Abstract

Adaptive optics flood illumination ophthalmoscopy (AO-FIO) allows imaging of the cone photoreceptor in the living human retina. However, clinical interpretation of the AO-FIO image remains challenging due to suboptimal quality arising from residual uncorrected wavefront aberrations and rapid eye motion. An objective method of assessing image quality is necessary to determine whether an AO-FIO image is suitable for grading and diagnostic purpose. In this work, we explore the use of focus measure operators as a surrogate measure of AO-FIO image quality. A set of operators are tested on data sets acquired at different focal depths and different retinal locations from healthy volunteers. Our results demonstrate differences in focus measure operator performance in quantifying AO-FIO image quality. Further, we discuss the potential application of the selected focus operators in (i) selection of the best quality AO-FIO image from a series of images collected at the same retinal location and (ii) assessment of longitudinal changes in the diseased retina. Focus function could be incorporated into real-time AO-FIO image processing and provide an initial automated quality assessment during image acquisition or reading center grading.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Understanding the changes of cone reflectance in adaptive optics flood illumination retinal images over three years

Letizia Mariotti, Nicholas Devaney, Giuseppe Lombardo, and Marco Lombardo
Biomed. Opt. Express 7(7) 2807-2822 (2016)

Trans-retinal cellular imaging with multimodal adaptive optics

Zhuolin Liu, Johnny Tam, Osamah Saeedi, and Daniel X. Hammer
Biomed. Opt. Express 9(9) 4246-4262 (2018)

