Abstract

To evaluate the contribution of fixational eye movements to dynamic aberration, 50 healthy eyes were examined with an original custom-built Shack-Hartmann aberrometer, running at a temporal frequency of 236Hz, with 22 lenslets across a 5mm pupil, synchronized with a 236Hz pupil tracker. A comparison of the dynamic behavior of the first 21 Zernike modes (starting from defocus) with and without digital pupil stabilization, on a 3.4s sequence between blinks, showed that the contribution of fixational eye movements to dynamic aberration is negligible. Therefore we highlighted the fact that a pupil tracker coupled to an Adaptive Optics Ophthalmoscope is not essential to achieve diffraction-limited resolution.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget

Jessica Jarosz, Pedro Mecê, Jean-Marc Conan, Cyril Petit, Michel Paques, and Serge Meimon
Biomed. Opt. Express 8(4) 2088-2105 (2017)

Dynamics of the eye’s wave aberration

Heidi Hofer, Pablo Artal, Ben Singer, Juan Luis Aragón, and David R. Williams
J. Opt. Soc. Am. A 18(3) 497-506 (2001)

Pupil motion analysis and tracking in ophthalmic systems equipped with wavefront sensing technology

Serge Meimon, Jessica Jarosz, Cyril Petit, Elena Gofas Salas, Kate Grieve, Jean-Marc Conan, Bruno Emica, Michel Paques, and Kristina Irsch
Appl. Opt. 56(9) D66-D71 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optometry and Vision Science: Official Publication of the American Academy of Optometry 87, 930–941 (2010).
    [Crossref]
  2. A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annual review of vision science 1, 19–50 (2015).
    [Crossref]
  3. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [Crossref]
  4. H. Hofer, P. Artal, B. Singer, J. Luis Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [Crossref]
  5. J. Jarosz, P. Mecê, J. M. Conan, C. Petit, M. Paques, and S. Meimon, “High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget,” Biomed. Opt. Express 8, 2088–2105 (2017).
    [Crossref] [PubMed]
  6. J. Arines, E. Pailos, P. Prado, and S. Bará, “The contribution of the fixational eye movements to the variability of the measured ocular aberration,” Ophthalmic and Physiological Optics,  29(3):281–287 (2009).
    [Crossref] [PubMed]
  7. B. Sahin, B. Lamory, X. Levecq, F. Harms, and C. Dainty, “Adaptive optics with pupil tracking for high resolution retinal imaging,” Biomed. Opt. Express 3, 225–239 (2012).
    [Crossref] [PubMed]
  8. K. Y. Li and G. Yoon, “Changes in aberrations and retinal image quality due to tear film dynamics,” Opt. Express 14, 12552–12559 (2006).
    [Crossref] [PubMed]
  9. R. Montés-Micó, J. L. Alió, and W. N. Charman, “Dynamic changes in the tear film in dry eyes,” Investigative Ophthalmology Visual Science,  46(5), 1615 (2005).
    [Crossref] [PubMed]
  10. S. Gruppetta, F. Lacombe, and P. Puget, “Study of the dynamic aberrations of the human tear film,” Opt. Express 13, 7631–7636 (2005).
    [Crossref] [PubMed]
  11. C. Leahy, C. Leroux, C. Dainty, and L. Diaz-Santana, “Temporal dynamics and statistical characteristics of the microfluctuations of accommodation: Dependence on the mean accommodative effort,” Opt. Express 18, 2668–2681 (2010).
    [Crossref] [PubMed]
  12. W. N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic and Physiological Optics 8(2):153–164 (1988).
    [Crossref] [PubMed]
  13. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nature Reviews Neuroscience,  5(3), 229–240 (2004).
    [Crossref] [PubMed]
  14. I. P. V. Troxler, “Über das Verschwinden gegebener Gegenstände innerhalb unseres Gesichtskreises [On the disappearance of given objects from our visual field],” Ophthalmol. Bibl. 2(2), 1–53 (1804).
  15. S. Meimon, J. Jarosz, C. Petit, E. Gofas-Salas, K. Grieve, J. M. Conan, B. Emica, M. Paques, and K. Irsch, “Pupil motion analysis and tracking in ophthalmic systems equipped with wavefront sensing technology,” Appl. Opt. 56, D66–D71 (2017).
    [Crossref] [PubMed]
  16. J. van de Kraats, T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision research,  36(15), 2229–2247 (1996).
    [Crossref] [PubMed]
  17. D. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum Press, 1980).
    [Crossref]
  18. D. Fanning, “Fit Ellipse,” http://www.idlcoyote.com/programs/fit_ellipse.pro/ (2002).
  19. S. T. Moore, T. Haslwanter, I. S. Curthoys, and S. T. Smith, “A geometric basis for measurement of three-dimensional eye position using image processing,” Vision research 36, 445–459 (1996).
    [Crossref] [PubMed]
  20. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [Crossref]
  21. C. Kulcśar, H. F. Raynaud, and A. Garcia-Rissmann, “Eye-pupil displacement and prediction: effects on residual wavefront in adaptive optics retinal imaging,” Biomed. Opt. Express 7, 1051–1073 (2016).
    [Crossref]
  22. J.R. Liang, S. Moshel, A. Z. Zivotofsky, A. Caspi, R. Engbert, R. Kliegl, and S. Havlin, “Scaling of horizontal and vertical fixational eye movements,” Phys. Rev. E 71, 031909 (2005).
    [Crossref]
  23. P. C. L. Stephenson, “Recurrence relations for the Cartesian derivatives of the Zernike polynomials,” J. Opt. Soc. Am. A 31, 708–715 (2014).
    [Crossref]
  24. T. O. Salmon and C. van de Pol, “Normal-Eye Zernike Coefficients and Root-Mean-Square Wavefront Errors,” Journal of Cataract Refractive Surgery 32(12), 2064–2074 (2006).
    [Crossref] [PubMed]
  25. J. Tabernero and P. Artal, “Lens Oscillations in the Human Eye. Implications for Post-Saccadic Suppression of Vision,” PLoS ONE 9(4), e95764 (2014).
    [Crossref] [PubMed]
  26. A. Guirao, I. Cox, and D. R. Williams, “Effect of rotation and translation on the expected benefit of ideal contact lenses,” in Vision Science and its Applications, OSA Technical Digest (Optical Society of America, 2000), paper PD2.
  27. Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5, 3174–3191 (2014).
    [Crossref] [PubMed]
  28. A. Castro, L. Sawides, X. Qi, and S. A. Burns, “Adaptive optics retinal imaging with automatic detection of the pupil and its boundary in real time using Shack-Hartmann images,” Appl. Opt. 56, 6748–6754 (2017).
    [Crossref] [PubMed]

