Abstract

Albumin-derived perfluorocarbon-based capsules are promising as artificial oxygen carriers with high solubility. However, these capsules have to be studied further to allow initial human clinical tests. The aim of this paper is to provide and characterize a holographic optical tweezer to enable contactless trapping and moving of individual capsules in an environment that mimics physiological (in vivo) conditions most effectively in order to learn more about the artificial oxygen carrier behavior in blood plasma without recourse to animal experiments. Therefore, the motion behavior of capsules in a ring shaped or vortex beam is analyzed and optimized on account of determination of the optical forces in radial and axial direction. In addition, due to the customization and generation of dynamic phase holograms, the optical tweezer is used for first investigations on the aggregation behavior of the capsules and a statistical evaluation of the bonding in dependency of different capsule sizes is performed. The results show that the optical tweezer is sufficient for studying individual perfluorocarbon-based capsules and provide information about the interaction of these capsules for future use as artificial oxygen carriers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study of in vitro RBCs membrane elasticity with AOD scanning optical tweezers

Huadong Song, Ying Liu, Bin Zhang, Kangzhen Tian, Panpan Zhu, Hao Lu, and Qi Tang
Biomed. Opt. Express 8(1) 384-394 (2017)

Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher

Sungrae Lee, Boram Joo, Pyo Jin Jeon, Seongil Im, and Kyunghwan Oh
Biomed. Opt. Express 6(11) 4417-4432 (2015)

Torque-generating malaria-infected red blood cells in an optical trap

J.A. Dharmadhikari, S. Roy, A.K. Dharmadhikari, S. Sharma, and D. Mathur
Opt. Express 12(6) 1179-1184 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
    [Crossref] [PubMed]
  2. O. Habler, A. Pape, J. Meier, and B. Zwissler, “Artificial oxygen carriers as an alternative to red blood cell transfusion,” Anaesthesist 54(8), 741–754 (2005).
    [Crossref] [PubMed]
  3. T. Henkel-Hanke and M. Oleck, “Artificial oxygen carriers: a current review,” AANA J 75(3), 205–211 (2007).
  4. D.R. Spahn, H. Moch, A. Hofmann, and J.P. Isbister, “Patient Blood Management: the pragmatic solution for the problems with blood transfusions,” Anesthesiology 109(6), 951–953 (2008).
    [Crossref] [PubMed]
  5. D.R. Spahn and L.T. Goodnough, “Alternatives to blood transfusion,” Lancet 381(9880), 1855–1865 (2013).
    [Crossref] [PubMed]
  6. F.T. Barbosa, “Artificial oxygen carriers as an alternative to red cells in clinical practice,” Sao Paulo Med. J. 127(2), 97–100 (2009).
    [Crossref] [PubMed]
  7. K.B. Ferenz, “Künstliche Sauerstoffträger – Wie lange müssen wir noch warten?” Hämotherapie 25, 27–36 (2015).
  8. K. Yokoyama, “Effect of perfluorochemical (PFC) emulsion on acute carbon monoxide poisoning in rats,” Jpn. J. Surg. 8, 342–352 (1978).
    [Crossref] [PubMed]
  9. H.A. Sloviter, M. Petkovic, S. Ogoshi, and H. Yamada, “Dispersed fluorochemicals as substitutes for erythrocytes in intact animals,” J. Appl. Physiol. 27, 666–668 (1969).
    [PubMed]
  10. P.E. Keipert, N.S. Faithfull, D.J. Roth, J.D. Bradley, S. Batra, P. Jochelson, and K.E. Flaim, “Supporting tissue oxygenation during acute surgical bleeding using a perfluorochemical-based oxygen carrier,” Adv. Exp. Med. Biol. 388, 603–609 (1996).
    [Crossref] [PubMed]
  11. K.B. Ferenz, I.N. Waack, J. Laudien, C. Mayer, M. Broecker-Preuss, H.d. Groot, and M. Kirsch, “Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats,” Results Pharma Sci. 4, 8–18 (2014).
    [Crossref] [PubMed]
  12. J. Laudien, C. Groß-Heitfeld, C. Mayer, H. de Groot, M. Kirsch, and K. Ferenz, “Perfluorodecalin-filled Poly(n-butyl-cyanoacrylate) nanocapsules as potential artificial oxygen carriers: Preclinical safety and biocompatibility,” J. Nanosci. Nanotechnol. 15(8), 5637–5648 (2015).
    [Crossref] [PubMed]
  13. A. Wrobeln, J. Laudien, C. Groß-Heitfeld, J. Linders, C. Mayer, B. Wilde, T. Knoll, D. Naglav, M. Kirsch, and K.B. Ferenz, “Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility,” Eur. J. Pharm. Biopharm. 115, 52–64 (2017).
    [Crossref] [PubMed]
  14. A. Wrobeln, K.D. Schlüter, J. Linders, M. Zähres, C. Mayer, M. Kirsch, and K.B. Ferenz, “Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart,” Artif. Cells Nanomed. Biotechnol. 45(4), 723–730 (2017).
    [Crossref] [PubMed]
  15. K. Svoboda and S.M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
    [Crossref] [PubMed]
  16. H. Zhang and K.K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
    [Crossref] [PubMed]
  17. X. Wang, S. Chen, M. Kong, Z. Wang, K.D. Costa, R.A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
    [Crossref] [PubMed]
  18. M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nyström, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182(19), 5551–5555 (2000).
    [Crossref] [PubMed]
  19. N.T. Huang, H.l. Zhang, M.T. Chung, J.H. Seoe, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
    [Crossref] [PubMed]
  20. R. Agrawal, R. Bhatnagar, T. Smart, C. Richards, C.E. Pavesio, D.T. Shima, and P. Jones, “Assessment of red blood cell deformability by Optical tweezers in diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 56(7), 5183 (2015).
  21. D.S. Moura, D.C.N. Silva, A.J. Williams, M.A.C. Bezerra, A. Fontes, and R.E. de Araujo, “Automatic real time evaluation of red blood cell elasticity by optical tweezers,” Rev. Sci. Instrum. 86(5), 053702 (2015).
    [Crossref]
  22. J. Sigüenza, S. Mendez, and F. Nicoud, “How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics?,” Biomech. Model. Mechanobiol. [Epub ahead of print](2017).
    [Crossref] [PubMed]
  23. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Letters 11(5), 288–290 (1986).
    [Crossref]
  24. J.E. Curtis, B.A. Koss, and D.G. Grier, “Dynamic holographic optical tweezers,” Opt. Comm. 207(1–6), 169–175 (2002).
    [Crossref]
  25. H. Rubinsztein-Dunlop, T.A. Nieminen, M.E.J. Friese, and N.R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30, 469–492 (1998).
    [Crossref]
  26. P.H. Jones, O.M. Maragó, and E.P.J. Stride, “Parametrization of trapping forces on microbubbles in scanning optical tweezers,” J. Opt. A: Pure Appl. Opt. 9, S278–S283 (2007).
    [Crossref]
  27. Sasaki1992, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60(7), 807–809 (1992).
    [Crossref]
  28. P.J. Rodrigo, V.R. Daria, and J. Glückstad, “Real-time interactive optical micromanipulation of a mixture of high-and low-index particles,” Opt. Express 12(7), 1417 (2004).
    [Crossref] [PubMed]
  29. K.T. Gahagan and G.A. Swartzlander, “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16(4), 533–537 (1999).
    [Crossref]
  30. C. Azzolini, F. Docchio, R. Brancato, and G Trabucchi, “Interactions between light and vitreous fluid substitutes,” Arch. Ophthalmol. 110(10), 1468–1471 (1992).
    [Crossref] [PubMed]
  31. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref]
  32. J. Köhler, J. Friedrich, A. Ostendorf, and E. L. Gurevich, “Characterization of azimuthal and radial velocity fields induced by rotors in flows with a low Reynolds number,” Phys. Rev. E 93, 023108 (2016).
    [Crossref] [PubMed]
  33. G.R. Littlejohn, J.D. Gouveia, C. Edner, N. Smirnoff, and J. Love, “Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll,” New Phytol. 186, 1018–1025 (2010).
    [Crossref] [PubMed]
  34. R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173(4409), 821–822 (1954).
    [Crossref] [PubMed]
  35. C.S. Guo, X. Liu, J.L He, and H.T. Wang, “Optimal annulus structures of optical vortices,” Opt. Express 12(19), 4625 (2004).
    [Crossref] [PubMed]
  36. R.M. Lorenz, J.S. Edgar, G.D. M. Jeffries, Y. Zhao, D. McGloin, and D.T. Chiu, “Vortex-trap-induced fusion of femtoliter-volume aqueous droplets,” Anal. Chem. 1(79), 224–228 (2007).
    [Crossref]
  37. F. Dawood, S. Qin, L. Li, E.Y. Lina, and J.T. Fourkas, “Simultaneous microsclae optical manipualtion, fabrication and immobilisation in aqueous media,” Chem. Sci. 3, 2449–2456 (2012).
    [Crossref]
  38. R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22, 065016 (2012).
    [Crossref]
  39. H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
    [Crossref]
  40. Supplemental information: https://doi.org/10.6084/m9.figshare.5715871 .
  41. K. Monkos, “Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration,” Int. J. Biol. Macromolec. 18, 61–68 (1996).
    [Crossref]
  42. C. Fury, C. Harfield, P.H. Jones, E. Stride, and G. Memoli, “Experimental characterisation of holographic optical traps for microbubbles,” Proc. SPIE 9126, 91263L (2014).
    [Crossref]
  43. J.N. Marsh, C.S. Hall, S.A. Wickline, and G.M. Lanza, “Temperature dependence of acoustic impedance for specific fluorocarbon liquids,” J. Acoust. Soc. Am. 112(6), 2858–2862 (2002).
    [Crossref]
  44. K.S. Suslick, M.W. Grinstaff, K.J. Kolbeck, and M. Wong, “Characterization of sonochemically prepared proteinaceous microspheres,” Ultrason. Sonochem. 1(1), S65–S68 (1994).
    [Crossref]
  45. T.A. Nieminen, V.L.Y. Loke, A.B. Stilgoe, G. Knöner, A.M. Brańczyk, N.R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
    [Crossref]
  46. E.D. Shchukin, E.A. Amelina, and V.V. Yaminsky, “Adhesion of particles in liquid media and stability of disperse systems,” Colloids Surf. 2(3), 221–242 (1981).
    [Crossref]
  47. C.S. Hodges, J.A.S. Cleaver, M. Ghadiri, R. Jones, and H.M. Pollock, “Forces between polystyrene particles in water using the AFM: Pull-off force vs particle size,” Langmuir 18(15), 5741–5748 (2002).
    [Crossref]
  48. X. Shi and Y.P. Zhao, “Comparison of various adhesion contact theories and the influence of dimensionless load parameter,” J. Adhesion Sci. Technol. 18(1), 55–68 (2004).
    [Crossref]
  49. K.L. Johnson and J.A. Greenwood, “An adhesion map for the contact of elastic spheres,” J. Colloid Interface Sci. 192(2), 326–333 (1997).
    [Crossref] [PubMed]
  50. B. Cappella and G. Dietler, “Force-distance curves by atomic force microscopy,” Surf. Sci. Rep. 34(1), 1–104 (1991).
    [Crossref]
  51. K. Lee, M. Kinnunen, M.D. Khokhlova, E.V. Lyubin, A.V. Priezzhev, I. Meglinski, and A.A. Fedyanin, “Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions,” J. Biomed. Opt. 21(3), 035001 (2016).
    [Crossref]
  52. H.P. Fernandes, A. Fontes, A. Thomaz, V. Castro, C.L. Cesar, and M.L. Barjas-Castro, “Measuring red blood cell aggregation forces using double optical tweezers,” Scand. J. Clin. Lab. Invest. 73(3), 262–264 (2013).
    [Crossref] [PubMed]
  53. A.Y. Maklygin, A.V. Priezzhev, A.V. Karmenyan, S.Y. Nikitin, I.S. Obolenskii, A.E. Lugovtsov, and K. Li, “Measurement of interaction forces between red blood cells in aggregates by optical tweezers,” Quantum Electron. 42(6), 500–504 (2012).
    [Crossref]
  54. S. Adi, H. Adi, P. Tang, D. Traini, H.K. Chan, and P.M. Young, “Micro-particle corrugation, adhesion and inhalation aerosol efficiency,” Eur. J. Pharm. Sci. 35(1–2), 12–18 (2008).
    [Crossref] [PubMed]
  55. K. Cooper, N. Ohler, A. Gupta, and S. Beaudoin, “Analysis of contact interactions between a rough deformable colloid and a smooth substrate,” J. Colloid Interface Sci. 222, 63–74 (2000).
    [Crossref] [PubMed]
  56. A.L. Weisenhorn, P. Maivald, H.J. Butt, and P. K. Hansma, “Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope,” Phys. Rev. B 45(19), 11226 (1992).
    [Crossref]
  57. R. Tantra, J. Tompkins, and P. Quincey, “Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension,” Colloids Surf. B Biointerfaces 75, 275–281 (2010).
    [Crossref]

