Abstract

Intravital microscopy (IVM) offers the opportunity to visualize static and dynamic changes of tissue on a cellular level. It is a valuable tool in research and may considerably improve clinical diagnosis. In contrast to confocal and non-linear microscopy, optical coherence tomography (OCT) with microscopic resolution (mOCT) provides intrinsically cross-sectional imaging. Changing focus position is not needed, which simplifies especially endoscopic imaging. For in-vivo imaging, here we are presenting endo-microscopic OCT (emOCT). A graded-index-lens (GRIN) based 2.75 mm outer diameter rigid endoscope is providing 1.5 – 2 µm nearly isotropic resolution over an extended field of depth. Spherical and chromatic aberrations are used to elongate the focus length. Simulation of the OCT image formation, suggests a better overall image quality in this range compared to a focused Gaussian beam. Total imaging depth at a reduced sensitivity and lateral resolution is more than 200 µm. Using a frame rate of 80 Hz cross-sectional images of concha nasalis were demonstrated in humans, which could resolve cilial motion, cellular structures of the epithelium, vessels and blood cells. Mucus transport velocity was successfully determined. The endoscope may be used for diagnosis and treatment control of different lung diseases like cystic fibrosis or primary ciliary dyskinesia, which manifest already at the nasal mucosa.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Monitoring airway mucus flow and ciliary activity with optical coherence tomography

Amy L. Oldenburg, Raghav K. Chhetri, David B. Hill, and Brian Button
Biomed. Opt. Express 3(9) 1978-1992 (2012)

In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography

Kengyeh K. Chu, Carolin Unglert, Tim N. Ford, Dongyao Cui, Robert W. Carruth, Kanwarpal Singh, Linbo Liu, Susan E. Birket, George M. Solomon, Steven M. Rowe, and Guillermo J. Tearney
Biomed. Opt. Express 7(7) 2494-2505 (2016)

Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues

Yu Chen, Aaron D. Aguirre, Pei-Lin Hsiung, Shu-Wei Huang, Hiroshi Mashimo, Joseph M. Schmitt, and James G. Fujimoto
Opt. Express 16(4) 2469-2485 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Blake, “On the movement of mucus in the lung,” J. Biomech. 8(3-4), 179–190 (1975).
    [Crossref] [PubMed]
  2. V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
    [Crossref] [PubMed]
  3. M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
    [Crossref] [PubMed]
  4. E. Omar, “Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma-a systematic review,” Head Face Med. 11(1), 6 (2015).
    [Crossref] [PubMed]
  5. W. M. Petroll and D. M. Robertson, “In Vivo Confocal Microscopy of the Cornea: New Developments in Image Acquisition, Reconstruction, and Analysis Using the HRT-Rostock Corneal Module,” Ocul. Surf. 13(3), 187–203 (2015).
    [Crossref] [PubMed]
  6. L. L. Lim, J. Xie, C. C. Chua, T. Wong, L. T. Hoang, M. D. Becker, E. B. Suhler, J. T. Rosenbaum, and F. Mackensen, “In Vivo Laser Confocal Microscopy Using the HRT-Rostock Cornea Module: Diversity and Diagnostic Implications in Patients with Uveitis,” Ocul. Immunol. Inflamm. 1080, 1–10 (2017).
    [PubMed]
  7. C. MacAulay, P. Lane, and R. Richards-Kortum, “In vivo pathology: microendoscopy as a new endoscopic imaging modality,” Gastrointest. Endosc. Clin. N. Am. 14(3), 595–620 (2004).
    [Crossref] [PubMed]
  8. T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. Liu, J. M. Crawford, and C. H. Contag, “Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology,” Clin. Gastroenterol. Hepatol. 5(11), 1300–1305 (2007).
    [Crossref] [PubMed]
  9. F. Knieling and M. J. Waldner, “Light and sound - emerging imaging techniques for inflammatory bowel disease,” World J. Gastroenterol. 22(25), 5642–5654 (2016).
    [Crossref] [PubMed]
  10. M. Goetz, A. Hoffman, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Confocal laser endoscopy: new approach to the early diagnosis of tumors of the esophagus and stomach,” Future Oncol. 2(4), 469–476 (2006).
    [Crossref] [PubMed]
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  12. A. F. Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
    [Crossref] [PubMed]
  13. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
    [Crossref] [PubMed]
  14. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
    [Crossref] [PubMed]
  15. R. Ansari, C. Myrtus, R. Aherrahrou, J. Erdmann, A. Schweikard, and G. Hüttmann, “Ultrahigh-resolution, high-speed spectral domain optical coherence phase microscopy,” Opt. Lett. 39(1), 45–47 (2014).
    [Crossref] [PubMed]
  16. R. Ansari, C. Buj, M. Pieper, P. König, A. Schweikard, and G. Hüttmann, “Micro-anatomical and functional assessment of ciliated epithelium in mouse trachea using optical coherence phase microscopy,” Opt. Express 23(18), 23217–23224 (2015).
    [Crossref] [PubMed]
  17. M. Pieper, H. Schulz-Hildebrandt, G. Hüttman, and P. König, “Optical coherence microscopy for fast intravital imaging of airways in mice and humans with subcellular resolution,” Pneumologie 69(07), A50 (2015).
    [Crossref]
  18. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
    [Crossref] [PubMed]
  19. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
    [Crossref] [PubMed]
  20. J. Holmes, “Theory and applications of multi-beam OCT,” in 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics, Proceedings SPIE (SPIE, 2008), 713908.
    [Crossref]
  21. B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
    [Crossref] [PubMed]
  22. P. Mouroulis, “Depth of field extension with spherical optics,” Opt. Express 16(17), 12995–13004 (2008).
    [Crossref] [PubMed]
  23. R. C. Bakaraju, K. Ehrmann, E. B. Papas, and A. Ho, “Depth-of-Focus and its Association with the Spherical Aberration Sign. A Ray-Tracing Analysis,” J. Optom. 3(1), 51–59 (2010).
    [Crossref]
  24. A. T. Friberg and E. Wolf, “Angular spectrum representation of scattered electromagnetic fields,” J. Opt. Soc. Am. 73(1), 26–32 (1983).
    [Crossref]
  25. M. K. Kim, Digital holographic microscopy principles, techniques, and applications, Springer series in optical sciences (Springer, New York, NY [u.a.], 2011), pp. XVI, 237 S.
  26. H. Schulz-Hildebrandt and G. Hüttmann, “Modelling the Influence of spherical and chromatic aberration on resolution and depth of field in OCT and OCM,” Biomed. Opt. Express in preparation (2018).
  27. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
  28. C. J. R. Sheppard, “Super resolution in Confocal Imaging,” Optik - International Journal for Light and Electron Optics 80, 53 (1988).
  29. T. R. Corle and G. S. Kino, “Confocal scanning optical microscopy and related imaging systems,” (Acad. Press, San Diego [u.a.], 1996).
  30. R. A. M. Abdul, “Quantitative Measurement of Cellular Dynamics using Spectral Domain Optical Coherence Phase Microscopy,” Dissertation (University of Lübeck, Lübeck, 2013).
  31. H. Schulz-Hildebrandt, M. Münter, M. Ahrens, H. Spahr, D. Hillmann, P. König, and G. Hüttmann, “Coherence and diffraction limited resolution in microscopic OCT by a unified approach for the correction of dispersion and aberrations,” in Second Canterbury Conference on Optical Coherence Tomography (2CCOT), A. G. Podoleanu and O. Bang, eds. (SPIE, University of Kent, Canterbury, UK, 2017).
  32. D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20(6), 6761–6776 (2012).
    [Crossref] [PubMed]
  33. B. C. Flores, “Robust method for the motion compensation of ISAR imagery,” Proc. SPIE 1607, 512–517 (1992).
    [Crossref]
  34. J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Comput. J. 7(4), 308–313 (1965).
    [Crossref]
  35. P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
    [Crossref] [PubMed]
  36. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
    [Crossref] [PubMed]
  37. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
    [Crossref]
  38. D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient Holoscopy image reconstruction,” Opt. Express 20(19), 21247–21263 (2012).
    [Crossref] [PubMed]
  39. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [Crossref] [PubMed]
  40. M. Born, E. Wolf, and A. B. Bhatia, Principles of optics electromagnetic theory of propagation, interference and diffraction of light, 7., (expanded) ed. (Cambridge Univ. Press, Cambridge [u.a.], 2013), pp. XXXIII, 952 S.
  41. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Co. Publishers, Englewood, Colo, 2005), pp. XVIII, 491 S.
  42. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [Crossref] [PubMed]
  43. A. L. Oldenburg, R. K. Chhetri, D. B. Hill, and B. Button, “Monitoring airway mucus flow and ciliary activity with optical coherence tomography,” Biomed. Opt. Express 3(9), 1978–1992 (2012).
    [Crossref] [PubMed]
  44. S. Bermbach, K. Weinhold, T. Roeder, F. Petersen, C. Kugler, T. Goldmann, J. Rupp, and P. König, “Mechanisms of cilia-driven transport in the airways in the absence of mucus,” Am. J. Respir. Cell Mol. Biol. 51(1), 56–67 (2014).
    [Crossref] [PubMed]
  45. K. K. Chu, C. Unglert, T. N. Ford, D. Cui, R. W. Carruth, K. Singh, L. Liu, S. E. Birket, G. M. Solomon, S. M. Rowe, and G. J. Tearney, “In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography,” Biomed. Opt. Express 7(7), 2494–2505 (2016).
    [Crossref] [PubMed]
  46. Q. Fang, A. Curatolo, P. Wijesinghe, Y. L. Yeow, J. Hamzah, P. B. Noble, K. Karnowski, D. D. Sampson, R. Ganss, J. K. Kim, W. M. Lee, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics,” Biomed. Opt. Express 8(11), 5127–5138 (2017).
    [Crossref] [PubMed]
  47. D. Cui, K. K. Chu, B. Yin, T. N. Ford, C. Hyun, H. M. Leung, J. A. Gardecki, G. M. Solomon, S. E. Birket, L. Liu, S. M. Rowe, and G. J. Tearney, “Flexible, high-resolution micro-optical coherence tomography endobronchial probe toward in vivo imaging of cilia,” Opt. Lett. 42(4), 867–870 (2017).
    [Crossref] [PubMed]
  48. K. Aanæs, “Bacterial sinusitis can be a focus for initial lung colonisation and chronic lung infection in patients with cystic fibrosis,” J. Cyst. Fibros. 12(Suppl 2), S1–S20 (2013).
    [Crossref] [PubMed]
  49. U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
    [Crossref] [PubMed]
  50. C. H. Feng, M. D. Miller, and R. A. Simon, “The united allergic airway: connections between allergic rhinitis, asthma, and chronic sinusitis,” Am. J. Rhinol. Allergy 26(3), 187–190 (2012).
    [Crossref] [PubMed]
  51. E. A. Illing and B. A. Woodworth, “Management of the upper airway in cystic fibrosis,” Curr. Opin. Pulm. Med. 20(6), 623–631 (2014).
    [Crossref] [PubMed]

2017 (4)

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref] [PubMed]

L. L. Lim, J. Xie, C. C. Chua, T. Wong, L. T. Hoang, M. D. Becker, E. B. Suhler, J. T. Rosenbaum, and F. Mackensen, “In Vivo Laser Confocal Microscopy Using the HRT-Rostock Cornea Module: Diversity and Diagnostic Implications in Patients with Uveitis,” Ocul. Immunol. Inflamm. 1080, 1–10 (2017).
[PubMed]

Q. Fang, A. Curatolo, P. Wijesinghe, Y. L. Yeow, J. Hamzah, P. B. Noble, K. Karnowski, D. D. Sampson, R. Ganss, J. K. Kim, W. M. Lee, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics,” Biomed. Opt. Express 8(11), 5127–5138 (2017).
[Crossref] [PubMed]