2017 (3)

2016 (1)

2015 (1)

A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annual review of vision science 1, 19–50 (2015).
[Crossref]

2014 (3)

2012 (1)

2010 (2)

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optometry and Vision Science: Official Publication of the American Academy of Optometry 87, 930–941 (2010).
[Crossref]

C. Leahy, C. Leroux, C. Dainty, and L. Diaz-Santana, “Temporal dynamics and statistical characteristics of the microfluctuations of accommodation: Dependence on the mean accommodative effort,” Opt. Express 18, 2668–2681 (2010).
[Crossref] [PubMed]

2009 (1)

J. Arines, E. Pailos, P. Prado, and S. Bará, “The contribution of the fixational eye movements to the variability of the measured ocular aberration,” Ophthalmic and Physiological Optics,  29(3):281–287 (2009).
[Crossref] [PubMed]

2006 (2)

K. Y. Li and G. Yoon, “Changes in aberrations and retinal image quality due to tear film dynamics,” Opt. Express 14, 12552–12559 (2006).
[Crossref] [PubMed]

T. O. Salmon and C. van de Pol, “Normal-Eye Zernike Coefficients and Root-Mean-Square Wavefront Errors,” Journal of Cataract Refractive Surgery 32(12), 2064–2074 (2006).
[Crossref] [PubMed]

2005 (3)

J.R. Liang, S. Moshel, A. Z. Zivotofsky, A. Caspi, R. Engbert, R. Kliegl, and S. Havlin, “Scaling of horizontal and vertical fixational eye movements,” Phys. Rev. E 71, 031909 (2005).
[Crossref]