2017 (2)

A. Wrobeln, J. Laudien, C. Groß-Heitfeld, J. Linders, C. Mayer, B. Wilde, T. Knoll, D. Naglav, M. Kirsch, and K.B. Ferenz, “Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility,” Eur. J. Pharm. Biopharm. 115, 52–64 (2017).
[Crossref] [PubMed]

A. Wrobeln, K.D. Schlüter, J. Linders, M. Zähres, C. Mayer, M. Kirsch, and K.B. Ferenz, “Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart,” Artif. Cells Nanomed. Biotechnol. 45(4), 723–730 (2017).
[Crossref] [PubMed]

2016 (3)

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

J. Köhler, J. Friedrich, A. Ostendorf, and E. L. Gurevich, “Characterization of azimuthal and radial velocity fields induced by rotors in flows with a low Reynolds number,” Phys. Rev. E 93, 023108 (2016).
[Crossref] [PubMed]

K. Lee, M. Kinnunen, M.D. Khokhlova, E.V. Lyubin, A.V. Priezzhev, I. Meglinski, and A.A. Fedyanin, “Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions,” J. Biomed. Opt. 21(3), 035001 (2016).
[Crossref]

2015 (4)

R. Agrawal, R. Bhatnagar, T. Smart, C. Richards, C.E. Pavesio, D.T. Shima, and P. Jones, “Assessment of red blood cell deformability by Optical tweezers in diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 56(7), 5183 (2015).

D.S. Moura, D.C.N. Silva, A.J. Williams, M.A.C. Bezerra, A. Fontes, and R.E. de Araujo, “Automatic real time evaluation of red blood cell elasticity by optical tweezers,” Rev. Sci. Instrum. 86(5), 053702 (2015).
[Crossref]

K.B. Ferenz, “Künstliche Sauerstoffträger – Wie lange müssen wir noch warten?” Hämotherapie 25, 27–36 (2015).

J. Laudien, C. Groß-Heitfeld, C. Mayer, H. de Groot, M. Kirsch, and K. Ferenz, “Perfluorodecalin-filled Poly(n-butyl-cyanoacrylate) nanocapsules as potential artificial oxygen carriers: Preclinical safety and biocompatibility,” J. Nanosci. Nanotechnol. 15(8), 5637–5648 (2015).
[Crossref] [PubMed]

2014 (3)

K.B. Ferenz, I.N. Waack, J. Laudien, C. Mayer, M. Broecker-Preuss, H.d. Groot, and M. Kirsch, “Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats,” Results Pharma Sci. 4, 8–18 (2014).
[Crossref] [PubMed]

N.T. Huang, H.l. Zhang, M.T. Chung, J.H. Seoe, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

C. Fury, C. Harfield, P.H. Jones, E. Stride, and G. Memoli, “Experimental characterisation of holographic optical traps for microbubbles,” Proc. SPIE 9126, 91263L (2014).
[Crossref]

2013 (2)

H.P. Fernandes, A. Fontes, A. Thomaz, V. Castro, C.L. Cesar, and M.L. Barjas-Castro, “Measuring red blood cell aggregation forces using double optical tweezers,” Scand. J. Clin. Lab. Invest. 73(3), 262–264 (2013).
[Crossref] [PubMed]

D.R. Spahn and L.T. Goodnough, “Alternatives to blood transfusion,” Lancet 381(9880), 1855–1865 (2013).
[Crossref] [PubMed]

2012 (3)

F. Dawood, S. Qin, L. Li, E.Y. Lina, and J.T. Fourkas, “Simultaneous microsclae optical manipualtion, fabrication and immobilisation in aqueous media,” Chem. Sci. 3, 2449–2456 (2012).
[Crossref]

R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22, 065016 (2012).
[Crossref]

A.Y. Maklygin, A.V. Priezzhev, A.V. Karmenyan, S.Y. Nikitin, I.S. Obolenskii, A.E. Lugovtsov, and K. Li, “Measurement of interaction forces between red blood cells in aggregates by optical tweezers,” Quantum Electron. 42(6), 500–504 (2012).
[Crossref]

2011 (1)

X. Wang, S. Chen, M. Kong, Z. Wang, K.D. Costa, R.A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref] [PubMed]

2010 (2)

G.R. Littlejohn, J.D. Gouveia, C. Edner, N. Smirnoff, and J. Love, “Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll,” New Phytol. 186, 1018–1025 (2010).
[Crossref] [PubMed]

R. Tantra, J. Tompkins, and P. Quincey, “Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension,” Colloids Surf. B Biointerfaces 75, 275–281 (2010).
[Crossref]

2009 (1)

F.T. Barbosa, “Artificial oxygen carriers as an alternative to red cells in clinical practice,” Sao Paulo Med. J. 127(2), 97–100 (2009).
[Crossref] [PubMed]

2008 (3)

D.R. Spahn, H. Moch, A. Hofmann, and J.P. Isbister, “Patient Blood Management: the pragmatic solution for the problems with blood transfusions,” Anesthesiology 109(6), 951–953 (2008).
[Crossref] [PubMed]

H. Zhang and K.K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref] [PubMed]

S. Adi, H. Adi, P. Tang, D. Traini, H.K. Chan, and P.M. Young, “Micro-particle corrugation, adhesion and inhalation aerosol efficiency,” Eur. J. Pharm. Sci. 35(1–2), 12–18 (2008).
[Crossref] [PubMed]

2007 (4)

T.A. Nieminen, V.L.Y. Loke, A.B. Stilgoe, G. Knöner, A.M. Brańczyk, N.R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[Crossref]

T. Henkel-Hanke and M. Oleck, “Artificial oxygen carriers: a current review,” AANA J 75(3), 205–211 (2007).

R.M. Lorenz, J.S. Edgar, G.D. M. Jeffries, Y. Zhao, D. McGloin, and D.T. Chiu, “Vortex-trap-induced fusion of femtoliter-volume aqueous droplets,” Anal. Chem. 1(79), 224–228 (2007).
[Crossref]

P.H. Jones, O.M. Maragó, and E.P.J. Stride, “Parametrization of trapping forces on microbubbles in scanning optical tweezers,” J. Opt. A: Pure Appl. Opt. 9, S278–S283 (2007).
[Crossref]

2005 (1)

O. Habler, A. Pape, J. Meier, and B. Zwissler, “Artificial oxygen carriers as an alternative to red blood cell transfusion,” Anaesthesist 54(8), 741–754 (2005).
[Crossref] [PubMed]

2004 (4)

P.J. Rodrigo, V.R. Daria, and J. Glückstad, “Real-time interactive optical micromanipulation of a mixture of high-and low-index particles,” Opt. Express 12(7), 1417 (2004).
[Crossref] [PubMed]

C.S. Guo, X. Liu, J.L He, and H.T. Wang, “Optimal annulus structures of optical vortices,” Opt. Express 12(19), 4625 (2004).
[Crossref] [PubMed]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref]

X. Shi and Y.P. Zhao, “Comparison of various adhesion contact theories and the influence of dimensionless load parameter,” J. Adhesion Sci. Technol. 18(1), 55–68 (2004).
[Crossref]

2002 (3)

C.S. Hodges, J.A.S. Cleaver, M. Ghadiri, R. Jones, and H.M. Pollock, “Forces between polystyrene particles in water using the AFM: Pull-off force vs particle size,” Langmuir 18(15), 5741–5748 (2002).
[Crossref]

J.N. Marsh, C.S. Hall, S.A. Wickline, and G.M. Lanza, “Temperature dependence of acoustic impedance for specific fluorocarbon liquids,” J. Acoust. Soc. Am. 112(6), 2858–2862 (2002).
[Crossref]

J.E. Curtis, B.A. Koss, and D.G. Grier, “Dynamic holographic optical tweezers,” Opt. Comm. 207(1–6), 169–175 (2002).
[Crossref]

2000 (2)

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nyström, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182(19), 5551–5555 (2000).
[Crossref] [PubMed]

K. Cooper, N. Ohler, A. Gupta, and S. Beaudoin, “Analysis of contact interactions between a rough deformable colloid and a smooth substrate,” J. Colloid Interface Sci. 222, 63–74 (2000).
[Crossref] [PubMed]

1999 (1)

1998 (1)

H. Rubinsztein-Dunlop, T.A. Nieminen, M.E.J. Friese, and N.R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30, 469–492 (1998).
[Crossref]

1997 (1)

K.L. Johnson and J.A. Greenwood, “An adhesion map for the contact of elastic spheres,” J. Colloid Interface Sci. 192(2), 326–333 (1997).
[Crossref] [PubMed]

1996 (2)

K. Monkos, “Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration,” Int. J. Biol. Macromolec. 18, 61–68 (1996).
[Crossref]

P.E. Keipert, N.S. Faithfull, D.J. Roth, J.D. Bradley, S. Batra, P. Jochelson, and K.E. Flaim, “Supporting tissue oxygenation during acute surgical bleeding using a perfluorochemical-based oxygen carrier,” Adv. Exp. Med. Biol. 388, 603–609 (1996).
[Crossref] [PubMed]

1994 (2)

K. Svoboda and S.M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref] [PubMed]

K.S. Suslick, M.W. Grinstaff, K.J. Kolbeck, and M. Wong, “Characterization of sonochemically prepared proteinaceous microspheres,” Ultrason. Sonochem. 1(1), S65–S68 (1994).
[Crossref]

1992 (4)

A.L. Weisenhorn, P. Maivald, H.J. Butt, and P. K. Hansma, “Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope,” Phys. Rev. B 45(19), 11226 (1992).
[Crossref]

C. Azzolini, F. Docchio, R. Brancato, and G Trabucchi, “Interactions between light and vitreous fluid substitutes,” Arch. Ophthalmol. 110(10), 1468–1471 (1992).
[Crossref] [PubMed]

Sasaki1992, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60(7), 807–809 (1992).
[Crossref]

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

1991 (1)

B. Cappella and G. Dietler, “Force-distance curves by atomic force microscopy,” Surf. Sci. Rep. 34(1), 1–104 (1991).
[Crossref]

1986 (1)

A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Letters 11(5), 288–290 (1986).
[Crossref]

1981 (1)

E.D. Shchukin, E.A. Amelina, and V.V. Yaminsky, “Adhesion of particles in liquid media and stability of disperse systems,” Colloids Surf. 2(3), 221–242 (1981).
[Crossref]

1978 (1)

K. Yokoyama, “Effect of perfluorochemical (PFC) emulsion on acute carbon monoxide poisoning in rats,” Jpn. J. Surg. 8, 342–352 (1978).
[Crossref] [PubMed]

1969 (1)

H.A. Sloviter, M. Petkovic, S. Ogoshi, and H. Yamada, “Dispersed fluorochemicals as substitutes for erythrocytes in intact animals,” J. Appl. Physiol. 27, 666–668 (1969).
[PubMed]

1954 (1)

R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173(4409), 821–822 (1954).
[Crossref] [PubMed]

Adi, H.