D. Cui, K. K. Chu, B. Yin, T. N. Ford, C. Hyun, H. M. Leung, J. A. Gardecki, G. M. Solomon, S. E. Birket, L. Liu, S. M. Rowe, and G. J. Tearney, “Flexible, high-resolution micro-optical coherence tomography endobronchial probe toward in vivo imaging of cilia,” Opt. Lett. 42(4), 867–870 (2017).
[Crossref] [PubMed]

2016 (4)

F. Knieling and M. J. Waldner, “Light and sound - emerging imaging techniques for inflammatory bowel disease,” World J. Gastroenterol. 22(25), 5642–5654 (2016).
[Crossref] [PubMed]

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
[Crossref] [PubMed]

K. K. Chu, C. Unglert, T. N. Ford, D. Cui, R. W. Carruth, K. Singh, L. Liu, S. E. Birket, G. M. Solomon, S. M. Rowe, and G. J. Tearney, “In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography,” Biomed. Opt. Express 7(7), 2494–2505 (2016).
[Crossref] [PubMed]

2015 (4)

E. Omar, “Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma-a systematic review,” Head Face Med. 11(1), 6 (2015).
[Crossref] [PubMed]

W. M. Petroll and D. M. Robertson, “In Vivo Confocal Microscopy of the Cornea: New Developments in Image Acquisition, Reconstruction, and Analysis Using the HRT-Rostock Corneal Module,” Ocul. Surf. 13(3), 187–203 (2015).
[Crossref] [PubMed]

R. Ansari, C. Buj, M. Pieper, P. König, A. Schweikard, and G. Hüttmann, “Micro-anatomical and functional assessment of ciliated epithelium in mouse trachea using optical coherence phase microscopy,” Opt. Express 23(18), 23217–23224 (2015).
[Crossref] [PubMed]

M. Pieper, H. Schulz-Hildebrandt, G. Hüttman, and P. König, “Optical coherence microscopy for fast intravital imaging of airways in mice and humans with subcellular resolution,” Pneumologie 69(07), A50 (2015).
[Crossref]

2014 (3)

S. Bermbach, K. Weinhold, T. Roeder, F. Petersen, C. Kugler, T. Goldmann, J. Rupp, and P. König, “Mechanisms of cilia-driven transport in the airways in the absence of mucus,” Am. J. Respir. Cell Mol. Biol. 51(1), 56–67 (2014).
[Crossref] [PubMed]

R. Ansari, C. Myrtus, R. Aherrahrou, J. Erdmann, A. Schweikard, and G. Hüttmann, “Ultrahigh-resolution, high-speed spectral domain optical coherence phase microscopy,” Opt. Lett. 39(1), 45–47 (2014).
[Crossref] [PubMed]

E. A. Illing and B. A. Woodworth, “Management of the upper airway in cystic fibrosis,” Curr. Opin. Pulm. Med. 20(6), 623–631 (2014).
[Crossref] [PubMed]

2013 (1)

K. Aanæs, “Bacterial sinusitis can be a focus for initial lung colonisation and chronic lung infection in patients with cystic fibrosis,” J. Cyst. Fibros. 12(Suppl 2), S1–S20 (2013).
[Crossref] [PubMed]

2012 (5)

A. L. Oldenburg, R. K. Chhetri, D. B. Hill, and B. Button, “Monitoring airway mucus flow and ciliary activity with optical coherence tomography,” Biomed. Opt. Express 3(9), 1978–1992 (2012).
[Crossref] [PubMed]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient Holoscopy image reconstruction,” Opt. Express 20(19), 21247–21263 (2012).
[Crossref] [PubMed]

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20(6), 6761–6776 (2012).
[Crossref] [PubMed]

C. H. Feng, M. D. Miller, and R. A. Simon, “The united allergic airway: connections between allergic rhinitis, asthma, and chronic sinusitis,” Am. J. Rhinol. Allergy 26(3), 187–190 (2012).
[Crossref] [PubMed]

2011 (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

2010 (4)

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

A. F. Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[Crossref] [PubMed]

R. C. Bakaraju, K. Ehrmann, E. B. Papas, and A. Ho, “Depth-of-Focus and its Association with the Spherical Aberration Sign. A Ray-Tracing Analysis,” J. Optom. 3(1), 51–59 (2010).
[Crossref]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

2008 (1)

2007 (2)

T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. Liu, J. M. Crawford, and C. H. Contag, “Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology,” Clin. Gastroenterol. Hepatol. 5(11), 1300–1305 (2007).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

2006 (2)

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[Crossref] [PubMed]

M. Goetz, A. Hoffman, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Confocal laser endoscopy: new approach to the early diagnosis of tumors of the esophagus and stomach,” Future Oncol. 2(4), 469–476 (2006).
[Crossref] [PubMed]

2004 (1)

C. MacAulay, P. Lane, and R. Richards-Kortum, “In vivo pathology: microendoscopy as a new endoscopic imaging modality,” Gastrointest. Endosc. Clin. N. Am. 14(3), 595–620 (2004).
[Crossref] [PubMed]

2001 (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

1998 (1)

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

1994 (1)

1992 (1)

B. C. Flores, “Robust method for the motion compensation of ISAR imagery,” Proc. SPIE 1607, 512–517 (1992).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1988 (1)

C. J. R. Sheppard, “Super resolution in Confocal Imaging,” Optik - International Journal for Light and Electron Optics 80, 53 (1988).

1983 (1)

1978 (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[Crossref]

1975 (1)

J. Blake, “On the movement of mucus in the lung,” J. Biomech. 8(3-4), 179–190 (1975).
[Crossref] [PubMed]

1965 (1)

J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Aanæs, K.

K. Aanæs, “Bacterial sinusitis can be a focus for initial lung colonisation and chronic lung infection in patients with cystic fibrosis,” J. Cyst. Fibros. 12(Suppl 2), S1–S20 (2013).
[Crossref] [PubMed]

Aherrahrou, R.

Ansari, R.

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Bachmann, A. H.

Bakaraju, R. C.