R. Montés-Micó, J. L. Alió, and W. N. Charman, “Dynamic changes in the tear film in dry eyes,” Investigative Ophthalmology Visual Science,  46(5), 1615 (2005).
[Crossref] [PubMed]

S. Gruppetta, F. Lacombe, and P. Puget, “Study of the dynamic aberrations of the human tear film,” Opt. Express 13, 7631–7636 (2005).
[Crossref] [PubMed]

2004 (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nature Reviews Neuroscience,  5(3), 229–240 (2004).
[Crossref] [PubMed]

2001 (1)

1997 (1)

1996 (2)

J. van de Kraats, T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision research,  36(15), 2229–2247 (1996).
[Crossref] [PubMed]

S. T. Moore, T. Haslwanter, I. S. Curthoys, and S. T. Smith, “A geometric basis for measurement of three-dimensional eye position using image processing,” Vision research 36, 445–459 (1996).
[Crossref] [PubMed]

1988 (1)

W. N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic and Physiological Optics 8(2):153–164 (1988).
[Crossref] [PubMed]

1976 (1)

1804 (1)

I. P. V. Troxler, “Über das Verschwinden gegebener Gegenstände innerhalb unseres Gesichtskreises [On the disappearance of given objects from our visual field],” Ophthalmol. Bibl. 2(2), 1–53 (1804).

Alió, J. L.

R. Montés-Micó, J. L. Alió, and W. N. Charman, “Dynamic changes in the tear film in dry eyes,” Investigative Ophthalmology Visual Science,  46(5), 1615 (2005).
[Crossref] [PubMed]

Arines, J.

J. Arines, E. Pailos, P. Prado, and S. Bará, “The contribution of the fixational eye movements to the variability of the measured ocular aberration,” Ophthalmic and Physiological Optics,  29(3):281–287 (2009).
[Crossref] [PubMed]

Artal, P.

J. Tabernero and P. Artal, “Lens Oscillations in the Human Eye. Implications for Post-Saccadic Suppression of Vision,” PLoS ONE 9(4), e95764 (2014).
[Crossref] [PubMed]

H. Hofer, P. Artal, B. Singer, J. Luis Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[Crossref]

Bará, S.

J. Arines, E. Pailos, P. Prado, and S. Bará, “The contribution of the fixational eye movements to the variability of the measured ocular aberration,” Ophthalmic and Physiological Optics,  29(3):281–287 (2009).
[Crossref] [PubMed]

Berendschot, T.

J. van de Kraats, T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision research,  36(15), 2229–2247 (1996).
[Crossref] [PubMed]

Burns, S. A.

Carroll, J.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optometry and Vision Science: Official Publication of the American Academy of Optometry 87, 930–941 (2010).
[Crossref]

Caspi, A.

J.R. Liang, S. Moshel, A. Z. Zivotofsky, A. Caspi, R. Engbert, R. Kliegl, and S. Havlin, “Scaling of horizontal and vertical fixational eye movements,” Phys. Rev. E 71, 031909 (2005).
[Crossref]

Castro, A.

Charman, W. N.

R. Montés-Micó, J. L. Alió, and W. N. Charman, “Dynamic changes in the tear film in dry eyes,” Investigative Ophthalmology Visual Science,  46(5), 1615 (2005).
[Crossref] [PubMed]

W. N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic and Physiological Optics 8(2):153–164 (1988).
[Crossref] [PubMed]

Conan, J. M.

Cox, I.

A. Guirao, I. Cox, and D. R. Williams, “Effect of rotation and translation on the expected benefit of ideal contact lenses,” in Vision Science and its Applications, OSA Technical Digest (Optical Society of America, 2000), paper PD2.

Curthoys, I. S.

S. T. Moore, T. Haslwanter, I. S. Curthoys, and S. T. Smith, “A geometric basis for measurement of three-dimensional eye position using image processing,” Vision research 36, 445–459 (1996).
[Crossref] [PubMed]

Dainty, C.

Diaz-Santana, L.

Dubis, A. M.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optometry and Vision Science: Official Publication of the American Academy of Optometry 87, 930–941 (2010).
[Crossref]

Duncan, J. L.

A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annual review of vision science 1, 19–50 (2015).
[Crossref]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optometry and Vision Science: Official Publication of the American Academy of Optometry 87, 930–941 (2010).
[Crossref]

Emica, B.