Adaptive optics flood-illumination camera for high speed retinal imaging

Jungtae Rha, Ravi S. Jonnal, Karen E. Thorn, Junle Qu, Yan Zhang, and Donald T. Miller
Opt. Express 14(10) 4552-4569 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging-clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
    [Crossref] [PubMed]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  3. R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28(7), 488–492 (1981).
    [Crossref] [PubMed]
  4. G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald, “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
    [Crossref] [PubMed]
  5. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  6. A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
    [Crossref] [PubMed]
  7. S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
    [Crossref] [PubMed]
  8. A. Pinhas, M. Dubow, N. Shah, T. Y. Chui, D. Scoles, Y. N. Sulai, R. Weitz, J. B. Walsh, J. Carroll, A. Dubra, and R. B. Rosen, “In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography,” Biomed. Opt. Express 4(8), 1305–1317 (2013).
    [Crossref] [PubMed]
  9. J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007).
    [Crossref] [PubMed]
  10. D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
    [Crossref] [PubMed]
  11. A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
    [Crossref] [PubMed]
  12. K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal perceptual sensitivity arising from weakly reflective cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
    [Crossref] [PubMed]
  13. O. P. Kocaoglu, Z. Liu, F. Zhang, K. Kurokawa, R. S. Jonnal, and D. T. Miller, “Photoreceptor disc shedding in the living human eye,” Biomed. Opt. Express 7(11), 4554–4568 (2016).
    [Crossref] [PubMed]
  14. M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Influence of sampling window size and orientation on parafoveal cone packing density,” Biomed. Opt. Express 4(8), 1318–1331 (2013).
    [Crossref] [PubMed]
  15. M. Bidaut Garnier, M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 833–840 (2014).
    [Crossref] [PubMed]
  16. C. Bowes Rickman, M. M. LaVail, R. E. Anderson, C. Grimm, J. Hollyfield, and J. Ash, “Retinal degenerative diseases: Mechanisms and Experimental Therapy,” Springer, 2015.
  17. S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci. 47(5), 2080–2092 (2006).
    [Crossref] [PubMed]
  18. J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113(6), 1014 (2006).
    [Crossref] [PubMed]
  19. G. Ramaswamy and N. Devaney, “Pre-processing, registration and selection of adaptive optics corrected retinal images,” Ophthalmic Physiol. Opt. 33(4), 527–539 (2013).
    [Crossref] [PubMed]
  20. J. C. Christou, A. Roorda, and D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21(8), 1393–1401 (2004).
    [Crossref] [PubMed]
  21. L. Blanco and L. M. Mugnier, “Marginal blind deconvolution of adaptive optics retinal images,” Opt. Express 19(23), 23227–23239 (2011).
    [Crossref] [PubMed]
  22. X. Zhou, P. Bedggood, and A. Metha, “Improving high resolution retinal image quality using speckle illumination HiLo imaging,” Biomed. Opt. Express 5(8), 2563–2579 (2014).
    [Crossref] [PubMed]
  23. A. Lazareva, P. Liatsis, and F. G. Rauscher, “Hessian-LoG filtering for enhancement and detection of photoreceptor cells in adaptive optics retinal images,” J. Opt. Soc. Am. A 33(1), 84–94 (2016).
    [Crossref] [PubMed]
  24. D. M. Bukowska, A. L. Chew, E. Huynh, I. Kashani, S. L. Wan, P. M. Wan, and F. K. Chen, “Semi-automated identification of cones in the human retina using circle Hough transform,” Biomed. Opt. Express 6(12), 4676–4693 (2015).
    [Crossref] [PubMed]
  25. X. Fei, J. Zhao, H. Zhao, D. Yun, and Y. Zhang, “Deblurring adaptive optics retinal images using deep convolutional neural networks,” Biomed. Opt. Express 8(12), 5675–5687 (2017).
    [Crossref] [PubMed]
  26. D. Cunefare, R. F. Cooper, B. Higgins, D. F. Katz, A. Dubra, J. Carroll, and S. Farsiu, “Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 7(5), 2036–2050 (2016).
    [Crossref] [PubMed]
  27. D. Cunefare, L. Fang, R. F. Cooper, A. Dubra, J. Carroll, and S. Farsiu, “Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks,” Sci. Rep. 7(1), 6620 (2017).
    [Crossref] [PubMed]
  28. C. Bergeles, A. M. Dubis, B. Davidson, M. Kasilian, A. Kalitzeos, J. Carroll, A. Dubra, M. Michaelides, and S. Ourselin, “Unsupervised identification of cone photoreceptors in non-confocal adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 8(6), 3081–3094 (2017).
    [Crossref] [PubMed]
  29. M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
    [Crossref] [PubMed]
  30. S. Pertuz, P. Puig, and M. A. Garcia, “Analysis of focus measure operators for shape-from-focus,” Pattern Recognit. 46(5), 1415–1432 (2013).
    [Crossref]
  31. S. Pertuz, P. Domenecg, and M. A. Garcia, “Reliability measure for shape-from-focus,” Image Vis. Comput. 31(10), 725–734 (2013).
    [Crossref]
  32. J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
    [Crossref] [PubMed]
  33. A. Santos, C. Ortiz de Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188(3), 264–272 (1997).
    [Crossref] [PubMed]
  34. M. Subbarao and J. K. Tian, “Selecting the optimal focus measure for autofocusing and depth-from-focus,” IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 864–870 (1998).
    [Crossref]
  35. E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Engineer 29(6), 33–41 (1984)
  36. A. A. Goshtasby and S. Nikolov, “Image fusion: Advances in the state of the art,” Inf. Fusion 8(2), 114–118 (2007).
    [Crossref]

2017 (3)

2016 (3)

2015 (2)

D. M. Bukowska, A. L. Chew, E. Huynh, I. Kashani, S. L. Wan, P. M. Wan, and F. K. Chen, “Semi-automated identification of cones in the human retina using circle Hough transform,” Biomed. Opt. Express 6(12), 4676–4693 (2015).
[Crossref] [PubMed]

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal perceptual sensitivity arising from weakly reflective cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

2014 (3)

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

X. Zhou, P. Bedggood, and A. Metha, “Improving high resolution retinal image quality using speckle illumination HiLo imaging,” Biomed. Opt. Express 5(8), 2563–2579 (2014).
[Crossref] [PubMed]

M. Bidaut Garnier, M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 833–840 (2014).
[Crossref] [PubMed]

2013 (8)

G. Ramaswamy and N. Devaney, “Pre-processing, registration and selection of adaptive optics corrected retinal images,” Ophthalmic Physiol. Opt. 33(4), 527–539 (2013).
[Crossref] [PubMed]