S. Adi, H. Adi, P. Tang, D. Traini, H.K. Chan, and P.M. Young, “Micro-particle corrugation, adhesion and inhalation aerosol efficiency,” Eur. J. Pharm. Sci. 35(1–2), 12–18 (2008).
[Crossref] [PubMed]

Adi, S.

S. Adi, H. Adi, P. Tang, D. Traini, H.K. Chan, and P.M. Young, “Micro-particle corrugation, adhesion and inhalation aerosol efficiency,” Eur. J. Pharm. Sci. 35(1–2), 12–18 (2008).
[Crossref] [PubMed]

Agrawal, R.

R. Agrawal, R. Bhatnagar, T. Smart, C. Richards, C.E. Pavesio, D.T. Shima, and P. Jones, “Assessment of red blood cell deformability by Optical tweezers in diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 56(7), 5183 (2015).

Amelina, E.A.

E.D. Shchukin, E.A. Amelina, and V.V. Yaminsky, “Adhesion of particles in liquid media and stability of disperse systems,” Colloids Surf. 2(3), 221–242 (1981).
[Crossref]

Ashkin, A.

A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Letters 11(5), 288–290 (1986).
[Crossref]

Azzolini, C.

C. Azzolini, F. Docchio, R. Brancato, and G Trabucchi, “Interactions between light and vitreous fluid substitutes,” Arch. Ophthalmol. 110(10), 1468–1471 (1992).
[Crossref] [PubMed]

Babra, P.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Barbosa, F.T.

F.T. Barbosa, “Artificial oxygen carriers as an alternative to red cells in clinical practice,” Sao Paulo Med. J. 127(2), 97–100 (2009).
[Crossref] [PubMed]

Barer, R.

R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173(4409), 821–822 (1954).
[Crossref] [PubMed]

Barjas-Castro, M.L.

H.P. Fernandes, A. Fontes, A. Thomaz, V. Castro, C.L. Cesar, and M.L. Barjas-Castro, “Measuring red blood cell aggregation forces using double optical tweezers,” Scand. J. Clin. Lab. Invest. 73(3), 262–264 (2013).
[Crossref] [PubMed]

Batra, S.

P.E. Keipert, N.S. Faithfull, D.J. Roth, J.D. Bradley, S. Batra, P. Jochelson, and K.E. Flaim, “Supporting tissue oxygenation during acute surgical bleeding using a perfluorochemical-based oxygen carrier,” Adv. Exp. Med. Biol. 388, 603–609 (1996).
[Crossref] [PubMed]

Beaudoin, S.

K. Cooper, N. Ohler, A. Gupta, and S. Beaudoin, “Analysis of contact interactions between a rough deformable colloid and a smooth substrate,” J. Colloid Interface Sci. 222, 63–74 (2000).
[Crossref] [PubMed]

Bezerra, M.A.C.

D.S. Moura, D.C.N. Silva, A.J. Williams, M.A.C. Bezerra, A. Fontes, and R.E. de Araujo, “Automatic real time evaluation of red blood cell elasticity by optical tweezers,” Rev. Sci. Instrum. 86(5), 053702 (2015).
[Crossref]

Bhatnagar, R.

R. Agrawal, R. Bhatnagar, T. Smart, C. Richards, C.E. Pavesio, D.T. Shima, and P. Jones, “Assessment of red blood cell deformability by Optical tweezers in diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 56(7), 5183 (2015).

Bjorkholm, J.E.

A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Letters 11(5), 288–290 (1986).
[Crossref]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref]

Block, S.M.

K. Svoboda and S.M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref] [PubMed]

Borg-Aquilina, D.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Bradley, J.D.

P.E. Keipert, N.S. Faithfull, D.J. Roth, J.D. Bradley, S. Batra, P. Jochelson, and K.E. Flaim, “Supporting tissue oxygenation during acute surgical bleeding using a perfluorochemical-based oxygen carrier,” Adv. Exp. Med. Biol. 388, 603–609 (1996).
[Crossref] [PubMed]

Brancato, R.

C. Azzolini, F. Docchio, R. Brancato, and G Trabucchi, “Interactions between light and vitreous fluid substitutes,” Arch. Ophthalmol. 110(10), 1468–1471 (1992).
[Crossref] [PubMed]

Branczyk, A.M.

T.A. Nieminen, V.L.Y. Loke, A.B. Stilgoe, G. Knöner, A.M. Brańczyk, N.R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[Crossref]

Broecker-Preuss, M.

K.B. Ferenz, I.N. Waack, J. Laudien, C. Mayer, M. Broecker-Preuss, H.d. Groot, and M. Kirsch, “Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats,” Results Pharma Sci. 4, 8–18 (2014).
[Crossref] [PubMed]

Bruun, M.T.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Butt, H.J.

A.L. Weisenhorn, P. Maivald, H.J. Butt, and P. K. Hansma, “Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope,” Phys. Rev. B 45(19), 11226 (1992).
[Crossref]

Cappella, B.

B. Cappella and G. Dietler, “Force-distance curves by atomic force microscopy,” Surf. Sci. Rep. 34(1), 1–104 (1991).
[Crossref]

Castro, V.

H.P. Fernandes, A. Fontes, A. Thomaz, V. Castro, C.L. Cesar, and M.L. Barjas-Castro, “Measuring red blood cell aggregation forces using double optical tweezers,” Scand. J. Clin. Lab. Invest. 73(3), 262–264 (2013).
[Crossref] [PubMed]

Cesar, C.L.

H.P. Fernandes, A. Fontes, A. Thomaz, V. Castro, C.L. Cesar, and M.L. Barjas-Castro, “Measuring red blood cell aggregation forces using double optical tweezers,” Scand. J. Clin. Lab. Invest. 73(3), 262–264 (2013).
[Crossref] [PubMed]

Chan, H.K.

S. Adi, H. Adi, P. Tang, D. Traini, H.K. Chan, and P.M. Young, “Micro-particle corrugation, adhesion and inhalation aerosol efficiency,” Eur. J. Pharm. Sci. 35(1–2), 12–18 (2008).
[Crossref] [PubMed]

Chen, S.

X. Wang, S. Chen, M. Kong, Z. Wang, K.D. Costa, R.A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref] [PubMed]

Chiu, D.T.

R.M. Lorenz, J.S. Edgar, G.D. M. Jeffries, Y. Zhao, D. McGloin, and D.T. Chiu, “Vortex-trap-induced fusion of femtoliter-volume aqueous droplets,” Anal. Chem. 1(79), 224–228 (2007).
[Crossref]

Chu, S.

A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Letters 11(5), 288–290 (1986).
[Crossref]

Chung, M.T.

N.T. Huang, H.l. Zhang, M.T. Chung, J.H. Seoe, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Cleaver, J.A.S.

C.S. Hodges, J.A.S. Cleaver, M. Ghadiri, R. Jones, and H.M. Pollock, “Forces between polystyrene particles in water using the AFM: Pull-off force vs particle size,” Langmuir 18(15), 5741–5748 (2002).
[Crossref]

Cooper, K.

K. Cooper, N. Ohler, A. Gupta, and S. Beaudoin, “Analysis of contact interactions between a rough deformable colloid and a smooth substrate,” J. Colloid Interface Sci. 222, 63–74 (2000).
[Crossref] [PubMed]

Costa, K.D.

X. Wang, S. Chen, M. Kong, Z. Wang, K.D. Costa, R.A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref] [PubMed]

Curtis, J.E.

J.E. Curtis, B.A. Koss, and D.G. Grier, “Dynamic holographic optical tweezers,” Opt. Comm. 207(1–6), 169–175 (2002).
[Crossref]

Daria, V.R.

Dawood, F.

F. Dawood, S. Qin, L. Li, E.Y. Lina, and J.T. Fourkas, “Simultaneous microsclae optical manipualtion, fabrication and immobilisation in aqueous media,” Chem. Sci. 3, 2449–2456 (2012).
[Crossref]

de Araujo, R.E.

D.S. Moura, D.C.N. Silva, A.J. Williams, M.A.C. Bezerra, A. Fontes, and R.E. de Araujo, “Automatic real time evaluation of red blood cell elasticity by optical tweezers,” Rev. Sci. Instrum. 86(5), 053702 (2015).
[Crossref]

de Groot, H.

J. Laudien, C. Groß-Heitfeld, C. Mayer, H. de Groot, M. Kirsch, and K. Ferenz, “Perfluorodecalin-filled Poly(n-butyl-cyanoacrylate) nanocapsules as potential artificial oxygen carriers: Preclinical safety and biocompatibility,” J. Nanosci. Nanotechnol. 15(8), 5637–5648 (2015).
[Crossref] [PubMed]

Dietler, G.

B. Cappella and G. Dietler, “Force-distance curves by atomic force microscopy,” Surf. Sci. Rep. 34(1), 1–104 (1991).
[Crossref]

Docchio, F.

C. Azzolini, F. Docchio, R. Brancato, and G Trabucchi, “Interactions between light and vitreous fluid substitutes,” Arch. Ophthalmol. 110(10), 1468–1471 (1992).
[Crossref] [PubMed]

Dziedzic, J.M.

A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Letters 11(5), 288–290 (1986).
[Crossref]

Edgar, J.S.

R.M. Lorenz, J.S. Edgar, G.D. M. Jeffries, Y. Zhao, D. McGloin, and D.T. Chiu, “Vortex-trap-induced fusion of femtoliter-volume aqueous droplets,” Anal. Chem. 1(79), 224–228 (2007).
[Crossref]

Edner, C.

G.R. Littlejohn, J.D. Gouveia, C. Edner, N. Smirnoff, and J. Love, “Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll,” New Phytol. 186, 1018–1025 (2010).
[Crossref] [PubMed]

Enger, J.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nyström, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182(19), 5551–5555 (2000).
[Crossref] [PubMed]

Ericsson, M.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nyström, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182(19), 5551–5555 (2000).
[Crossref] [PubMed]

Esen, C.

R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22, 065016 (2012).
[Crossref]

Faithfull, N.S.