Engbert, R.

J.R. Liang, S. Moshel, A. Z. Zivotofsky, A. Caspi, R. Engbert, R. Kliegl, and S. Havlin, “Scaling of horizontal and vertical fixational eye movements,” Phys. Rev. E 71, 031909 (2005).
[Crossref]

Garcia-Rissmann, A.

Godara, P.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optometry and Vision Science: Official Publication of the American Academy of Optometry 87, 930–941 (2010).
[Crossref]

Gofas-Salas, E.

Grieve, K.

Gruppetta, S.

Guirao, A.

A. Guirao, I. Cox, and D. R. Williams, “Effect of rotation and translation on the expected benefit of ideal contact lenses,” in Vision Science and its Applications, OSA Technical Digest (Optical Society of America, 2000), paper PD2.

Harms, F.

Haslwanter, T.

S. T. Moore, T. Haslwanter, I. S. Curthoys, and S. T. Smith, “A geometric basis for measurement of three-dimensional eye position using image processing,” Vision research 36, 445–459 (1996).
[Crossref] [PubMed]

Havlin, S.

J.R. Liang, S. Moshel, A. Z. Zivotofsky, A. Caspi, R. Engbert, R. Kliegl, and S. Havlin, “Scaling of horizontal and vertical fixational eye movements,” Phys. Rev. E 71, 031909 (2005).
[Crossref]

Heron, G.

W. N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic and Physiological Optics 8(2):153–164 (1988).
[Crossref] [PubMed]

Hofer, H.

Hubel, D. H.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nature Reviews Neuroscience,  5(3), 229–240 (2004).
[Crossref] [PubMed]

Irsch, K.

Jarosz, J.

Kliegl, R.

J.R. Liang, S. Moshel, A. Z. Zivotofsky, A. Caspi, R. Engbert, R. Kliegl, and S. Havlin, “Scaling of horizontal and vertical fixational eye movements,” Phys. Rev. E 71, 031909 (2005).
[Crossref]

Kulcsar, C.

Lacombe, F.

Lamory, B.

Leahy, C.

Leroux, C.

Levecq, X.

Li, K. Y.

Liang, J.

Liang, J.R.

J.R. Liang, S. Moshel, A. Z. Zivotofsky, A. Caspi, R. Engbert, R. Kliegl, and S. Havlin, “Scaling of horizontal and vertical fixational eye movements,” Phys. Rev. E 71, 031909 (2005).
[Crossref]

Luis Aragón, J.

Macknik, S. L.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nature Reviews Neuroscience,  5(3), 229–240 (2004).
[Crossref] [PubMed]

Martinez-Conde, S.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nature Reviews Neuroscience,  5(3), 229–240 (2004).
[Crossref] [PubMed]

Mecê, P.

Meimon, S.

Miller, D. T.

Montés-Micó, R.

R. Montés-Micó, J. L. Alió, and W. N. Charman, “Dynamic changes in the tear film in dry eyes,” Investigative Ophthalmology Visual Science,  46(5), 1615 (2005).
[Crossref] [PubMed]

Moore, S. T.

S. T. Moore, T. Haslwanter, I. S. Curthoys, and S. T. Smith, “A geometric basis for measurement of three-dimensional eye position using image processing,” Vision research 36, 445–459 (1996).
[Crossref] [PubMed]

Moshel, S.

J.R. Liang, S. Moshel, A. Z. Zivotofsky, A. Caspi, R. Engbert, R. Kliegl, and S. Havlin, “Scaling of horizontal and vertical fixational eye movements,” Phys. Rev. E 71, 031909 (2005).
[Crossref]

Noll, R. J.

Nozato, K.

Pailos, E.

J. Arines, E. Pailos, P. Prado, and S. Bará, “The contribution of the fixational eye movements to the variability of the measured ocular aberration,” Ophthalmic and Physiological Optics,  29(3):281–287 (2009).
[Crossref] [PubMed]

Paques, M.

Petit, C.

Prado, P.

J. Arines, E. Pailos, P. Prado, and S. Bará, “The contribution of the fixational eye movements to the variability of the measured ocular aberration,” Ophthalmic and Physiological Optics,  29(3):281–287 (2009).
[Crossref] [PubMed]

Puget, P.