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Influence of sampling window size and orientation on parafoveal cone packing density,” Biomed. Opt. Express 4(8), 1318–1331 (2013).
[Crossref] [PubMed]

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging-clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

A. Pinhas, M. Dubow, N. Shah, T. Y. Chui, D. Scoles, Y. N. Sulai, R. Weitz, J. B. Walsh, J. Carroll, A. Dubra, and R. B. Rosen, “In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography,” Biomed. Opt. Express 4(8), 1305–1317 (2013).
[Crossref] [PubMed]

S. Pertuz, P. Puig, and M. A. Garcia, “Analysis of focus measure operators for shape-from-focus,” Pattern Recognit. 46(5), 1415–1432 (2013).
[Crossref]

S. Pertuz, P. Domenecg, and M. A. Garcia, “Reliability measure for shape-from-focus,” Image Vis. Comput. 31(10), 725–734 (2013).
[Crossref]

2011 (2)

2007 (2)

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007).
[Crossref] [PubMed]

A. A. Goshtasby and S. Nikolov, “Image fusion: Advances in the state of the art,” Inf. Fusion 8(2), 114–118 (2007).
[Crossref]

2006 (2)

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci. 47(5), 2080–2092 (2006).
[Crossref] [PubMed]

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113(6), 1014 (2006).
[Crossref] [PubMed]

2004 (2)

J. C. Christou, A. Roorda, and D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21(8), 1393–1401 (2004).
[Crossref] [PubMed]

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald, “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[Crossref] [PubMed]

2003 (1)

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[Crossref] [PubMed]

1998 (1)

M. Subbarao and J. K. Tian, “Selecting the optimal focus measure for autofocusing and depth-from-focus,” IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 864–870 (1998).
[Crossref]

1997 (2)

A. Santos, C. Ortiz de Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188(3), 264–272 (1997).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1984 (1)

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Engineer 29(6), 33–41 (1984)

1981 (1)

R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28(7), 488–492 (1981).
[Crossref] [PubMed]

1976 (1)

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[Crossref] [PubMed]

Adelson, E. H.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Engineer 29(6), 33–41 (1984)

Anderson, C. H.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Engineer 29(6), 33–41 (1984)

Arichika, S.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

Bedggood, P.

Bergeles, C.

Bergen, J. R.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Engineer 29(6), 33–41 (1984)

Bidaut Garnier, M.

M. Bidaut Garnier, M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 833–840 (2014).
[Crossref] [PubMed]

Blanco, L.

Branham, K. E.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007).
[Crossref] [PubMed]

Brenner, J. F.

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[Crossref] [PubMed]

Bruce, K. S.

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal perceptual sensitivity arising from weakly reflective cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

Bukowska, D. M.

Burt, P. J.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Engineer 29(6), 33–41 (1984)

Carroll, J.

C. Bergeles, A. M. Dubis, B. Davidson, M. Kasilian, A. Kalitzeos, J. Carroll, A. Dubra, M. Michaelides, and S. Ourselin, “Unsupervised identification of cone photoreceptors in non-confocal adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 8(6), 3081–3094 (2017).
[Crossref] [PubMed]

D. Cunefare, L. Fang, R. F. Cooper, A. Dubra, J. Carroll, and S. Farsiu, “Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks,” Sci. Rep. 7(1), 6620 (2017).
[Crossref] [PubMed]

D. Cunefare, R. F. Cooper, B. Higgins, D. F. Katz, A. Dubra, J. Carroll, and S. Farsiu, “Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 7(5), 2036–2050 (2016).
[Crossref] [PubMed]

A. Pinhas, M. Dubow, N. Shah, T. Y. Chui, D. Scoles, Y. N. Sulai, R. Weitz, J. B. Walsh, J. Carroll, A. Dubra, and R. B. Rosen, “In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography,” Biomed. Opt. Express 4(8), 1305–1317 (2013).
[Crossref] [PubMed]

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging-clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113(6), 1014 (2006).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, F. K.

