center part of the image). (c) Individual images at different position and time point (left) and corresponding integrated image (right).
Fig. 5
Fig. 5 (a) SU-8 Air Force target on a BaF2 substrate imaged with FTIR (left), traditional DFIR (middle), and DFIR + TDI (right). Images show the same region with USAF group 1 element 5 at 1508 cm−1. The black scale bar denotes 200 μm. (b) Detailed comparison of the same image.
Fig. 6
Fig. 6 (a) Number 5 region on USAF target imaged with FTIR (top), traditional DFIR (middle), and DFIR + TDI (bottom) at 1508 cm−1. The black scale bar denotes 100 μm. (b) Y-profile plots for each image.
Fig. 7
Fig. 7 Noise profile for standard DFIR imaging (a) and DFIR + TDI (b) showing the affect of fringing in the spatial domain.
Fig. 8
Fig. 8 USAF mosaic image and spectral comparison. A USAF mosaic was composed by taking multiple TDI passes and aligning images at their margins. Spectra are compared between the proposed QCL-based DFIR+TDI system (blue), traditional DFIR imaging system (yellow) and FTIR system (green). The spectral range (1500 cm−1 to 1650 cm−1) was selected because it contained the major features of the SU8 photoresist. Outside of this range, the absorbance values become flat.
Fig. 9
Fig. 9 Mosaic images for breast tissue microarrays at the Amide I band (1650 cm−1). Mosaics are composed by taking multiple TDI passes and aligning along the image margin.
Fig. 10
Fig. 10 Breast Tissue Microarrays images, (a) Brightfield image a breast biopsy stained using H&E; (b) absorbance image 1650 cm−1; (c) classified image identifying epithelium (green) and stroma (magenta).

Metrics