Qi, X.

Raynaud, H. F.

Roorda, A.

A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annual review of vision science 1, 19–50 (2015).
[Crossref]

Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5, 3174–3191 (2014).
[Crossref] [PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optometry and Vision Science: Official Publication of the American Academy of Optometry 87, 930–941 (2010).
[Crossref]

Rossi, E. A.

Sahin, B.

Saito, K.

Salmon, T. O.

T. O. Salmon and C. van de Pol, “Normal-Eye Zernike Coefficients and Root-Mean-Square Wavefront Errors,” Journal of Cataract Refractive Surgery 32(12), 2064–2074 (2006).
[Crossref] [PubMed]

Sawides, L.

Singer, B.

Sliney, D.

D. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum Press, 1980).
[Crossref]

Smith, S. T.

S. T. Moore, T. Haslwanter, I. S. Curthoys, and S. T. Smith, “A geometric basis for measurement of three-dimensional eye position using image processing,” Vision research 36, 445–459 (1996).
[Crossref] [PubMed]

Stephenson, P. C. L.

Tabernero, J.

J. Tabernero and P. Artal, “Lens Oscillations in the Human Eye. Implications for Post-Saccadic Suppression of Vision,” PLoS ONE 9(4), e95764 (2014).
[Crossref] [PubMed]

Troxler, I. P. V.

I. P. V. Troxler, “Über das Verschwinden gegebener Gegenstände innerhalb unseres Gesichtskreises [On the disappearance of given objects from our visual field],” Ophthalmol. Bibl. 2(2), 1–53 (1804).

van de Kraats, J.

J. van de Kraats, T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision research,  36(15), 2229–2247 (1996).
[Crossref] [PubMed]

van de Pol, C.

T. O. Salmon and C. van de Pol, “Normal-Eye Zernike Coefficients and Root-Mean-Square Wavefront Errors,” Journal of Cataract Refractive Surgery 32(12), 2064–2074 (2006).
[Crossref] [PubMed]

van Norren, D.

J. van de Kraats, T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision research,  36(15), 2229–2247 (1996).
[Crossref] [PubMed]

Williams, D. R.

Wolbarsht, M.

D. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum Press, 1980).
[Crossref]

Yang, Q.

Yoon, G.

Zhang, J.

Zivotofsky, A. Z.

J.R. Liang, S. Moshel, A. Z. Zivotofsky, A. Caspi, R. Engbert, R. Kliegl, and S. Havlin, “Scaling of horizontal and vertical fixational eye movements,” Phys. Rev. E 71, 031909 (2005).
[Crossref]

Annual review of vision science (1)

A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annual review of vision science 1, 19–50 (2015).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (4)

Investigative Ophthalmology Visual Science (1)

R. Montés-Micó, J. L. Alió, and W. N. Charman, “Dynamic changes in the tear film in dry eyes,” Investigative Ophthalmology Visual Science,  46(5), 1615 (2005).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Journal of Cataract Refractive Surgery (1)

T. O. Salmon and C. van de Pol, “Normal-Eye Zernike Coefficients and Root-Mean-Square Wavefront Errors,” Journal of Cataract Refractive Surgery 32(12), 2064–2074 (2006).
[Crossref] [PubMed]

Nature Reviews Neuroscience (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nature Reviews Neuroscience,  5(3), 229–240 (2004).
[Crossref] [PubMed]

Ophthalmic and Physiological Optics (2)

W. N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic and Physiological Optics 8(2):153–164 (1988).
[Crossref] [PubMed]

J. Arines, E. Pailos, P. Prado, and S. Bará, “The contribution of the fixational eye movements to the variability of the measured ocular aberration,” Ophthalmic and Physiological Optics,  29(3):281–287 (2009).
[Crossref] [PubMed]

Ophthalmol. Bibl. (1)

I. P. V. Troxler, “Über das Verschwinden gegebener Gegenstände innerhalb unseres Gesichtskreises [On the disappearance of given objects from our visual field],” Ophthalmol. Bibl. 2(2), 1–53 (1804).