P.E. Keipert, N.S. Faithfull, D.J. Roth, J.D. Bradley, S. Batra, P. Jochelson, and K.E. Flaim, “Supporting tissue oxygenation during acute surgical bleeding using a perfluorochemical-based oxygen carrier,” Adv. Exp. Med. Biol. 388, 603–609 (1996).
[Crossref] [PubMed]

Fedyanin, A.A.

K. Lee, M. Kinnunen, M.D. Khokhlova, E.V. Lyubin, A.V. Priezzhev, I. Meglinski, and A.A. Fedyanin, “Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions,” J. Biomed. Opt. 21(3), 035001 (2016).
[Crossref]

Ferenz, K.

J. Laudien, C. Groß-Heitfeld, C. Mayer, H. de Groot, M. Kirsch, and K. Ferenz, “Perfluorodecalin-filled Poly(n-butyl-cyanoacrylate) nanocapsules as potential artificial oxygen carriers: Preclinical safety and biocompatibility,” J. Nanosci. Nanotechnol. 15(8), 5637–5648 (2015).
[Crossref] [PubMed]

Ferenz, K.B.

A. Wrobeln, J. Laudien, C. Groß-Heitfeld, J. Linders, C. Mayer, B. Wilde, T. Knoll, D. Naglav, M. Kirsch, and K.B. Ferenz, “Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility,” Eur. J. Pharm. Biopharm. 115, 52–64 (2017).
[Crossref] [PubMed]

A. Wrobeln, K.D. Schlüter, J. Linders, M. Zähres, C. Mayer, M. Kirsch, and K.B. Ferenz, “Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart,” Artif. Cells Nanomed. Biotechnol. 45(4), 723–730 (2017).
[Crossref] [PubMed]

K.B. Ferenz, “Künstliche Sauerstoffträger – Wie lange müssen wir noch warten?” Hämotherapie 25, 27–36 (2015).

K.B. Ferenz, I.N. Waack, J. Laudien, C. Mayer, M. Broecker-Preuss, H.d. Groot, and M. Kirsch, “Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats,” Results Pharma Sci. 4, 8–18 (2014).
[Crossref] [PubMed]

Fernandes, H.P.

H.P. Fernandes, A. Fontes, A. Thomaz, V. Castro, C.L. Cesar, and M.L. Barjas-Castro, “Measuring red blood cell aggregation forces using double optical tweezers,” Scand. J. Clin. Lab. Invest. 73(3), 262–264 (2013).
[Crossref] [PubMed]

Fischer, D.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Flaim, K.E.

P.E. Keipert, N.S. Faithfull, D.J. Roth, J.D. Bradley, S. Batra, P. Jochelson, and K.E. Flaim, “Supporting tissue oxygenation during acute surgical bleeding using a perfluorochemical-based oxygen carrier,” Adv. Exp. Med. Biol. 388, 603–609 (1996).
[Crossref] [PubMed]

Folléa, G.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Fontes, A.

D.S. Moura, D.C.N. Silva, A.J. Williams, M.A.C. Bezerra, A. Fontes, and R.E. de Araujo, “Automatic real time evaluation of red blood cell elasticity by optical tweezers,” Rev. Sci. Instrum. 86(5), 053702 (2015).
[Crossref]

H.P. Fernandes, A. Fontes, A. Thomaz, V. Castro, C.L. Cesar, and M.L. Barjas-Castro, “Measuring red blood cell aggregation forces using double optical tweezers,” Scand. J. Clin. Lab. Invest. 73(3), 262–264 (2013).
[Crossref] [PubMed]

Fourkas, J.T.

F. Dawood, S. Qin, L. Li, E.Y. Lina, and J.T. Fourkas, “Simultaneous microsclae optical manipualtion, fabrication and immobilisation in aqueous media,” Chem. Sci. 3, 2449–2456 (2012).
[Crossref]

Friedrich, J.

J. Köhler, J. Friedrich, A. Ostendorf, and E. L. Gurevich, “Characterization of azimuthal and radial velocity fields induced by rotors in flows with a low Reynolds number,” Phys. Rev. E 93, 023108 (2016).
[Crossref] [PubMed]

Friese, M.E.J.

H. Rubinsztein-Dunlop, T.A. Nieminen, M.E.J. Friese, and N.R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30, 469–492 (1998).
[Crossref]

Fury, C.

C. Fury, C. Harfield, P.H. Jones, E. Stride, and G. Memoli, “Experimental characterisation of holographic optical traps for microbubbles,” Proc. SPIE 9126, 91263L (2014).
[Crossref]

Gahagan, K.T.

Geisen, C.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Georgsen, J.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Ghadiri, M.

C.S. Hodges, J.A.S. Cleaver, M. Ghadiri, R. Jones, and H.M. Pollock, “Forces between polystyrene particles in water using the AFM: Pull-off force vs particle size,” Langmuir 18(15), 5741–5748 (2002).
[Crossref]

Ghadiri, R.

R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22, 065016 (2012).
[Crossref]

Glückstad, J.

Goodnough, L.T.

D.R. Spahn and L.T. Goodnough, “Alternatives to blood transfusion,” Lancet 381(9880), 1855–1865 (2013).
[Crossref] [PubMed]

Gouveia, J.D.

G.R. Littlejohn, J.D. Gouveia, C. Edner, N. Smirnoff, and J. Love, “Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll,” New Phytol. 186, 1018–1025 (2010).
[Crossref] [PubMed]

Grant-Casey, J.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Greenwood, J.A.

K.L. Johnson and J.A. Greenwood, “An adhesion map for the contact of elastic spheres,” J. Colloid Interface Sci. 192(2), 326–333 (1997).
[Crossref] [PubMed]

Grier, D.G.

J.E. Curtis, B.A. Koss, and D.G. Grier, “Dynamic holographic optical tweezers,” Opt. Comm. 207(1–6), 169–175 (2002).
[Crossref]

Grinstaff, M.W.

K.S. Suslick, M.W. Grinstaff, K.J. Kolbeck, and M. Wong, “Characterization of sonochemically prepared proteinaceous microspheres,” Ultrason. Sonochem. 1(1), S65–S68 (1994).
[Crossref]

Groot, H.d.

K.B. Ferenz, I.N. Waack, J. Laudien, C. Mayer, M. Broecker-Preuss, H.d. Groot, and M. Kirsch, “Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats,” Results Pharma Sci. 4, 8–18 (2014).
[Crossref] [PubMed]

Groß-Heitfeld, C.

A. Wrobeln, J. Laudien, C. Groß-Heitfeld, J. Linders, C. Mayer, B. Wilde, T. Knoll, D. Naglav, M. Kirsch, and K.B. Ferenz, “Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility,” Eur. J. Pharm. Biopharm. 115, 52–64 (2017).
[Crossref] [PubMed]

J. Laudien, C. Groß-Heitfeld, C. Mayer, H. de Groot, M. Kirsch, and K. Ferenz, “Perfluorodecalin-filled Poly(n-butyl-cyanoacrylate) nanocapsules as potential artificial oxygen carriers: Preclinical safety and biocompatibility,” J. Nanosci. Nanotechnol. 15(8), 5637–5648 (2015).
[Crossref] [PubMed]

Guo, C.S.

Gupta, A.

K. Cooper, N. Ohler, A. Gupta, and S. Beaudoin, “Analysis of contact interactions between a rough deformable colloid and a smooth substrate,” J. Colloid Interface Sci. 222, 63–74 (2000).
[Crossref] [PubMed]

Gurevich, E. L.

J. Köhler, J. Friedrich, A. Ostendorf, and E. L. Gurevich, “Characterization of azimuthal and radial velocity fields induced by rotors in flows with a low Reynolds number,” Phys. Rev. E 93, 023108 (2016).
[Crossref] [PubMed]

Habler, O.

O. Habler, A. Pape, J. Meier, and B. Zwissler, “Artificial oxygen carriers as an alternative to red blood cell transfusion,” Anaesthesist 54(8), 741–754 (2005).
[Crossref] [PubMed]

Hagberg, P.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nyström, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182(19), 5551–5555 (2000).
[Crossref] [PubMed]

Hall, C.S.

J.N. Marsh, C.S. Hall, S.A. Wickline, and G.M. Lanza, “Temperature dependence of acoustic impedance for specific fluorocarbon liquids,” J. Acoust. Soc. Am. 112(6), 2858–2862 (2002).
[Crossref]

Hansma, P. K.

A.L. Weisenhorn, P. Maivald, H.J. Butt, and P. K. Hansma, “Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope,” Phys. Rev. B 45(19), 11226 (1992).
[Crossref]

Hanstorp, D.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nyström, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182(19), 5551–5555 (2000).
[Crossref] [PubMed]

Harfield, C.

C. Fury, C. Harfield, P.H. Jones, E. Stride, and G. Memoli, “Experimental characterisation of holographic optical traps for microbubbles,” Proc. SPIE 9126, 91263L (2014).
[Crossref]

He, J.L

Heckenberg, N.R.

T.A. Nieminen, V.L.Y. Loke, A.B. Stilgoe, G. Knöner, A.M. Brańczyk, N.R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[Crossref]

H. Rubinsztein-Dunlop, T.A. Nieminen, M.E.J. Friese, and N.R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30, 469–492 (1998).
[Crossref]

Henkel-Hanke, T.

T. Henkel-Hanke and M. Oleck, “Artificial oxygen carriers: a current review,” AANA J 75(3), 205–211 (2007).

Hodges, C.S.

C.S. Hodges, J.A.S. Cleaver, M. Ghadiri, R. Jones, and H.M. Pollock, “Forces between polystyrene particles in water using the AFM: Pull-off force vs particle size,” Langmuir 18(15), 5741–5748 (2002).
[Crossref]

Hofmann, A.

D.R. Spahn, H. Moch, A. Hofmann, and J.P. Isbister, “Patient Blood Management: the pragmatic solution for the problems with blood transfusions,” Anesthesiology 109(6), 951–953 (2008).
[Crossref] [PubMed]

Huang, N.T.

N.T. Huang, H.l. Zhang, M.T. Chung, J.H. Seoe, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Isbister, J.P.

D.R. Spahn, H. Moch, A. Hofmann, and J.P. Isbister, “Patient Blood Management: the pragmatic solution for the problems with blood transfusions,” Anesthesiology 109(6), 951–953 (2008).
[Crossref] [PubMed]

Jeffries, G.D. M.

R.M. Lorenz, J.S. Edgar, G.D. M. Jeffries, Y. Zhao, D. McGloin, and D.T. Chiu, “Vortex-trap-induced fusion of femtoliter-volume aqueous droplets,” Anal. Chem. 1(79), 224–228 (2007).
[Crossref]

Jochelson, P.

P.E. Keipert, N.S. Faithfull, D.J. Roth, J.D. Bradley, S. Batra, P. Jochelson, and K.E. Flaim, “Supporting tissue oxygenation during acute surgical bleeding using a perfluorochemical-based oxygen carrier,” Adv. Exp. Med. Biol. 388, 603–609 (1996).
[Crossref] [PubMed]

Johnson, K.L.

K.L. Johnson and J.A. Greenwood, “An adhesion map for the contact of elastic spheres,” J. Colloid Interface Sci. 192(2), 326–333 (1997).
[Crossref] [PubMed]

Jones, P.