D. M. Bukowska, A. L. Chew, E. Huynh, I. Kashani, S. L. Wan, P. M. Wan, and F. K. Chen, “Semi-automated identification of cones in the human retina using circle Hough transform,” Biomed. Opt. Express 6(12), 4676–4693 (2015).
[Crossref] [PubMed]

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Chew, A. L.

Choi, S. S.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci. 47(5), 2080–2092 (2006).
[Crossref] [PubMed]

Christou, J. C.

Chui, T. Y.

Chung, M.

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113(6), 1014 (2006).
[Crossref] [PubMed]

Coffey, P. J.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Cooper, R. F.

D. Cunefare, L. Fang, R. F. Cooper, A. Dubra, J. Carroll, and S. Farsiu, “Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks,” Sci. Rep. 7(1), 6620 (2017).
[Crossref] [PubMed]

D. Cunefare, R. F. Cooper, B. Higgins, D. F. Katz, A. Dubra, J. Carroll, and S. Farsiu, “Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 7(5), 2036–2050 (2016).
[Crossref] [PubMed]

Cunefare, D.

D. Cunefare, L. Fang, R. F. Cooper, A. Dubra, J. Carroll, and S. Farsiu, “Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks,” Sci. Rep. 7(1), 6620 (2017).
[Crossref] [PubMed]

D. Cunefare, R. F. Cooper, B. Higgins, D. F. Katz, A. Dubra, J. Carroll, and S. Farsiu, “Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 7(5), 2036–2050 (2016).
[Crossref] [PubMed]

da Cruz, L.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Davidson, B.

Debellemanière, G.

M. Bidaut Garnier, M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 833–840 (2014).
[Crossref] [PubMed]

del Pozo, F.

A. Santos, C. Ortiz de Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188(3), 264–272 (1997).
[Crossref] [PubMed]

Delbosc, B.

M. Bidaut Garnier, M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 833–840 (2014).
[Crossref] [PubMed]

Devaney, N.

G. Ramaswamy and N. Devaney, “Pre-processing, registration and selection of adaptive optics corrected retinal images,” Ophthalmic Physiol. Opt. 33(4), 527–539 (2013).
[Crossref] [PubMed]

Dew, B. S.

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[Crossref] [PubMed]

Doble, N.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci. 47(5), 2080–2092 (2006).
[Crossref] [PubMed]

Domenecg, P.

S. Pertuz, P. Domenecg, and M. A. Garcia, “Reliability measure for shape-from-focus,” Image Vis. Comput. 31(10), 725–734 (2013).
[Crossref]

Dubis, A. M.

Dubow, M.

Dubra, A.

Ducoli, P.

Duncan, J. L.

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
[Crossref] [PubMed]

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007).
[Crossref] [PubMed]

Fang, L.

D. Cunefare, L. Fang, R. F. Cooper, A. Dubra, J. Carroll, and S. Farsiu, “Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks,” Sci. Rep. 7(1), 6620 (2017).
[Crossref] [PubMed]

Farsiu, S.

D. Cunefare, L. Fang, R. F. Cooper, A. Dubra, J. Carroll, and S. Farsiu, “Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks,” Sci. Rep. 7(1), 6620 (2017).
[Crossref] [PubMed]

D. Cunefare, R. F. Cooper, B. Higgins, D. F. Katz, A. Dubra, J. Carroll, and S. Farsiu, “Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 7(5), 2036–2050 (2016).
[Crossref] [PubMed]

Fei, X.

Flores, M.

M. Bidaut Garnier, M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 833–840 (2014).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gandhi, J.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007).
[Crossref] [PubMed]

Garcia, M. A.

S. Pertuz, P. Domenecg, and M. A. Garcia, “Reliability measure for shape-from-focus,” Image Vis. Comput. 31(10), 725–734 (2013).
[Crossref]

S. Pertuz, P. Puig, and M. A. Garcia, “Analysis of focus measure operators for shape-from-focus,” Pattern Recognit. 46(5), 1415–1432 (2013).
[Crossref]

Gias, C.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Goshtasby, A. A.

A. A. Goshtasby and S. Nikolov, “Image fusion: Advances in the state of the art,” Inf. Fusion 8(2), 114–118 (2007).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Haller, J. A.