R. C. Bakaraju, K. Ehrmann, E. B. Papas, and A. Ho, “Depth-of-Focus and its Association with the Spherical Aberration Sign. A Ray-Tracing Analysis,” J. Optom. 3(1), 51–59 (2010).
[Crossref]

Baroke, E.

U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
[Crossref] [PubMed]

Becker, M. D.

L. L. Lim, J. Xie, C. C. Chua, T. Wong, L. T. Hoang, M. D. Becker, E. B. Suhler, J. T. Rosenbaum, and F. Mackensen, “In Vivo Laser Confocal Microscopy Using the HRT-Rostock Cornea Module: Diversity and Diagnostic Implications in Patients with Uveitis,” Ocul. Immunol. Inflamm. 1080, 1–10 (2017).
[PubMed]

Bermbach, S.

S. Bermbach, K. Weinhold, T. Roeder, F. Petersen, C. Kugler, T. Goldmann, J. Rupp, and P. König, “Mechanisms of cilia-driven transport in the airways in the absence of mucus,” Am. J. Respir. Cell Mol. Biol. 51(1), 56–67 (2014).
[Crossref] [PubMed]

Birket, S. E.

Blake, J.

J. Blake, “On the movement of mucus in the lung,” J. Biomech. 8(3-4), 179–190 (1975).
[Crossref] [PubMed]

Bonin, T.

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Bouma, B. E.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Buj, C.

Button, B.

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Carruth, R. W.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chhetri, R. K.

Chu, K. K.

Chua, C. C.

L. L. Lim, J. Xie, C. C. Chua, T. Wong, L. T. Hoang, M. D. Becker, E. B. Suhler, J. T. Rosenbaum, and F. Mackensen, “In Vivo Laser Confocal Microscopy Using the HRT-Rostock Cornea Module: Diversity and Diagnostic Implications in Patients with Uveitis,” Ocul. Immunol. Inflamm. 1080, 1–10 (2017).
[PubMed]

Contag, C. H.

T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. Liu, J. M. Crawford, and C. H. Contag, “Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology,” Clin. Gastroenterol. Hepatol. 5(11), 1300–1305 (2007).
[Crossref] [PubMed]

Crawford, J. M.

T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. Liu, J. M. Crawford, and C. H. Contag, “Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology,” Clin. Gastroenterol. Hepatol. 5(11), 1300–1305 (2007).
[Crossref] [PubMed]

Cui, D.

Curatolo, A.

Drexler, W.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Eberhardt, R.

U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
[Crossref] [PubMed]

Ehrmann, K.

R. C. Bakaraju, K. Ehrmann, E. B. Papas, and A. Ho, “Depth-of-Focus and its Association with the Spherical Aberration Sign. A Ray-Tracing Analysis,” J. Optom. 3(1), 51–59 (2010).
[Crossref]

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Erdmann, J.

Fallah, M. A.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Fang, Q.

Feger, J. S.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Feng, C. H.

C. H. Feng, M. D. Miller, and R. A. Simon, “The united allergic airway: connections between allergic rhinitis, asthma, and chronic sinusitis,” Am. J. Rhinol. Allergy 26(3), 187–190 (2012).
[Crossref] [PubMed]

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[Crossref] [PubMed]

Flores, B. C.

B. C. Flores, “Robust method for the motion compensation of ISAR imagery,” Proc. SPIE 1607, 512–517 (1992).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ford, T. N.

Franke, G.

Friberg, A. T.

Friedland, S.

T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. Liu, J. M. Crawford, and C. H. Contag, “Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology,” Clin. Gastroenterol. Hepatol. 5(11), 1300–1305 (2007).
[Crossref] [PubMed]

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Fujimoto, J. G.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Galle, P. R.

M. Goetz, A. Hoffman, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Confocal laser endoscopy: new approach to the early diagnosis of tumors of the esophagus and stomach,” Future Oncol. 2(4), 469–476 (2006).
[Crossref] [PubMed]

Ganss, R.

Gardecki, J. A.

D. Cui, K. K. Chu, B. Yin, T. N. Ford, C. Hyun, H. M. Leung, J. A. Gardecki, G. M. Solomon, S. E. Birket, L. Liu, S. M. Rowe, and G. J. Tearney, “Flexible, high-resolution micro-optical coherence tomography endobronchial probe toward in vivo imaging of cilia,” Opt. Lett. 42(4), 867–870 (2017).
[Crossref] [PubMed]

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Getova, V.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Goetz, M.

M. Goetz, A. Hoffman, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Confocal laser endoscopy: new approach to the early diagnosis of tumors of the esophagus and stomach,” Future Oncol. 2(4), 469–476 (2006).
[Crossref] [PubMed]

Goldmann, T.

S. Bermbach, K. Weinhold, T. Roeder, F. Petersen, C. Kugler, T. Goldmann, J. Rupp, and P. König, “Mechanisms of cilia-driven transport in the airways in the absence of mucus,” Am. J. Respir. Cell Mol. Biol. 51(1), 56–67 (2014).
[Crossref] [PubMed]

Gorzelanny, C.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hagen-Eggert, M.

Halpern, A. C.

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref] [PubMed]

Hamzah, J.

Harris, F. J.

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[Crossref]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Hee, M. R.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Herth, F. J.

U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
[Crossref] [PubMed]

Hill, D. B.

Hillmann, D.

Ho, A.

R. C. Bakaraju, K. Ehrmann, E. B. Papas, and A. Ho, “Depth-of-Focus and its Association with the Spherical Aberration Sign. A Ray-Tracing Analysis,” J. Optom. 3(1), 51–59 (2010).
[Crossref]

Hoang, L. T.

L. L. Lim, J. Xie, C. C. Chua, T. Wong, L. T. Hoang, M. D. Becker, E. B. Suhler, J. T. Rosenbaum, and F. Mackensen, “In Vivo Laser Confocal Microscopy Using the HRT-Rostock Cornea Module: Diversity and Diagnostic Implications in Patients with Uveitis,” Ocul. Immunol. Inflamm. 1080, 1–10 (2017).
[PubMed]

Hoffman, A.