R. Agrawal, R. Bhatnagar, T. Smart, C. Richards, C.E. Pavesio, D.T. Shima, and P. Jones, “Assessment of red blood cell deformability by Optical tweezers in diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 56(7), 5183 (2015).

Jones, P.H.

C. Fury, C. Harfield, P.H. Jones, E. Stride, and G. Memoli, “Experimental characterisation of holographic optical traps for microbubbles,” Proc. SPIE 9126, 91263L (2014).
[Crossref]

P.H. Jones, O.M. Maragó, and E.P.J. Stride, “Parametrization of trapping forces on microbubbles in scanning optical tweezers,” J. Opt. A: Pure Appl. Opt. 9, S278–S283 (2007).
[Crossref]

Jones, R.

C.S. Hodges, J.A.S. Cleaver, M. Ghadiri, R. Jones, and H.M. Pollock, “Forces between polystyrene particles in water using the AFM: Pull-off force vs particle size,” Langmuir 18(15), 5741–5748 (2002).
[Crossref]

Karmenyan, A.V.

A.Y. Maklygin, A.V. Priezzhev, A.V. Karmenyan, S.Y. Nikitin, I.S. Obolenskii, A.E. Lugovtsov, and K. Li, “Measurement of interaction forces between red blood cells in aggregates by optical tweezers,” Quantum Electron. 42(6), 500–504 (2012).
[Crossref]

Keipert, P.E.

P.E. Keipert, N.S. Faithfull, D.J. Roth, J.D. Bradley, S. Batra, P. Jochelson, and K.E. Flaim, “Supporting tissue oxygenation during acute surgical bleeding using a perfluorochemical-based oxygen carrier,” Adv. Exp. Med. Biol. 388, 603–609 (1996).
[Crossref] [PubMed]

Khokhlova, M.D.

K. Lee, M. Kinnunen, M.D. Khokhlova, E.V. Lyubin, A.V. Priezzhev, I. Meglinski, and A.A. Fedyanin, “Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions,” J. Biomed. Opt. 21(3), 035001 (2016).
[Crossref]

Kinnunen, M.

K. Lee, M. Kinnunen, M.D. Khokhlova, E.V. Lyubin, A.V. Priezzhev, I. Meglinski, and A.A. Fedyanin, “Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions,” J. Biomed. Opt. 21(3), 035001 (2016).
[Crossref]

Kirsch, M.

A. Wrobeln, K.D. Schlüter, J. Linders, M. Zähres, C. Mayer, M. Kirsch, and K.B. Ferenz, “Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart,” Artif. Cells Nanomed. Biotechnol. 45(4), 723–730 (2017).
[Crossref] [PubMed]

A. Wrobeln, J. Laudien, C. Groß-Heitfeld, J. Linders, C. Mayer, B. Wilde, T. Knoll, D. Naglav, M. Kirsch, and K.B. Ferenz, “Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility,” Eur. J. Pharm. Biopharm. 115, 52–64 (2017).
[Crossref] [PubMed]

J. Laudien, C. Groß-Heitfeld, C. Mayer, H. de Groot, M. Kirsch, and K. Ferenz, “Perfluorodecalin-filled Poly(n-butyl-cyanoacrylate) nanocapsules as potential artificial oxygen carriers: Preclinical safety and biocompatibility,” J. Nanosci. Nanotechnol. 15(8), 5637–5648 (2015).
[Crossref] [PubMed]

K.B. Ferenz, I.N. Waack, J. Laudien, C. Mayer, M. Broecker-Preuss, H.d. Groot, and M. Kirsch, “Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats,” Results Pharma Sci. 4, 8–18 (2014).
[Crossref] [PubMed]

Kitamura, N.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

Knoll, T.

A. Wrobeln, J. Laudien, C. Groß-Heitfeld, J. Linders, C. Mayer, B. Wilde, T. Knoll, D. Naglav, M. Kirsch, and K.B. Ferenz, “Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility,” Eur. J. Pharm. Biopharm. 115, 52–64 (2017).
[Crossref] [PubMed]

Knöner, G.

T.A. Nieminen, V.L.Y. Loke, A.B. Stilgoe, G. Knöner, A.M. Brańczyk, N.R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[Crossref]

Köhler, J.

J. Köhler, J. Friedrich, A. Ostendorf, and E. L. Gurevich, “Characterization of azimuthal and radial velocity fields induced by rotors in flows with a low Reynolds number,” Phys. Rev. E 93, 023108 (2016).
[Crossref] [PubMed]

Kolbeck, K.J.

K.S. Suslick, M.W. Grinstaff, K.J. Kolbeck, and M. Wong, “Characterization of sonochemically prepared proteinaceous microspheres,” Ultrason. Sonochem. 1(1), S65–S68 (1994).
[Crossref]

Kong, M.

X. Wang, S. Chen, M. Kong, Z. Wang, K.D. Costa, R.A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref] [PubMed]

Koshioka, M.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

Koss, B.A.

J.E. Curtis, B.A. Koss, and D.G. Grier, “Dynamic holographic optical tweezers,” Opt. Comm. 207(1–6), 169–175 (2002).
[Crossref]

Kurabayashi, K.

N.T. Huang, H.l. Zhang, M.T. Chung, J.H. Seoe, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Lanza, G.M.

J.N. Marsh, C.S. Hall, S.A. Wickline, and G.M. Lanza, “Temperature dependence of acoustic impedance for specific fluorocarbon liquids,” J. Acoust. Soc. Am. 112(6), 2858–2862 (2002).
[Crossref]

Laudien, J.

A. Wrobeln, J. Laudien, C. Groß-Heitfeld, J. Linders, C. Mayer, B. Wilde, T. Knoll, D. Naglav, M. Kirsch, and K.B. Ferenz, “Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility,” Eur. J. Pharm. Biopharm. 115, 52–64 (2017).
[Crossref] [PubMed]

J. Laudien, C. Groß-Heitfeld, C. Mayer, H. de Groot, M. Kirsch, and K. Ferenz, “Perfluorodecalin-filled Poly(n-butyl-cyanoacrylate) nanocapsules as potential artificial oxygen carriers: Preclinical safety and biocompatibility,” J. Nanosci. Nanotechnol. 15(8), 5637–5648 (2015).
[Crossref] [PubMed]

K.B. Ferenz, I.N. Waack, J. Laudien, C. Mayer, M. Broecker-Preuss, H.d. Groot, and M. Kirsch, “Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats,” Results Pharma Sci. 4, 8–18 (2014).
[Crossref] [PubMed]

Lee, K.

K. Lee, M. Kinnunen, M.D. Khokhlova, E.V. Lyubin, A.V. Priezzhev, I. Meglinski, and A.A. Fedyanin, “Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions,” J. Biomed. Opt. 21(3), 035001 (2016).
[Crossref]

Li, K.

A.Y. Maklygin, A.V. Priezzhev, A.V. Karmenyan, S.Y. Nikitin, I.S. Obolenskii, A.E. Lugovtsov, and K. Li, “Measurement of interaction forces between red blood cells in aggregates by optical tweezers,” Quantum Electron. 42(6), 500–504 (2012).
[Crossref]

Li, L.

F. Dawood, S. Qin, L. Li, E.Y. Lina, and J.T. Fourkas, “Simultaneous microsclae optical manipualtion, fabrication and immobilisation in aqueous media,” Chem. Sci. 3, 2449–2456 (2012).
[Crossref]

Li, R.A.

X. Wang, S. Chen, M. Kong, Z. Wang, K.D. Costa, R.A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref] [PubMed]

Lina, E.Y.

F. Dawood, S. Qin, L. Li, E.Y. Lina, and J.T. Fourkas, “Simultaneous microsclae optical manipualtion, fabrication and immobilisation in aqueous media,” Chem. Sci. 3, 2449–2456 (2012).
[Crossref]

Linders, J.

A. Wrobeln, K.D. Schlüter, J. Linders, M. Zähres, C. Mayer, M. Kirsch, and K.B. Ferenz, “Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart,” Artif. Cells Nanomed. Biotechnol. 45(4), 723–730 (2017).
[Crossref] [PubMed]

A. Wrobeln, J. Laudien, C. Groß-Heitfeld, J. Linders, C. Mayer, B. Wilde, T. Knoll, D. Naglav, M. Kirsch, and K.B. Ferenz, “Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility,” Eur. J. Pharm. Biopharm. 115, 52–64 (2017).
[Crossref] [PubMed]

Littlejohn, G.R.

G.R. Littlejohn, J.D. Gouveia, C. Edner, N. Smirnoff, and J. Love, “Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll,” New Phytol. 186, 1018–1025 (2010).
[Crossref] [PubMed]

Liu, K.K.

H. Zhang and K.K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref] [PubMed]

Liu, X.

Liumbruno, G.M.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Loke, V.L.Y.

T.A. Nieminen, V.L.Y. Loke, A.B. Stilgoe, G. Knöner, A.M. Brańczyk, N.R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[Crossref]

Lorenz, R.M.

R.M. Lorenz, J.S. Edgar, G.D. M. Jeffries, Y. Zhao, D. McGloin, and D.T. Chiu, “Vortex-trap-induced fusion of femtoliter-volume aqueous droplets,” Anal. Chem. 1(79), 224–228 (2007).
[Crossref]

Lorenzi, M.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Love, J.

G.R. Littlejohn, J.D. Gouveia, C. Edner, N. Smirnoff, and J. Love, “Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll,” New Phytol. 186, 1018–1025 (2010).
[Crossref] [PubMed]

Lugovtsov, A.E.

A.Y. Maklygin, A.V. Priezzhev, A.V. Karmenyan, S.Y. Nikitin, I.S. Obolenskii, A.E. Lugovtsov, and K. Li, “Measurement of interaction forces between red blood cells in aggregates by optical tweezers,” Quantum Electron. 42(6), 500–504 (2012).
[Crossref]

Lyubin, E.V.

K. Lee, M. Kinnunen, M.D. Khokhlova, E.V. Lyubin, A.V. Priezzhev, I. Meglinski, and A.A. Fedyanin, “Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions,” J. Biomed. Opt. 21(3), 035001 (2016).
[Crossref]

Maivald, P.

A.L. Weisenhorn, P. Maivald, H.J. Butt, and P. K. Hansma, “Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope,” Phys. Rev. B 45(19), 11226 (1992).
[Crossref]

Maklygin, A.Y.

A.Y. Maklygin, A.V. Priezzhev, A.V. Karmenyan, S.Y. Nikitin, I.S. Obolenskii, A.E. Lugovtsov, and K. Li, “Measurement of interaction forces between red blood cells in aggregates by optical tweezers,” Quantum Electron. 42(6), 500–504 (2012).
[Crossref]

Manzini, P.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Maragó, O.M.

P.H. Jones, O.M. Maragó, and E.P.J. Stride, “Parametrization of trapping forces on microbubbles in scanning optical tweezers,” J. Opt. A: Pure Appl. Opt. 9, S278–S283 (2007).
[Crossref]

Marsh, J.N.

J.N. Marsh, C.S. Hall, S.A. Wickline, and G.M. Lanza, “Temperature dependence of acoustic impedance for specific fluorocarbon liquids,” J. Acoust. Soc. Am. 112(6), 2858–2862 (2002).
[Crossref]

Masuhara, H.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

Mayer, C.