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald, “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[Crossref] [PubMed]

Hangai, M.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

Hardy, J. L.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci. 47(5), 2080–2092 (2006).
[Crossref] [PubMed]

Harmening, W. M.

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal perceptual sensitivity arising from weakly reflective cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Higgins, B.

Hofer, H.

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[Crossref] [PubMed]

Horton, J. B.

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hughes, G. W.

R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28(7), 488–492 (1981).
[Crossref] [PubMed]

Huynh, E.

Jones, S. M.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci. 47(5), 2080–2092 (2006).
[Crossref] [PubMed]

Jonnal, R. S.

Kalitzeos, A.

Kashani, I.

Kasilian, M.

Katz, D. F.

Kay, D. B.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging-clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

Keltner, J. L.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci. 47(5), 2080–2092 (2006).
[Crossref] [PubMed]

King, T.

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[Crossref] [PubMed]

Kocaoglu, O. P.

Kurokawa, K.

Langston, B. R.

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal perceptual sensitivity arising from weakly reflective cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

Lazareva, A.

Liang, J.

Liatsis, P.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, Z.

Lombardo, G.

Lombardo, M.

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Influence of sampling window size and orientation on parafoveal cone packing density,” Biomed. Opt. Express 4(8), 1318–1331 (2013).
[Crossref] [PubMed]

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging-clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

Maguire, A. M.

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald, “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[Crossref] [PubMed]

Malpica, N.

A. Santos, C. Ortiz de Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188(3), 264–272 (1997).
[Crossref] [PubMed]

Marcus, D.

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald, “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[Crossref] [PubMed]

McClelland, Z.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

McDonald, H. R.

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald, “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[Crossref] [PubMed]

Meillat, M.

M. Bidaut Garnier, M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 833–840 (2014).
[Crossref] [PubMed]

Menghini, M.

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

Merino, D.

Metha, A.

Michaelides, M.

Miller, D. T.

Montard, M.

M. Bidaut Garnier, M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 833–840 (2014).
[Crossref] [PubMed]

Mugnier, L. M.

Muthiah, M. N.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Nakanishi, C.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007).
[Crossref] [PubMed]

Neurath, P. W.

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[Crossref] [PubMed]

Nikolov, S.

A. A. Goshtasby and S. Nikolov, “Image fusion: Advances in the state of the art,” Inf. Fusion 8(2), 114–118 (2007).
[Crossref]

Ogden, J. M.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Engineer 29(6), 33–41 (1984)

Olivier, S. S.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci. 47(5), 2080–2092 (2006).
[Crossref] [PubMed]

Ooto, S.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

Ortiz de Solórzano, C.

A. Santos, C. Ortiz de Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188(3), 264–272 (1997).
[Crossref] [PubMed]

Othman, M.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007).
[Crossref] [PubMed]

Ourselin, S.

Pallikaris, A.

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[Crossref] [PubMed]

Peña, J. M.

A. Santos, C. Ortiz de Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188(3), 264–272 (1997).
[Crossref] [PubMed]

Pertuz, S.

S. Pertuz, P. Domenecg, and M. A. Garcia, “Reliability measure for shape-from-focus,” Image Vis. Comput. 31(10), 725–734 (2013).
[Crossref]

S. Pertuz, P. Puig, and M. A. Garcia, “Analysis of focus measure operators for shape-from-focus,” Pattern Recognit. 46(5), 1415–1432 (2013).
[Crossref]

Peto, T.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Pinhas, A.

Puig, P.

S. Pertuz, P. Puig, and M. A. Garcia, “Analysis of focus measure operators for shape-from-focus,” Pattern Recognit. 46(5), 1415–1432 (2013).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Puyraveau, M.

M. Bidaut Garnier, M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 833–840 (2014).
[Crossref] [PubMed]

Ramaswamy, G.

G. Ramaswamy and N. Devaney, “Pre-processing, registration and selection of adaptive optics corrected retinal images,” Ophthalmic Physiol. Opt. 33(4), 527–539 (2013).
[Crossref] [PubMed]

Rauscher, F. G.