M. Goetz, A. Hoffman, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Confocal laser endoscopy: new approach to the early diagnosis of tumors of the esophagus and stomach,” Future Oncol. 2(4), 469–476 (2006).
[Crossref] [PubMed]

Holmes, J.

J. Holmes, “Theory and applications of multi-beam OCT,” in 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics, Proceedings SPIE (SPIE, 2008), 713908.
[Crossref]

Hsiung, P. L.

T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. Liu, J. M. Crawford, and C. H. Contag, “Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology,” Clin. Gastroenterol. Hepatol. 5(11), 1300–1305 (2007).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huck, V.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Hüttman, G.

M. Pieper, H. Schulz-Hildebrandt, G. Hüttman, and P. König, “Optical coherence microscopy for fast intravital imaging of airways in mice and humans with subcellular resolution,” Pneumologie 69(07), A50 (2015).
[Crossref]

Hüttmann, G.

Hyun, C.

Illing, E. A.

E. A. Illing and B. A. Woodworth, “Management of the upper airway in cystic fibrosis,” Curr. Opin. Pulm. Med. 20(6), 623–631 (2014).
[Crossref] [PubMed]

Izatt, J. A.

Kahn, N.

U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
[Crossref] [PubMed]

Karnowski, K.

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Kennedy, B. F.

Kiesslich, R.

M. Goetz, A. Hoffman, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Confocal laser endoscopy: new approach to the early diagnosis of tumors of the esophagus and stomach,” Future Oncol. 2(4), 469–476 (2006).
[Crossref] [PubMed]

Kim, J. K.

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

Knieling, F.

F. Knieling and M. J. Waldner, “Light and sound - emerging imaging techniques for inflammatory bowel disease,” World J. Gastroenterol. 22(25), 5642–5654 (2016).
[Crossref] [PubMed]

Koch, P.

Koenig, K.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

König, P.

M. Pieper, H. Schulz-Hildebrandt, G. Hüttman, and P. König, “Optical coherence microscopy for fast intravital imaging of airways in mice and humans with subcellular resolution,” Pneumologie 69(07), A50 (2015).
[Crossref]

R. Ansari, C. Buj, M. Pieper, P. König, A. Schweikard, and G. Hüttmann, “Micro-anatomical and functional assessment of ciliated epithelium in mouse trachea using optical coherence phase microscopy,” Opt. Express 23(18), 23217–23224 (2015).
[Crossref] [PubMed]

S. Bermbach, K. Weinhold, T. Roeder, F. Petersen, C. Kugler, T. Goldmann, J. Rupp, and P. König, “Mechanisms of cilia-driven transport in the airways in the absence of mucus,” Am. J. Respir. Cell Mol. Biol. 51(1), 56–67 (2014).
[Crossref] [PubMed]

Kreuter, M.

U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
[Crossref] [PubMed]

Kugler, C.

S. Bermbach, K. Weinhold, T. Roeder, F. Petersen, C. Kugler, T. Goldmann, J. Rupp, and P. König, “Mechanisms of cilia-driven transport in the airways in the absence of mucus,” Am. J. Respir. Cell Mol. Biol. 51(1), 56–67 (2014).
[Crossref] [PubMed]

Lane, P.

C. MacAulay, P. Lane, and R. Richards-Kortum, “In vivo pathology: microendoscopy as a new endoscopic imaging modality,” Gastrointest. Endosc. Clin. N. Am. 14(3), 595–620 (2004).
[Crossref] [PubMed]

Lasser, T.

Lee, K. K.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Lee, W. M.

Leitgeb, R. A.

Leung, H. M.

Leung, M. K.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Lim, L. L.

L. L. Lim, J. Xie, C. C. Chua, T. Wong, L. T. Hoang, M. D. Becker, E. B. Suhler, J. T. Rosenbaum, and F. Mackensen, “In Vivo Laser Confocal Microscopy Using the HRT-Rostock Cornea Module: Diversity and Diagnostic Implications in Patients with Uveitis,” Ocul. Immunol. Inflamm. 1080, 1–10 (2017).
[PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, J. T.

T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. Liu, J. M. Crawford, and C. H. Contag, “Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology,” Clin. Gastroenterol. Hepatol. 5(11), 1300–1305 (2007).
[Crossref] [PubMed]

Liu, L.

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Luger, T. A.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Lührs, C.

MacAulay, C.

C. MacAulay, P. Lane, and R. Richards-Kortum, “In vivo pathology: microendoscopy as a new endoscopic imaging modality,” Gastrointest. Endosc. Clin. N. Am. 14(3), 595–620 (2004).
[Crossref] [PubMed]

Mackensen, F.

L. L. Lim, J. Xie, C. C. Chua, T. Wong, L. T. Hoang, M. D. Becker, E. B. Suhler, J. T. Rosenbaum, and F. Mackensen, “In Vivo Laser Confocal Microscopy Using the HRT-Rostock Cornea Module: Diversity and Diagnostic Implications in Patients with Uveitis,” Ocul. Immunol. Inflamm. 1080, 1–10 (2017).
[PubMed]

Mall, M. A.

U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
[Crossref] [PubMed]

Marghoob, A.

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref] [PubMed]

Mariampillai, A.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Mead, R.

J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Mess, C.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Metze, D.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Miller, M. D.

C. H. Feng, M. D. Miller, and R. A. Simon, “The united allergic airway: connections between allergic rhinitis, asthma, and chronic sinusitis,” Am. J. Rhinol. Allergy 26(3), 187–190 (2012).
[Crossref] [PubMed]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Mouroulis, P.

Munce, N. R.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Myrtus, C.

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Nehal, K. S.

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref] [PubMed]

Nelder, J. A.

J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Neurath, M. F.

M. Goetz, A. Hoffman, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Confocal laser endoscopy: new approach to the early diagnosis of tumors of the esophagus and stomach,” Future Oncol. 2(4), 469–476 (2006).
[Crossref] [PubMed]

Niemeyer, V.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Noble, P. B.

Oldenburg, A. L.

Oltmanns, U.

U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
[Crossref] [PubMed]

Omar, E.