A. Wrobeln, K.D. Schlüter, J. Linders, M. Zähres, C. Mayer, M. Kirsch, and K.B. Ferenz, “Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart,” Artif. Cells Nanomed. Biotechnol. 45(4), 723–730 (2017).
[Crossref] [PubMed]

A. Wrobeln, J. Laudien, C. Groß-Heitfeld, J. Linders, C. Mayer, B. Wilde, T. Knoll, D. Naglav, M. Kirsch, and K.B. Ferenz, “Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility,” Eur. J. Pharm. Biopharm. 115, 52–64 (2017).
[Crossref] [PubMed]

J. Laudien, C. Groß-Heitfeld, C. Mayer, H. de Groot, M. Kirsch, and K. Ferenz, “Perfluorodecalin-filled Poly(n-butyl-cyanoacrylate) nanocapsules as potential artificial oxygen carriers: Preclinical safety and biocompatibility,” J. Nanosci. Nanotechnol. 15(8), 5637–5648 (2015).
[Crossref] [PubMed]

K.B. Ferenz, I.N. Waack, J. Laudien, C. Mayer, M. Broecker-Preuss, H.d. Groot, and M. Kirsch, “Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats,” Results Pharma Sci. 4, 8–18 (2014).
[Crossref] [PubMed]

McGloin, D.

R.M. Lorenz, J.S. Edgar, G.D. M. Jeffries, Y. Zhao, D. McGloin, and D.T. Chiu, “Vortex-trap-induced fusion of femtoliter-volume aqueous droplets,” Anal. Chem. 1(79), 224–228 (2007).
[Crossref]

Meglinski, I.

K. Lee, M. Kinnunen, M.D. Khokhlova, E.V. Lyubin, A.V. Priezzhev, I. Meglinski, and A.A. Fedyanin, “Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions,” J. Biomed. Opt. 21(3), 035001 (2016).
[Crossref]

Meier, J.

O. Habler, A. Pape, J. Meier, and B. Zwissler, “Artificial oxygen carriers as an alternative to red blood cell transfusion,” Anaesthesist 54(8), 741–754 (2005).
[Crossref] [PubMed]

Memoli, G.

C. Fury, C. Harfield, P.H. Jones, E. Stride, and G. Memoli, “Experimental characterisation of holographic optical traps for microbubbles,” Proc. SPIE 9126, 91263L (2014).
[Crossref]

Mendez, S.

J. Sigüenza, S. Mendez, and F. Nicoud, “How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics?,” Biomech. Model. Mechanobiol. [Epub ahead of print](2017).
[Crossref] [PubMed]

Meybohm, P.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Misawa, H.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

Moch, H.

D.R. Spahn, H. Moch, A. Hofmann, and J.P. Isbister, “Patient Blood Management: the pragmatic solution for the problems with blood transfusions,” Anesthesiology 109(6), 951–953 (2008).
[Crossref] [PubMed]

Monkos, K.

K. Monkos, “Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration,” Int. J. Biol. Macromolec. 18, 61–68 (1996).
[Crossref]

Moura, D.S.

D.S. Moura, D.C.N. Silva, A.J. Williams, M.A.C. Bezerra, A. Fontes, and R.E. de Araujo, “Automatic real time evaluation of red blood cell elasticity by optical tweezers,” Rev. Sci. Instrum. 86(5), 053702 (2015).
[Crossref]

Murphy, M.F.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Naglav, D.

A. Wrobeln, J. Laudien, C. Groß-Heitfeld, J. Linders, C. Mayer, B. Wilde, T. Knoll, D. Naglav, M. Kirsch, and K.B. Ferenz, “Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility,” Eur. J. Pharm. Biopharm. 115, 52–64 (2017).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref]

Nicoud, F.

J. Sigüenza, S. Mendez, and F. Nicoud, “How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics?,” Biomech. Model. Mechanobiol. [Epub ahead of print](2017).
[Crossref] [PubMed]

Nieminen, T.A.

T.A. Nieminen, V.L.Y. Loke, A.B. Stilgoe, G. Knöner, A.M. Brańczyk, N.R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[Crossref]

H. Rubinsztein-Dunlop, T.A. Nieminen, M.E.J. Friese, and N.R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30, 469–492 (1998).
[Crossref]

Nikitin, S.Y.

A.Y. Maklygin, A.V. Priezzhev, A.V. Karmenyan, S.Y. Nikitin, I.S. Obolenskii, A.E. Lugovtsov, and K. Li, “Measurement of interaction forces between red blood cells in aggregates by optical tweezers,” Quantum Electron. 42(6), 500–504 (2012).
[Crossref]

Nyström, T.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nyström, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182(19), 5551–5555 (2000).
[Crossref] [PubMed]

Obolenskii, I.S.

A.Y. Maklygin, A.V. Priezzhev, A.V. Karmenyan, S.Y. Nikitin, I.S. Obolenskii, A.E. Lugovtsov, and K. Li, “Measurement of interaction forces between red blood cells in aggregates by optical tweezers,” Quantum Electron. 42(6), 500–504 (2012).
[Crossref]

Ogoshi, S.

H.A. Sloviter, M. Petkovic, S. Ogoshi, and H. Yamada, “Dispersed fluorochemicals as substitutes for erythrocytes in intact animals,” J. Appl. Physiol. 27, 666–668 (1969).
[PubMed]

Ohler, N.

K. Cooper, N. Ohler, A. Gupta, and S. Beaudoin, “Analysis of contact interactions between a rough deformable colloid and a smooth substrate,” J. Colloid Interface Sci. 222, 63–74 (2000).
[Crossref] [PubMed]

Oleck, M.

T. Henkel-Hanke and M. Oleck, “Artificial oxygen carriers: a current review,” AANA J 75(3), 205–211 (2007).

Ostendorf, A.

J. Köhler, J. Friedrich, A. Ostendorf, and E. L. Gurevich, “Characterization of azimuthal and radial velocity fields induced by rotors in flows with a low Reynolds number,” Phys. Rev. E 93, 023108 (2016).
[Crossref] [PubMed]

R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22, 065016 (2012).
[Crossref]

Pape, A.

O. Habler, A. Pape, J. Meier, and B. Zwissler, “Artificial oxygen carriers as an alternative to red blood cell transfusion,” Anaesthesist 54(8), 741–754 (2005).
[Crossref] [PubMed]

Pavesio, C.E.

R. Agrawal, R. Bhatnagar, T. Smart, C. Richards, C.E. Pavesio, D.T. Shima, and P. Jones, “Assessment of red blood cell deformability by Optical tweezers in diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 56(7), 5183 (2015).

Pendry, K.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Petkovic, M.

H.A. Sloviter, M. Petkovic, S. Ogoshi, and H. Yamada, “Dispersed fluorochemicals as substitutes for erythrocytes in intact animals,” J. Appl. Physiol. 27, 666–668 (1969).
[PubMed]

Pollock, H.M.

C.S. Hodges, J.A.S. Cleaver, M. Ghadiri, R. Jones, and H.M. Pollock, “Forces between polystyrene particles in water using the AFM: Pull-off force vs particle size,” Langmuir 18(15), 5741–5748 (2002).
[Crossref]

Priezzhev, A.V.

K. Lee, M. Kinnunen, M.D. Khokhlova, E.V. Lyubin, A.V. Priezzhev, I. Meglinski, and A.A. Fedyanin, “Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions,” J. Biomed. Opt. 21(3), 035001 (2016).
[Crossref]

A.Y. Maklygin, A.V. Priezzhev, A.V. Karmenyan, S.Y. Nikitin, I.S. Obolenskii, A.E. Lugovtsov, and K. Li, “Measurement of interaction forces between red blood cells in aggregates by optical tweezers,” Quantum Electron. 42(6), 500–504 (2012).
[Crossref]

Qin, S.

F. Dawood, S. Qin, L. Li, E.Y. Lina, and J.T. Fourkas, “Simultaneous microsclae optical manipualtion, fabrication and immobilisation in aqueous media,” Chem. Sci. 3, 2449–2456 (2012).
[Crossref]

Quincey, P.

R. Tantra, J. Tompkins, and P. Quincey, “Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension,” Colloids Surf. B Biointerfaces 75, 275–281 (2010).
[Crossref]

Richards, C.

R. Agrawal, R. Bhatnagar, T. Smart, C. Richards, C.E. Pavesio, D.T. Shima, and P. Jones, “Assessment of red blood cell deformability by Optical tweezers in diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 56(7), 5183 (2015).

Rodrigo, P.J.

Roth, D.J.

P.E. Keipert, N.S. Faithfull, D.J. Roth, J.D. Bradley, S. Batra, P. Jochelson, and K.E. Flaim, “Supporting tissue oxygenation during acute surgical bleeding using a perfluorochemical-based oxygen carrier,” Adv. Exp. Med. Biol. 388, 603–609 (1996).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

T.A. Nieminen, V.L.Y. Loke, A.B. Stilgoe, G. Knöner, A.M. Brańczyk, N.R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[Crossref]

H. Rubinsztein-Dunlop, T.A. Nieminen, M.E.J. Friese, and N.R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30, 469–492 (1998).
[Crossref]

Sasaki, K.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

Schlüter, K.D.

A. Wrobeln, K.D. Schlüter, J. Linders, M. Zähres, C. Mayer, M. Kirsch, and K.B. Ferenz, “Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart,” Artif. Cells Nanomed. Biotechnol. 45(4), 723–730 (2017).
[Crossref] [PubMed]

Seifried, E.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Seoe, J.H.

N.T. Huang, H.l. Zhang, M.T. Chung, J.H. Seoe, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Shchukin, E.D.

E.D. Shchukin, E.A. Amelina, and V.V. Yaminsky, “Adhesion of particles in liquid media and stability of disperse systems,” Colloids Surf. 2(3), 221–242 (1981).
[Crossref]

Shi, X.

X. Shi and Y.P. Zhao, “Comparison of various adhesion contact theories and the influence of dimensionless load parameter,” J. Adhesion Sci. Technol. 18(1), 55–68 (2004).
[Crossref]

Shima, D.T.

R. Agrawal, R. Bhatnagar, T. Smart, C. Richards, C.E. Pavesio, D.T. Shima, and P. Jones, “Assessment of red blood cell deformability by Optical tweezers in diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 56(7), 5183 (2015).

Sigüenza, J.

J. Sigüenza, S. Mendez, and F. Nicoud, “How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics?,” Biomech. Model. Mechanobiol. [Epub ahead of print](2017).
[Crossref] [PubMed]

Silva, D.C.N.

D.S. Moura, D.C.N. Silva, A.J. Williams, M.A.C. Bezerra, A. Fontes, and R.E. de Araujo, “Automatic real time evaluation of red blood cell elasticity by optical tweezers,” Rev. Sci. Instrum. 86(5), 053702 (2015).
[Crossref]

Sloviter, H.A.

H.A. Sloviter, M. Petkovic, S. Ogoshi, and H. Yamada, “Dispersed fluorochemicals as substitutes for erythrocytes in intact animals,” J. Appl. Physiol. 27, 666–668 (1969).
[PubMed]

Smart, T.

R. Agrawal, R. Bhatnagar, T. Smart, C. Richards, C.E. Pavesio, D.T. Shima, and P. Jones, “Assessment of red blood cell deformability by Optical tweezers in diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 56(7), 5183 (2015).

Smirnoff, N.

G.R. Littlejohn, J.D. Gouveia, C. Edner, N. Smirnoff, and J. Love, “Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll,” New Phytol. 186, 1018–1025 (2010).
[Crossref] [PubMed]

Spahn, D.R.