Roorda, A.

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal perceptual sensitivity arising from weakly reflective cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
[Crossref] [PubMed]

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007).
[Crossref] [PubMed]

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113(6), 1014 (2006).
[Crossref] [PubMed]

J. C. Christou, A. Roorda, and D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21(8), 1393–1401 (2004).
[Crossref] [PubMed]

Roorda, A. J.

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

Rosen, R. B.

Saleh, M.

M. Bidaut Garnier, M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 833–840 (2014).
[Crossref] [PubMed]

Sallo, F. B.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Santos, A.

A. Santos, C. Ortiz de Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188(3), 264–272 (1997).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schwartz, C.

M. Bidaut Garnier, M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 833–840 (2014).
[Crossref] [PubMed]

Scoles, D.

Scott, I. U.

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald, “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[Crossref] [PubMed]

Selles, W. D.

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[Crossref] [PubMed]

Serrao, S.

Shah, N.

Sincich, L. C.

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal perceptual sensitivity arising from weakly reflective cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Subbarao, M.

M. Subbarao and J. K. Tian, “Selecting the optimal focus measure for autofocusing and depth-from-focus,” IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 864–870 (1998).
[Crossref]

Sulai, Y. N.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swaroop, A.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007).
[Crossref] [PubMed]

Syed, R.

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

Tian, J. K.

M. Subbarao and J. K. Tian, “Selecting the optimal focus measure for autofocusing and depth-from-focus,” IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 864–870 (1998).
[Crossref]

Tiruveedhula, P.

Tumahai, P.

M. Bidaut Garnier, M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 833–840 (2014).
[Crossref] [PubMed]

Tuten, W. S.

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal perceptual sensitivity arising from weakly reflective cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

Uji, A.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

Vaquero, J. J.

A. Santos, C. Ortiz de Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188(3), 264–272 (1997).
[Crossref] [PubMed]

Walsh, J. B.

Wan, P. M.

Wan, S. L.

Webb, R. H.

R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28(7), 488–492 (1981).
[Crossref] [PubMed]

Weitz, R.

Werner, J. S.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci. 47(5), 2080–2092 (2006).
[Crossref] [PubMed]

Williams, D. R.

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113(6), 1014 (2006).
[Crossref] [PubMed]

J. C. Christou, A. Roorda, and D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21(8), 1393–1401 (2004).
[Crossref] [PubMed]

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

Williams, G. A.

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald, “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[Crossref] [PubMed]

Wolfing, J. I.

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113(6), 1014 (2006).
[Crossref] [PubMed]

Yoshimura, N.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

Yun, D.

Zayit-Soudry, S.

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

Zhang, F.

Zhang, Y.

X. Fei, J. Zhao, H. Zhao, D. Yun, and Y. Zhang, “Deblurring adaptive optics retinal images using deep convolutional neural networks,” Biomed. Opt. Express 8(12), 5675–5687 (2017).
[Crossref] [PubMed]

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007).
[Crossref] [PubMed]

Zhao, H.

Zhao, J.

Zhong, J.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Zhou, X.

Biomed. Opt. Express (9)

A. Pinhas, M. Dubow, N. Shah, T. Y. Chui, D. Scoles, Y. N. Sulai, R. Weitz, J. B. Walsh, J. Carroll, A. Dubra, and R. B. Rosen, “In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography,” Biomed. Opt. Express 4(8), 1305–1317 (2013).
[Crossref] [PubMed]

O. P. Kocaoglu, Z. Liu, F. Zhang, K. Kurokawa, R. S. Jonnal, and D. T. Miller, “Photoreceptor disc shedding in the living human eye,” Biomed. Opt. Express 7(11), 4554–4568 (2016).
[Crossref] [PubMed]

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Influence of sampling window size and orientation on parafoveal cone packing density,” Biomed. Opt. Express 4(8), 1318–1331 (2013).
[Crossref] [PubMed]

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
[Crossref] [PubMed]