E. Omar, “Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma-a systematic review,” Head Face Med. 11(1), 6 (2015).
[Crossref] [PubMed]

Owen, G. M.

Palmowski, K.

U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
[Crossref] [PubMed]

Papas, E. B.

R. C. Bakaraju, K. Ehrmann, E. B. Papas, and A. Ho, “Depth-of-Focus and its Association with the Spherical Aberration Sign. A Ray-Tracing Analysis,” J. Optom. 3(1), 51–59 (2010).
[Crossref]

Petersen, F.

S. Bermbach, K. Weinhold, T. Roeder, F. Petersen, C. Kugler, T. Goldmann, J. Rupp, and P. König, “Mechanisms of cilia-driven transport in the airways in the absence of mucus,” Am. J. Respir. Cell Mol. Biol. 51(1), 56–67 (2014).
[Crossref] [PubMed]

Petroll, W. M.

W. M. Petroll and D. M. Robertson, “In Vivo Confocal Microscopy of the Cornea: New Developments in Image Acquisition, Reconstruction, and Analysis Using the HRT-Rostock Corneal Module,” Ocul. Surf. 13(3), 187–203 (2015).
[Crossref] [PubMed]

Pieper, M.

M. Pieper, H. Schulz-Hildebrandt, G. Hüttman, and P. König, “Optical coherence microscopy for fast intravital imaging of airways in mice and humans with subcellular resolution,” Pneumologie 69(07), A50 (2015).
[Crossref]

R. Ansari, C. Buj, M. Pieper, P. König, A. Schweikard, and G. Hüttmann, “Micro-anatomical and functional assessment of ciliated epithelium in mouse trachea using optical coherence phase microscopy,” Opt. Express 23(18), 23217–23224 (2015).
[Crossref] [PubMed]

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rajadhyaksha, M.

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref] [PubMed]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Richards-Kortum, R.

C. MacAulay, P. Lane, and R. Richards-Kortum, “In vivo pathology: microendoscopy as a new endoscopic imaging modality,” Gastrointest. Endosc. Clin. N. Am. 14(3), 595–620 (2004).
[Crossref] [PubMed]

Robertson, D. M.

W. M. Petroll and D. M. Robertson, “In Vivo Confocal Microscopy of the Cornea: New Developments in Image Acquisition, Reconstruction, and Analysis Using the HRT-Rostock Corneal Module,” Ocul. Surf. 13(3), 187–203 (2015).
[Crossref] [PubMed]

Roeder, T.

S. Bermbach, K. Weinhold, T. Roeder, F. Petersen, C. Kugler, T. Goldmann, J. Rupp, and P. König, “Mechanisms of cilia-driven transport in the airways in the absence of mucus,” Am. J. Respir. Cell Mol. Biol. 51(1), 56–67 (2014).
[Crossref] [PubMed]

Rosenbaum, J. T.

L. L. Lim, J. Xie, C. C. Chua, T. Wong, L. T. Hoang, M. D. Becker, E. B. Suhler, J. T. Rosenbaum, and F. Mackensen, “In Vivo Laser Confocal Microscopy Using the HRT-Rostock Cornea Module: Diversity and Diagnostic Implications in Patients with Uveitis,” Ocul. Immunol. Inflamm. 1080, 1–10 (2017).
[PubMed]

Rossi, A.

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref] [PubMed]

Rowe, S. M.

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Rupp, J.

S. Bermbach, K. Weinhold, T. Roeder, F. Petersen, C. Kugler, T. Goldmann, J. Rupp, and P. König, “Mechanisms of cilia-driven transport in the airways in the absence of mucus,” Am. J. Respir. Cell Mol. Biol. 51(1), 56–67 (2014).
[Crossref] [PubMed]

Ruttimann, U. E.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Sahbaie, P.

T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. Liu, J. M. Crawford, and C. H. Contag, “Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology,” Clin. Gastroenterol. Hepatol. 5(11), 1300–1305 (2007).
[Crossref] [PubMed]

Sampson, D. D.

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Schneider, S. W.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Schulz-Hildebrandt, H.

M. Pieper, H. Schulz-Hildebrandt, G. Hüttman, and P. König, “Optical coherence microscopy for fast intravital imaging of airways in mice and humans with subcellular resolution,” Pneumologie 69(07), A50 (2015).
[Crossref]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schweikard, A.

Sheppard, C. J. R.

C. J. R. Sheppard, “Super resolution in Confocal Imaging,” Optik - International Journal for Light and Electron Optics 80, 53 (1988).

Simon, R. A.

C. H. Feng, M. D. Miller, and R. A. Simon, “The united allergic airway: connections between allergic rhinitis, asthma, and chronic sinusitis,” Am. J. Rhinol. Allergy 26(3), 187–190 (2012).
[Crossref] [PubMed]

Singh, K.

Soetikno, R.

T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. Liu, J. M. Crawford, and C. H. Contag, “Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology,” Clin. Gastroenterol. Hepatol. 5(11), 1300–1305 (2007).
[Crossref] [PubMed]

Solomon, G. M.

Ständer, S.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Standish, B. A.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Steinmann, L.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Suhler, E. B.

L. L. Lim, J. Xie, C. C. Chua, T. Wong, L. T. Hoang, M. D. Becker, E. B. Suhler, J. T. Rosenbaum, and F. Mackensen, “In Vivo Laser Confocal Microscopy Using the HRT-Rostock Cornea Module: Diversity and Diagnostic Implications in Patients with Uveitis,” Ocul. Immunol. Inflamm. 1080, 1–10 (2017).
[PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G. J.

Thévenaz, P.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

Thomas, K.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Tinevez, J. Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Unglert, C.

Unnerstall, T. R.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Unser, M.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

Villiger, M.

Vitkin, I. A.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Waldner, M. J.

F. Knieling and M. J. Waldner, “Light and sound - emerging imaging techniques for inflammatory bowel disease,” World J. Gastroenterol. 22(25), 5642–5654 (2016).
[Crossref] [PubMed]

Wang, T. D.

T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. Liu, J. M. Crawford, and C. H. Contag, “Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology,” Clin. Gastroenterol. Hepatol. 5(11), 1300–1305 (2007).
[Crossref] [PubMed]

Wege, S.