D.R. Spahn and L.T. Goodnough, “Alternatives to blood transfusion,” Lancet 381(9880), 1855–1865 (2013).
[Crossref] [PubMed]

D.R. Spahn, H. Moch, A. Hofmann, and J.P. Isbister, “Patient Blood Management: the pragmatic solution for the problems with blood transfusions,” Anesthesiology 109(6), 951–953 (2008).
[Crossref] [PubMed]

Stilgoe, A.B.

T.A. Nieminen, V.L.Y. Loke, A.B. Stilgoe, G. Knöner, A.M. Brańczyk, N.R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[Crossref]

Stride, E.

C. Fury, C. Harfield, P.H. Jones, E. Stride, and G. Memoli, “Experimental characterisation of holographic optical traps for microbubbles,” Proc. SPIE 9126, 91263L (2014).
[Crossref]

Stride, E.P.J.

P.H. Jones, O.M. Maragó, and E.P.J. Stride, “Parametrization of trapping forces on microbubbles in scanning optical tweezers,” J. Opt. A: Pure Appl. Opt. 9, S278–S283 (2007).
[Crossref]

Sun, D.

X. Wang, S. Chen, M. Kong, Z. Wang, K.D. Costa, R.A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref] [PubMed]

Suslick, K.S.

K.S. Suslick, M.W. Grinstaff, K.J. Kolbeck, and M. Wong, “Characterization of sonochemically prepared proteinaceous microspheres,” Ultrason. Sonochem. 1(1), S65–S68 (1994).
[Crossref]

Svoboda, K.

K. Svoboda and S.M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref] [PubMed]

Swartzlander, G.A.

Tang, P.

S. Adi, H. Adi, P. Tang, D. Traini, H.K. Chan, and P.M. Young, “Micro-particle corrugation, adhesion and inhalation aerosol efficiency,” Eur. J. Pharm. Sci. 35(1–2), 12–18 (2008).
[Crossref] [PubMed]

Tantra, R.

R. Tantra, J. Tompkins, and P. Quincey, “Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension,” Colloids Surf. B Biointerfaces 75, 275–281 (2010).
[Crossref]

Thomaz, A.

H.P. Fernandes, A. Fontes, A. Thomaz, V. Castro, C.L. Cesar, and M.L. Barjas-Castro, “Measuring red blood cell aggregation forces using double optical tweezers,” Scand. J. Clin. Lab. Invest. 73(3), 262–264 (2013).
[Crossref] [PubMed]

Tkaczyk, S.

R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173(4409), 821–822 (1954).
[Crossref] [PubMed]

Tompkins, J.

R. Tantra, J. Tompkins, and P. Quincey, “Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension,” Colloids Surf. B Biointerfaces 75, 275–281 (2010).
[Crossref]

Trabucchi, G

C. Azzolini, F. Docchio, R. Brancato, and G Trabucchi, “Interactions between light and vitreous fluid substitutes,” Arch. Ophthalmol. 110(10), 1468–1471 (1992).
[Crossref] [PubMed]

Traini, D.

S. Adi, H. Adi, P. Tang, D. Traini, H.K. Chan, and P.M. Young, “Micro-particle corrugation, adhesion and inhalation aerosol efficiency,” Eur. J. Pharm. Sci. 35(1–2), 12–18 (2008).
[Crossref] [PubMed]

van Kraaij, M.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

van Pampus, E.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Waack, I.N.

K.B. Ferenz, I.N. Waack, J. Laudien, C. Mayer, M. Broecker-Preuss, H.d. Groot, and M. Kirsch, “Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats,” Results Pharma Sci. 4, 8–18 (2014).
[Crossref] [PubMed]

Wang, H.T.

Wang, X.

X. Wang, S. Chen, M. Kong, Z. Wang, K.D. Costa, R.A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref] [PubMed]

Wang, Z.

X. Wang, S. Chen, M. Kong, Z. Wang, K.D. Costa, R.A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref] [PubMed]

Weigel, T.

R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22, 065016 (2012).
[Crossref]

Weisenhorn, A.L.

A.L. Weisenhorn, P. Maivald, H.J. Butt, and P. K. Hansma, “Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope,” Phys. Rev. B 45(19), 11226 (1992).
[Crossref]

Wickline, S.A.

J.N. Marsh, C.S. Hall, S.A. Wickline, and G.M. Lanza, “Temperature dependence of acoustic impedance for specific fluorocarbon liquids,” J. Acoust. Soc. Am. 112(6), 2858–2862 (2002).
[Crossref]

Wikman, A.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Wilde, B.

A. Wrobeln, J. Laudien, C. Groß-Heitfeld, J. Linders, C. Mayer, B. Wilde, T. Knoll, D. Naglav, M. Kirsch, and K.B. Ferenz, “Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility,” Eur. J. Pharm. Biopharm. 115, 52–64 (2017).
[Crossref] [PubMed]

Williams, A.J.

D.S. Moura, D.C.N. Silva, A.J. Williams, M.A.C. Bezerra, A. Fontes, and R.E. de Araujo, “Automatic real time evaluation of red blood cell elasticity by optical tweezers,” Rev. Sci. Instrum. 86(5), 053702 (2015).
[Crossref]

Wong, M.

K.S. Suslick, M.W. Grinstaff, K.J. Kolbeck, and M. Wong, “Characterization of sonochemically prepared proteinaceous microspheres,” Ultrason. Sonochem. 1(1), S65–S68 (1994).
[Crossref]

Wrobeln, A.

A. Wrobeln, K.D. Schlüter, J. Linders, M. Zähres, C. Mayer, M. Kirsch, and K.B. Ferenz, “Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart,” Artif. Cells Nanomed. Biotechnol. 45(4), 723–730 (2017).
[Crossref] [PubMed]

A. Wrobeln, J. Laudien, C. Groß-Heitfeld, J. Linders, C. Mayer, B. Wilde, T. Knoll, D. Naglav, M. Kirsch, and K.B. Ferenz, “Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility,” Eur. J. Pharm. Biopharm. 115, 52–64 (2017).
[Crossref] [PubMed]

Yamada, H.

H.A. Sloviter, M. Petkovic, S. Ogoshi, and H. Yamada, “Dispersed fluorochemicals as substitutes for erythrocytes in intact animals,” J. Appl. Physiol. 27, 666–668 (1969).
[PubMed]

Yaminsky, V.V.

E.D. Shchukin, E.A. Amelina, and V.V. Yaminsky, “Adhesion of particles in liquid media and stability of disperse systems,” Colloids Surf. 2(3), 221–242 (1981).
[Crossref]

Yokoyama, K.

K. Yokoyama, “Effect of perfluorochemical (PFC) emulsion on acute carbon monoxide poisoning in rats,” Jpn. J. Surg. 8, 342–352 (1978).
[Crossref] [PubMed]

Young, P.M.

S. Adi, H. Adi, P. Tang, D. Traini, H.K. Chan, and P.M. Young, “Micro-particle corrugation, adhesion and inhalation aerosol efficiency,” Eur. J. Pharm. Sci. 35(1–2), 12–18 (2008).
[Crossref] [PubMed]

Zacharowski, K.

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Zähres, M.

A. Wrobeln, K.D. Schlüter, J. Linders, M. Zähres, C. Mayer, M. Kirsch, and K.B. Ferenz, “Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart,” Artif. Cells Nanomed. Biotechnol. 45(4), 723–730 (2017).
[Crossref] [PubMed]

Zhang, H.

H. Zhang and K.K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref] [PubMed]

Zhang, H.l.

N.T. Huang, H.l. Zhang, M.T. Chung, J.H. Seoe, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Zhao, Y.

R.M. Lorenz, J.S. Edgar, G.D. M. Jeffries, Y. Zhao, D. McGloin, and D.T. Chiu, “Vortex-trap-induced fusion of femtoliter-volume aqueous droplets,” Anal. Chem. 1(79), 224–228 (2007).
[Crossref]

Zhao, Y.P.

X. Shi and Y.P. Zhao, “Comparison of various adhesion contact theories and the influence of dimensionless load parameter,” J. Adhesion Sci. Technol. 18(1), 55–68 (2004).
[Crossref]

Zwissler, B.

O. Habler, A. Pape, J. Meier, and B. Zwissler, “Artificial oxygen carriers as an alternative to red blood cell transfusion,” Anaesthesist 54(8), 741–754 (2005).
[Crossref] [PubMed]

AANA J (1)

T. Henkel-Hanke and M. Oleck, “Artificial oxygen carriers: a current review,” AANA J 75(3), 205–211 (2007).

Adv. Exp. Med. Biol. (1)

P.E. Keipert, N.S. Faithfull, D.J. Roth, J.D. Bradley, S. Batra, P. Jochelson, and K.E. Flaim, “Supporting tissue oxygenation during acute surgical bleeding using a perfluorochemical-based oxygen carrier,” Adv. Exp. Med. Biol. 388, 603–609 (1996).
[Crossref] [PubMed]

Adv. Quantum Chem. (1)

H. Rubinsztein-Dunlop, T.A. Nieminen, M.E.J. Friese, and N.R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30, 469–492 (1998).
[Crossref]

Anaesthesist (1)

O. Habler, A. Pape, J. Meier, and B. Zwissler, “Artificial oxygen carriers as an alternative to red blood cell transfusion,” Anaesthesist 54(8), 741–754 (2005).
[Crossref] [PubMed]

Anal. Chem. (1)

R.M. Lorenz, J.S. Edgar, G.D. M. Jeffries, Y. Zhao, D. McGloin, and D.T. Chiu, “Vortex-trap-induced fusion of femtoliter-volume aqueous droplets,” Anal. Chem. 1(79), 224–228 (2007).
[Crossref]

Anesthesiology (1)

D.R. Spahn, H. Moch, A. Hofmann, and J.P. Isbister, “Patient Blood Management: the pragmatic solution for the problems with blood transfusions,” Anesthesiology 109(6), 951–953 (2008).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S.M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Sasaki1992, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60(7), 807–809 (1992).
[Crossref]

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

Arch. Ophthalmol. (1)

C. Azzolini, F. Docchio, R. Brancato, and G Trabucchi, “Interactions between light and vitreous fluid substitutes,” Arch. Ophthalmol. 110(10), 1468–1471 (1992).
[Crossref] [PubMed]

Artif. Cells Nanomed. Biotechnol. (1)

A. Wrobeln, K.D. Schlüter, J. Linders, M. Zähres, C. Mayer, M. Kirsch, and K.B. Ferenz, “Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart,” Artif. Cells Nanomed. Biotechnol. 45(4), 723–730 (2017).
[Crossref] [PubMed]

Chem. Sci. (1)

F. Dawood, S. Qin, L. Li, E.Y. Lina, and J.T. Fourkas, “Simultaneous microsclae optical manipualtion, fabrication and immobilisation in aqueous media,” Chem. Sci. 3, 2449–2456 (2012).
[Crossref]

Colloids Surf. (1)

E.D. Shchukin, E.A. Amelina, and V.V. Yaminsky, “Adhesion of particles in liquid media and stability of disperse systems,” Colloids Surf. 2(3), 221–242 (1981).
[Crossref]

Colloids Surf. B Biointerfaces (1)

R. Tantra, J. Tompkins, and P. Quincey, “Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension,” Colloids Surf. B Biointerfaces 75, 275–281 (2010).
[Crossref]

Eur. J. Pharm. Biopharm. (1)

A. Wrobeln, J. Laudien, C. Groß-Heitfeld, J. Linders, C. Mayer, B. Wilde, T. Knoll, D. Naglav, M. Kirsch, and K.B. Ferenz, “Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility,” Eur. J. Pharm. Biopharm. 115, 52–64 (2017).
[Crossref] [PubMed]

Eur. J. Pharm. Sci. (1)

S. Adi, H. Adi, P. Tang, D. Traini, H.K. Chan, and P.M. Young, “Micro-particle corrugation, adhesion and inhalation aerosol efficiency,” Eur. J. Pharm. Sci. 35(1–2), 12–18 (2008).
[Crossref] [PubMed]

Hämotherapie (1)

K.B. Ferenz, “Künstliche Sauerstoffträger – Wie lange müssen wir noch warten?” Hämotherapie 25, 27–36 (2015).