D. M. Bukowska, A. L. Chew, E. Huynh, I. Kashani, S. L. Wan, P. M. Wan, and F. K. Chen, “Semi-automated identification of cones in the human retina using circle Hough transform,” Biomed. Opt. Express 6(12), 4676–4693 (2015).
[Crossref] [PubMed]

X. Fei, J. Zhao, H. Zhao, D. Yun, and Y. Zhang, “Deblurring adaptive optics retinal images using deep convolutional neural networks,” Biomed. Opt. Express 8(12), 5675–5687 (2017).
[Crossref] [PubMed]

D. Cunefare, R. F. Cooper, B. Higgins, D. F. Katz, A. Dubra, J. Carroll, and S. Farsiu, “Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 7(5), 2036–2050 (2016).
[Crossref] [PubMed]

X. Zhou, P. Bedggood, and A. Metha, “Improving high resolution retinal image quality using speckle illumination HiLo imaging,” Biomed. Opt. Express 5(8), 2563–2579 (2014).
[Crossref] [PubMed]

C. Bergeles, A. M. Dubis, B. Davidson, M. Kasilian, A. Kalitzeos, J. Carroll, A. Dubra, M. Michaelides, and S. Ourselin, “Unsupervised identification of cone photoreceptors in non-confocal adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 8(6), 3081–3094 (2017).
[Crossref] [PubMed]

Br. J. Ophthalmol. (1)

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Clin. Experiment. Ophthalmol. (1)

M. Bidaut Garnier, M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 833–840 (2014).
[Crossref] [PubMed]

Curr. Eye Res. (1)

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging-clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28(7), 488–492 (1981).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

M. Subbarao and J. K. Tian, “Selecting the optimal focus measure for autofocusing and depth-from-focus,” IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 864–870 (1998).
[Crossref]

Image Vis. Comput. (1)

S. Pertuz, P. Domenecg, and M. A. Garcia, “Reliability measure for shape-from-focus,” Image Vis. Comput. 31(10), 725–734 (2013).
[Crossref]

Inf. Fusion (1)

A. A. Goshtasby and S. Nikolov, “Image fusion: Advances in the state of the art,” Inf. Fusion 8(2), 114–118 (2007).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (5)

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007).
[Crossref] [PubMed]

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[Crossref] [PubMed]

K. S. Bruce, W. M. Harmening, B. R. Langston, W. S. Tuten, A. Roorda, and L. C. Sincich, “Normal perceptual sensitivity arising from weakly reflective cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 56(8), 4431–4438 (2015).
[Crossref] [PubMed]

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci. 47(5), 2080–2092 (2006).
[Crossref] [PubMed]

J. Histochem. Cytochem. (1)

J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles, “An automated microscope for cytologic research a preliminary evaluation,” J. Histochem. Cytochem. 24(1), 100–111 (1976).
[Crossref] [PubMed]

J. Microsc. (1)

A. Santos, C. Ortiz de Solórzano, J. J. Vaquero, J. M. Peña, N. Malpica, and F. del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188(3), 264–272 (1997).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

Ophthalmic Physiol. Opt. (1)

G. Ramaswamy and N. Devaney, “Pre-processing, registration and selection of adaptive optics corrected retinal images,” Ophthalmic Physiol. Opt. 33(4), 527–539 (2013).
[Crossref] [PubMed]

Ophthalmology (2)

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald, “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[Crossref] [PubMed]

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113(6), 1014 (2006).
[Crossref] [PubMed]

Opt. Express (1)

Pattern Recognit. (1)

S. Pertuz, P. Puig, and M. A. Garcia, “Analysis of focus measure operators for shape-from-focus,” Pattern Recognit. 46(5), 1415–1432 (2013).
[Crossref]

PLoS One (1)

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

RCA Engineer (1)

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Engineer 29(6), 33–41 (1984)

Sci. Rep. (1)

D. Cunefare, L. Fang, R. F. Cooper, A. Dubra, J. Carroll, and S. Farsiu, “Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks,” Sci. Rep. 7(1), 6620 (2017).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (1)