U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
[Crossref] [PubMed]

Weinhold, K.

S. Bermbach, K. Weinhold, T. Roeder, F. Petersen, C. Kugler, T. Goldmann, J. Rupp, and P. König, “Mechanisms of cilia-driven transport in the airways in the absence of mucus,” Am. J. Respir. Cell Mol. Biol. 51(1), 56–67 (2014).
[Crossref] [PubMed]

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Wiebel, M.

U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
[Crossref] [PubMed]

Wielpütz, M.

U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
[Crossref] [PubMed]

Wijesinghe, P.

Wolf, E.

Wong, T.

L. L. Lim, J. Xie, C. C. Chua, T. Wong, L. T. Hoang, M. D. Becker, E. B. Suhler, J. T. Rosenbaum, and F. Mackensen, “In Vivo Laser Confocal Microscopy Using the HRT-Rostock Cornea Module: Diversity and Diagnostic Implications in Patients with Uveitis,” Ocul. Immunol. Inflamm. 1080, 1–10 (2017).
[PubMed]

Woodworth, B. A.

E. A. Illing and B. A. Woodworth, “Management of the upper airway in cystic fibrosis,” Curr. Opin. Pulm. Med. 20(6), 623–631 (2014).
[Crossref] [PubMed]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Xie, J.

L. L. Lim, J. Xie, C. C. Chua, T. Wong, L. T. Hoang, M. D. Becker, E. B. Suhler, J. T. Rosenbaum, and F. Mackensen, “In Vivo Laser Confocal Microscopy Using the HRT-Rostock Cornea Module: Diversity and Diagnostic Implications in Patients with Uveitis,” Ocul. Immunol. Inflamm. 1080, 1–10 (2017).
[PubMed]

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Yang, V. X.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Yeow, Y. L.

Yin, B.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Zens, K.

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Am. J. Respir. Cell Mol. Biol. (1)

S. Bermbach, K. Weinhold, T. Roeder, F. Petersen, C. Kugler, T. Goldmann, J. Rupp, and P. König, “Mechanisms of cilia-driven transport in the airways in the absence of mucus,” Am. J. Respir. Cell Mol. Biol. 51(1), 56–67 (2014).
[Crossref] [PubMed]

Am. J. Rhinol. Allergy (1)

C. H. Feng, M. D. Miller, and R. A. Simon, “The united allergic airway: connections between allergic rhinitis, asthma, and chronic sinusitis,” Am. J. Rhinol. Allergy 26(3), 187–190 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Clin. Gastroenterol. Hepatol. (1)

T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. Liu, J. M. Crawford, and C. H. Contag, “Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology,” Clin. Gastroenterol. Hepatol. 5(11), 1300–1305 (2007).
[Crossref] [PubMed]

Comput. J. (1)

J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Curr. Opin. Pulm. Med. (1)

E. A. Illing and B. A. Woodworth, “Management of the upper airway in cystic fibrosis,” Curr. Opin. Pulm. Med. 20(6), 623–631 (2014).
[Crossref] [PubMed]

Future Oncol. (1)

M. Goetz, A. Hoffman, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Confocal laser endoscopy: new approach to the early diagnosis of tumors of the esophagus and stomach,” Future Oncol. 2(4), 469–476 (2006).
[Crossref] [PubMed]

Gastrointest. Endosc. Clin. N. Am. (1)

C. MacAulay, P. Lane, and R. Richards-Kortum, “In vivo pathology: microendoscopy as a new endoscopic imaging modality,” Gastrointest. Endosc. Clin. N. Am. 14(3), 595–620 (2004).
[Crossref] [PubMed]

Head Face Med. (1)

E. Omar, “Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma-a systematic review,” Head Face Med. 11(1), 6 (2015).
[Crossref] [PubMed]

IEEE Trans. Image Process. (1)

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

J. Biomech. (1)

J. Blake, “On the movement of mucus in the lung,” J. Biomech. 8(3-4), 179–190 (1975).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

J. Cyst. Fibros. (2)

K. Aanæs, “Bacterial sinusitis can be a focus for initial lung colonisation and chronic lung infection in patients with cystic fibrosis,” J. Cyst. Fibros. 12(Suppl 2), S1–S20 (2013).
[Crossref] [PubMed]

U. Oltmanns, K. Palmowski, M. Wielpütz, N. Kahn, E. Baroke, R. Eberhardt, S. Wege, M. Wiebel, M. Kreuter, F. J. Herth, and M. A. Mall, “Optical coherence tomography detects structural abnormalities of the nasal mucosa in patients with cystic fibrosis,” J. Cyst. Fibros. 15(2), 216–222 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Optom. (1)

R. C. Bakaraju, K. Ehrmann, E. B. Papas, and A. Ho, “Depth-of-Focus and its Association with the Spherical Aberration Sign. A Ray-Tracing Analysis,” J. Optom. 3(1), 51–59 (2010).
[Crossref]

Lasers Surg. Med. (1)

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref] [PubMed]

Nat. Med. (2)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Nat. Methods (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Ocul. Immunol. Inflamm. (1)

L. L. Lim, J. Xie, C. C. Chua, T. Wong, L. T. Hoang, M. D. Becker, E. B. Suhler, J. T. Rosenbaum, and F. Mackensen, “In Vivo Laser Confocal Microscopy Using the HRT-Rostock Cornea Module: Diversity and Diagnostic Implications in Patients with Uveitis,” Ocul. Immunol. Inflamm. 1080, 1–10 (2017).
[PubMed]

Ocul. Surf. (1)

W. M. Petroll and D. M. Robertson, “In Vivo Confocal Microscopy of the Cornea: New Developments in Image Acquisition, Reconstruction, and Analysis Using the HRT-Rostock Corneal Module,” Ocul. Surf. 13(3), 187–203 (2015).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Optik - International Journal for Light and Electron Optics (1)

C. J. R. Sheppard, “Super resolution in Confocal Imaging,” Optik - International Journal for Light and Electron Optics 80, 53 (1988).