Opt. Express (3)

Optometry and Vision Science: Official Publication of the American Academy of Optometry (1)

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optometry and Vision Science: Official Publication of the American Academy of Optometry 87, 930–941 (2010).
[Crossref]

Phys. Rev. E (1)

J.R. Liang, S. Moshel, A. Z. Zivotofsky, A. Caspi, R. Engbert, R. Kliegl, and S. Havlin, “Scaling of horizontal and vertical fixational eye movements,” Phys. Rev. E 71, 031909 (2005).
[Crossref]

PLoS ONE (1)

J. Tabernero and P. Artal, “Lens Oscillations in the Human Eye. Implications for Post-Saccadic Suppression of Vision,” PLoS ONE 9(4), e95764 (2014).
[Crossref] [PubMed]

Vision research (2)

S. T. Moore, T. Haslwanter, I. S. Curthoys, and S. T. Smith, “A geometric basis for measurement of three-dimensional eye position using image processing,” Vision research 36, 445–459 (1996).
[Crossref] [PubMed]

J. van de Kraats, T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision research,  36(15), 2229–2247 (1996).
[Crossref] [PubMed]

Other (3)

D. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum Press, 1980).
[Crossref]

D. Fanning, “Fit Ellipse,” http://www.idlcoyote.com/programs/fit_ellipse.pro/ (2002).

A. Guirao, I. Cox, and D. R. Williams, “Effect of rotation and translation on the expected benefit of ideal contact lenses,” in Vision Science and its Applications, OSA Technical Digest (Optical Society of America, 2000), paper PD2.

Supplementary Material (1)

NameDescription
» Data File 1       Subjects information such as age, spherical equivalent, cylindrical component J0 and J45 , pupil size and motion, and Zernike coefficients.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Diagram of the experimental system (L: lens, BS: beam splitter, M: mirror, P: pupil plane). The four different units (injection, eye, analysis, reference) are outlined in the diagram.
Fig. 2
Fig. 2 Reference pupil intensity maps. (a) Pupil camera image. (b) SH WFS image.
Fig. 3
Fig. 3 Definition of a 5-mm analysis pupil (Pa) in order to quantify dynamic aberration evolution with and without digital pupil stabilization over time. Without pupil stabilization: Pa is fixed on the WFS while the eye pupil (Peye) moves. With pupil stabilization: Pa is fixed at the center of the eye pupil (Peye) for each time t and therefore, it moves on the WFS.
Fig. 4
Fig. 4 Illustration of the correlation between eye movements and dynamic aberrations. (a), (b) and (c): horizontal (black line) and vertical (magenta line) pupil translation of eyes 13, 16 and 31 respectively. (d), (e) and (f): second order Zernike coefficients time series without pupil stabilization of eyes 13, 16 and 31 respectively. (g), (h) and (i): third order Zernike coefficients time series without pupil stabilization of eyes 13, 16 and 31 respectively. Modes are attributed different colors and are specified in (e) and (h). The plots have been vertically shifted for clarity. As a consequence, mean values do not represent static aberrations. Vertical dashed lines highlight fast and large horizontal micro-saccade occurrences for eyes 13 and 31. Horizontal dashed lines indicate slow and large amplitude horizontal drift occurrence for eye 16.
Fig. 5
Fig. 5 Distribution of the dynamic aberration over the population with and without pupil stabilization. Zernike coefficients from the 2 nd to the 5 th order over the population across a 5-mm diameter pupil. Silver and blue bars indicate average of σt (ai(t, eye)) over the population, with and without pupil stabilization respectively. Blue and red error bars indicate plus and minus one standard deviation of σt(ai(t, eye)) over the population, with and without pupil stabilization respectively.
Fig. 6
Fig. 6 Effect of static spherical aberration and horizontal displacement on the other modes, derived from the linear expansion published in [20, 23].

Tables (1)

Tables Icon

Table 1 Population (mean ± standard deviation) and eyes 13, 16, 31 (mean values) information concerning age, horizontal (H) and vertical (V) pupil translation standard deviation, wavefront error, high-order wavefront error and the specificity of each case compared to the studied population as a whole.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S ( t , e y e ) = M W F S ( e y e , P a ) a i ( t , e y e )
a i ( t , e y e ) = M W F S ( e y e , P a ) S ( t , e y e )

Metrics