Int. J. Biol. Macromolec. (1)

K. Monkos, “Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration,” Int. J. Biol. Macromolec. 18, 61–68 (1996).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

R. Agrawal, R. Bhatnagar, T. Smart, C. Richards, C.E. Pavesio, D.T. Shima, and P. Jones, “Assessment of red blood cell deformability by Optical tweezers in diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 56(7), 5183 (2015).

J. Acoust. Soc. Am. (1)

J.N. Marsh, C.S. Hall, S.A. Wickline, and G.M. Lanza, “Temperature dependence of acoustic impedance for specific fluorocarbon liquids,” J. Acoust. Soc. Am. 112(6), 2858–2862 (2002).
[Crossref]

J. Adhesion Sci. Technol. (1)

X. Shi and Y.P. Zhao, “Comparison of various adhesion contact theories and the influence of dimensionless load parameter,” J. Adhesion Sci. Technol. 18(1), 55–68 (2004).
[Crossref]

J. Appl. Physiol. (1)

H.A. Sloviter, M. Petkovic, S. Ogoshi, and H. Yamada, “Dispersed fluorochemicals as substitutes for erythrocytes in intact animals,” J. Appl. Physiol. 27, 666–668 (1969).
[PubMed]

J. Bacteriol. (1)

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nyström, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182(19), 5551–5555 (2000).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

K. Lee, M. Kinnunen, M.D. Khokhlova, E.V. Lyubin, A.V. Priezzhev, I. Meglinski, and A.A. Fedyanin, “Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions,” J. Biomed. Opt. 21(3), 035001 (2016).
[Crossref]

J. Colloid Interface Sci. (2)

K.L. Johnson and J.A. Greenwood, “An adhesion map for the contact of elastic spheres,” J. Colloid Interface Sci. 192(2), 326–333 (1997).
[Crossref] [PubMed]

K. Cooper, N. Ohler, A. Gupta, and S. Beaudoin, “Analysis of contact interactions between a rough deformable colloid and a smooth substrate,” J. Colloid Interface Sci. 222, 63–74 (2000).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22, 065016 (2012).
[Crossref]

J. Nanosci. Nanotechnol. (1)

J. Laudien, C. Groß-Heitfeld, C. Mayer, H. de Groot, M. Kirsch, and K. Ferenz, “Perfluorodecalin-filled Poly(n-butyl-cyanoacrylate) nanocapsules as potential artificial oxygen carriers: Preclinical safety and biocompatibility,” J. Nanosci. Nanotechnol. 15(8), 5637–5648 (2015).
[Crossref] [PubMed]

J. Opt. A (1)

T.A. Nieminen, V.L.Y. Loke, A.B. Stilgoe, G. Knöner, A.M. Brańczyk, N.R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

P.H. Jones, O.M. Maragó, and E.P.J. Stride, “Parametrization of trapping forces on microbubbles in scanning optical tweezers,” J. Opt. A: Pure Appl. Opt. 9, S278–S283 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. R. Soc. Interface (1)

H. Zhang and K.K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref] [PubMed]

Jpn. J. Surg. (1)

K. Yokoyama, “Effect of perfluorochemical (PFC) emulsion on acute carbon monoxide poisoning in rats,” Jpn. J. Surg. 8, 342–352 (1978).
[Crossref] [PubMed]

Lab Chip (2)

X. Wang, S. Chen, M. Kong, Z. Wang, K.D. Costa, R.A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11(21), 3656–3662 (2011).
[Crossref] [PubMed]

N.T. Huang, H.l. Zhang, M.T. Chung, J.H. Seoe, and K. Kurabayashi, “Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection,” Lab Chip 14(7), 1230–1245 (2014).
[Crossref] [PubMed]

Lancet (1)

D.R. Spahn and L.T. Goodnough, “Alternatives to blood transfusion,” Lancet 381(9880), 1855–1865 (2013).
[Crossref] [PubMed]

Langmuir (1)

C.S. Hodges, J.A.S. Cleaver, M. Ghadiri, R. Jones, and H.M. Pollock, “Forces between polystyrene particles in water using the AFM: Pull-off force vs particle size,” Langmuir 18(15), 5741–5748 (2002).
[Crossref]

Nature (1)

R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173(4409), 821–822 (1954).
[Crossref] [PubMed]

New Phytol. (1)

G.R. Littlejohn, J.D. Gouveia, C. Edner, N. Smirnoff, and J. Love, “Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll,” New Phytol. 186, 1018–1025 (2010).
[Crossref] [PubMed]

Opt. Comm. (1)

J.E. Curtis, B.A. Koss, and D.G. Grier, “Dynamic holographic optical tweezers,” Opt. Comm. 207(1–6), 169–175 (2002).
[Crossref]

Opt. Express (2)

Opt. Letters (1)

A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Letters 11(5), 288–290 (1986).
[Crossref]

Phys. Rev. B (1)

A.L. Weisenhorn, P. Maivald, H.J. Butt, and P. K. Hansma, “Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope,” Phys. Rev. B 45(19), 11226 (1992).
[Crossref]

Phys. Rev. E (1)

J. Köhler, J. Friedrich, A. Ostendorf, and E. L. Gurevich, “Characterization of azimuthal and radial velocity fields induced by rotors in flows with a low Reynolds number,” Phys. Rev. E 93, 023108 (2016).
[Crossref] [PubMed]

Proc. SPIE (1)

C. Fury, C. Harfield, P.H. Jones, E. Stride, and G. Memoli, “Experimental characterisation of holographic optical traps for microbubbles,” Proc. SPIE 9126, 91263L (2014).
[Crossref]

Quantum Electron. (1)

A.Y. Maklygin, A.V. Priezzhev, A.V. Karmenyan, S.Y. Nikitin, I.S. Obolenskii, A.E. Lugovtsov, and K. Li, “Measurement of interaction forces between red blood cells in aggregates by optical tweezers,” Quantum Electron. 42(6), 500–504 (2012).
[Crossref]

Results Pharma Sci. (1)

K.B. Ferenz, I.N. Waack, J. Laudien, C. Mayer, M. Broecker-Preuss, H.d. Groot, and M. Kirsch, “Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats,” Results Pharma Sci. 4, 8–18 (2014).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref]

D.S. Moura, D.C.N. Silva, A.J. Williams, M.A.C. Bezerra, A. Fontes, and R.E. de Araujo, “Automatic real time evaluation of red blood cell elasticity by optical tweezers,” Rev. Sci. Instrum. 86(5), 053702 (2015).
[Crossref]

Sao Paulo Med. J. (1)

F.T. Barbosa, “Artificial oxygen carriers as an alternative to red cells in clinical practice,” Sao Paulo Med. J. 127(2), 97–100 (2009).
[Crossref] [PubMed]

Scand. J. Clin. Lab. Invest. (1)

H.P. Fernandes, A. Fontes, A. Thomaz, V. Castro, C.L. Cesar, and M.L. Barjas-Castro, “Measuring red blood cell aggregation forces using double optical tweezers,” Scand. J. Clin. Lab. Invest. 73(3), 262–264 (2013).
[Crossref] [PubMed]

Surf. Sci. Rep. (1)

B. Cappella and G. Dietler, “Force-distance curves by atomic force microscopy,” Surf. Sci. Rep. 34(1), 1–104 (1991).
[Crossref]

Ultrason. Sonochem. (1)

K.S. Suslick, M.W. Grinstaff, K.J. Kolbeck, and M. Wong, “Characterization of sonochemically prepared proteinaceous microspheres,” Ultrason. Sonochem. 1(1), S65–S68 (1994).
[Crossref]

Vox Sang. (1)

M.T. Bruun, K. Pendry, J. Georgsen, P. Manzini, M. Lorenzi, A. Wikman, D. Borg-Aquilina, E. van Pampus, M. van Kraaij, D. Fischer, P. Meybohm, K. Zacharowski, C. Geisen, E. Seifried, G.M. Liumbruno, G. Folléa, J. Grant-Casey, P. Babra, and M.F. Murphy, “Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals,” Vox Sang. 111(4), 391–398 (2016).
[Crossref] [PubMed]

Other (2)

J. Sigüenza, S. Mendez, and F. Nicoud, “How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics?,” Biomech. Model. Mechanobiol. [Epub ahead of print](2017).
[Crossref] [PubMed]

Supplemental information: https://doi.org/10.6084/m9.figshare.5715871 .

Supplementary Material (1)

NameDescription
» Code 1       Opening of a vortex beam to join non-transparent particles by optical tweezer

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Chemical structure of PFD (C10F18).
Fig. 2
Fig. 2 The used hologram on the SLM is a combination of the phase and amplitude patterns, which leads to a ring shaped intensity profile and enables trapping of the PBCs.
Fig. 3
Fig. 3 A combination of the vortex phase pattern and a changing amplitude leads to presented intensity distributions and opening of the vortex beam. The topological charge of the vortex is = 19 and the diameter is dv = 5 µm, respectively. The MATLAB code is available in the supplementary information, see Code 1 [40].
Fig. 4
Fig. 4 (a) The critical velocity vc is determined by moving a capsule on a circular path while gradually increasing the velocity. (b)–(d) A capsule with a diameter of 5.2 µm is moved with a velocity of 3.5 µm/s.
Fig. 5
Fig. 5 (a) The optimal ratio of the vortex-to-capsule diameter where the critical velocity can be maximized is dv/dc = 1. (b) Using this value, a linear correlation between velocity and laser power can be determined. (c) The radial optical force Frad can be calculated by Equation 2.
Fig. 6
Fig. 6 The acting forces on a capsule must be balanced for stably trapping in axial direction. The equilibrium position is slightly above the imaging plane (I). The laser power is reduced until the capsule falls out of the trap onto the cover glass (II).
Fig. 7
Fig. 7 (a) The minimal laser power to stably trap different capsules augments with increasing diameter. The black lines correspond to fits by Equation 3 ( P min d c 3 ) . (b) The axial force Fax can be calculated by Equation 3 (black lines are linear fits through the origin).
Fig. 8
Fig. 8 Two vortex beams are generated to simultaneously trap two PBCs. By moving and opening the vortices, the capsules were joined.
Fig. 9
Fig. 9 A number of 168 capsules were optically joined and the presented probability of bonding was determined.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φ ( ρ ) = θ mod 2 π ,
F rad = 3 π η m ν c d c c F ,
F ax = π g d c 3 6 ( ρ c ρ m ) ,

Metrics