Phys. Med. Biol. (1)

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Pneumologie (1)

M. Pieper, H. Schulz-Hildebrandt, G. Hüttman, and P. König, “Optical coherence microscopy for fast intravital imaging of airways in mice and humans with subcellular resolution,” Pneumologie 69(07), A50 (2015).
[Crossref]

Proc. IEEE (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[Crossref]

Proc. SPIE (1)

B. C. Flores, “Robust method for the motion compensation of ISAR imagery,” Proc. SPIE 1607, 512–517 (1992).
[Crossref]

Sci. Rep. (1)

V. Huck, C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Ständer, T. A. Luger, K. Koenig, C. Mess, and S. W. Schneider, “From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin,” Sci. Rep. 6(1), 22789 (2016).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

World J. Gastroenterol. (1)

F. Knieling and M. J. Waldner, “Light and sound - emerging imaging techniques for inflammatory bowel disease,” World J. Gastroenterol. 22(25), 5642–5654 (2016).
[Crossref] [PubMed]

Z. Med. Phys. (1)

A. F. Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[Crossref] [PubMed]

Other (8)

T. R. Corle and G. S. Kino, “Confocal scanning optical microscopy and related imaging systems,” (Acad. Press, San Diego [u.a.], 1996).

R. A. M. Abdul, “Quantitative Measurement of Cellular Dynamics using Spectral Domain Optical Coherence Phase Microscopy,” Dissertation (University of Lübeck, Lübeck, 2013).

H. Schulz-Hildebrandt, M. Münter, M. Ahrens, H. Spahr, D. Hillmann, P. König, and G. Hüttmann, “Coherence and diffraction limited resolution in microscopic OCT by a unified approach for the correction of dispersion and aberrations,” in Second Canterbury Conference on Optical Coherence Tomography (2CCOT), A. G. Podoleanu and O. Bang, eds. (SPIE, University of Kent, Canterbury, UK, 2017).

J. Holmes, “Theory and applications of multi-beam OCT,” in 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics, Proceedings SPIE (SPIE, 2008), 713908.
[Crossref]

M. K. Kim, Digital holographic microscopy principles, techniques, and applications, Springer series in optical sciences (Springer, New York, NY [u.a.], 2011), pp. XVI, 237 S.

H. Schulz-Hildebrandt and G. Hüttmann, “Modelling the Influence of spherical and chromatic aberration on resolution and depth of field in OCT and OCM,” Biomed. Opt. Express in preparation (2018).

M. Born, E. Wolf, and A. B. Bhatia, Principles of optics electromagnetic theory of propagation, interference and diffraction of light, 7., (expanded) ed. (Cambridge Univ. Press, Cambridge [u.a.], 2013), pp. XXXIII, 952 S.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Co. Publishers, Englewood, Colo, 2005), pp. XVIII, 491 S.

Supplementary Material (2)

NameDescription
» Visualization 1       Endomicroscopic Optical Coherence Tomography (emOCT) imaging of in vivo human mucosal epithelium. In contrast to histology, emOCT is able to visualize dynamics processes like blood flow and mucus transport in the tissue.
» Visualization 2       Endomicroscopic Optical Coherence Tomography (emOCT) imaging of in vivo human mucosal epithelium. In time series of B-scans, mucus transport is measurable inside the human nose.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematics of the optical design of the endoscope with the scanning lens, the low NA relay and collimating GRIN rod lens and the high NA imaging lens. Outer diameter was only 1 mm, the working distance 0.25 mm.
Fig. 2
Fig. 2 Schematic illustration of the emOCT setup. FC: 50:50 fiber coupler; C1, C2: collimators; DC: dispersion compensation; RR: retroreflector; Gx, Gy: galvanometer mirror; L1: scanning lens; DAQ: digital analog converter. For detailed explanation see main text.
Fig. 3
Fig. 3 (a) Axial (•) and lateral (o) resolution in different depth. For comparison of the expected resolution with an aberration-free Gaussian beam is shown (dashed line). The beam waist was scaled to the same size as the resolution measured in the focal plane. (b) Measured axial resolution at the focal point. (c) Chromatic focal shift at different wavelength (dark line), which contributes according to the power spectrum of the light source (grey line) to the OCT signal.
Fig. 4
Fig. 4 (a) Simulation of emOCT imaging without aberrations (a), chromatic aberrations (b), spherical aberrations (c), and the combination of both aberrations (d). Simulated aberrations correspond to the aberrations measured for the endoscope.
Fig. 5
Fig. 5 Comparison of a 1300 nm OCT image with 10 µm lateral resolution to the emOCT imaging (inset) taken from the same tissue at different positions. Both images of nasal stratified squamous epithelium in the vestibule of the nose were taken in vivo and scaled to the same size. emOCT visualizes otherwise barely visible vessels (v) with high quality and even single cells can be seen (arrow).
Fig. 6
Fig. 6 Comparison of endoscopic OCT images recorded in vivo (a) with a representative methylene blue-azure II stained histological section of a nasal concha (b). Resolution of the emOCT is sufficient to resolve cilia (ci) and individual blood cells (bc) in vessels (v). Mucosal epithelium (ep) and glands (gl) are delineated from the underlying connective tissue by a different texture, which resembles cellular and fibrous structures. Mucus (mu) is often visible between the epithelium and the bright line generated by the end window (w) of the endoscope. In contrast to histology, emOCT is able to visualize dynamics processes like cilia motion, blood flow and mucus transport in the tissue (see Visualization 1).
Fig. 7
Fig. 7 Measurement of mucus transport inside the human nose. Times series of B-scans show the motion of the layer mucus on top of the epithelium in vivo (a and Visualization 2). By following motion of structures in a plane of the mucus layer (upper red dashed line, b) a transport velocity (yellow dashed line) can be determined. Plotting the OCT signal in the dashed lines over time (b, c) allows to determine changes of the lateral position of characteristic structures of mucus and epithelium. The slope of these positions over time (d) is the lateral motion velocity. In the epithelium (lower red dashed line) no net tissue motion was seen (c, d).

Metrics