C. Bowes Rickman, M. M. LaVail, R. E. Anderson, C. Grimm, J. Hollyfield, and J. Ash, “Retinal degenerative diseases: Mechanisms and Experimental Therapy,” Springer, 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Example of the zoomed region of the acquired images at different focal depths including: (A) −60 μm, (B) −40 μm, (C) 0 μm, (D) + 40 μm, (E) + 80 μm, (F) + 120 μm, (G) + 160 μm and (H) + 200 μm. The reference depth (0 µm) is at the level of the RPE. Negative values denote depth below the RPE (into the choroid) and positive values denote depth above the RPE (into the neural retina).
Fig. 2
Fig. 2 Gaussian fit for the different considered focus measure operators (left). Mean and standard deviation of the Gaussian probability density function (PDF) parameters for the all the image focus functions with a highlight for the three focus functions used in this study (right). BREN = Brenner's function, CURV = image curvature, GDER = Gaussian derivative, GLLV = gray-level local variance, GLVN = normalized GLLV, GRAE = energy of gradient, GRAT = thresholded gradient, GRAS = squared gradient, LAPE = energy of Laplacian, LAPM = modified Laplacian, LAPV = variance of Laplacian, LAPD = diagonal Laplacian, SFRQ = spatial frequency, TENG = Tenengrad value, TENV = Tenengrad variance.
Fig. 3
Fig. 3 Notched box-plots illustrating the normalized focus value at each level of focusing depth. The solid central horizontal line indicates the median change, and the box extends between the 25th and 75th percentile, width of notches in each box represent the 95% confidence interval of the median, whiskers extend to 1.5 times the interquartile range of the data. Possible outliers are display with a circle.
Fig. 4
Fig. 4 Example of two images (zoomed region covering about 160 μm2) acquired at + 200 μm (above the RPE). The left side panel shows an example of the poorest quality AO-FIO images (focus features) and right panel presents an example of good image quality (sharp details) chosen from a group of 30 consecutive images taken at the same retinal location.
Fig. 5
Fig. 5 Mean values per location (left) and notched box-plots (right) illustrating the normalized focus measure value at different locations away from the fovea. For notched box-plots, the solid central horizontal line indicates the median change, and the box extends between the 25th and 75th percentile, width of notches in each box represent the 95% confidence interval of the median, whiskers extend to 1.5 times the interquartile range of the data. Possible outliers are displayed with a circle. S-superior, I-inferior, N-nasal, T-temporal. Asterisk (*) indicates statistically significant differences (p<0.01) between eccentricity rings.
Fig. 6
Fig. 6 Example of four images (zoomed region covering about 160 μm2) acquired at different locations away from the fovea. Degrees away from the fovea; 1° (A), 3° (B), 5°(C) and 7° (D).
Fig. 7
Fig. 7 Four consecutive images captured at the same retinal location, sorted by the order they were captured and labelled 1-4 (top). These same images were sorted by the global focus values (bottom). The image with the highest focus value (far-right image in the bottom row) has the sharpest cone reflex across the entire frame.
Fig. 8
Fig. 8 Four consecutive images captured at the same retinal location, sorted by the order they were captured (left panel). The three best focus sub-region and the final blended image are shown in the right panel.
Fig. 9
Fig. 9 Longitudinal focus value data of a patient with acute macular neuroretinopathy. Top row presents the maps for the mean focus values at each retinal location across 4 clinic visits. Changes in the focus value correspond with changes in the AO-FIO image (middle panel) and the corresponding en face OCT image of the interdigitation zone (bottom row). AO-FIO images illustrate the change in cone distribution and appearance, with an increased cone visibility in the last two visits. The en face map shows a more homogenous reflectivity distribution at the interdigitation zone over time. The outline of the AO-FIO image (dotted) corresponds with the outline in the focus value maps (top row) centered at the retinal location (1°T, 1°S). The OCT en face map (bottom row) covers the field of view of the AO mean focus values (top row).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F B R E N = i = 1 M j = 1 N [ I ( i , j ) I ( i + m , j ) ] 2 .
F L A P E = i = 1 M j = 1 N [ I ( i 1 , j ) + I ( i + 1 , j ) + I ( i , j 1 ) + I ( i , j + 1 ) 4 * I ( i , j ) ] 2 .

Metrics