Abstract

Engineered terahertz (THz) plasmonic metamaterials have emerged as promising platforms for quick infection diagnosis, cost-effective and real-time pharmacology applications owing to their non-destructive and harmless interaction with biological tissues in both in vivo and in vitro assays. As a recent member of THz metamaterials family, toroidal metamaterials have been demonstrated to be supporting high-quality sharp resonance modes. Here we introduce a THz metasensor based on a plasmonic surface consisting of metamolecules that support ultra-narrow toroidal resonances excited by the incident radiation and demonstrate detection of an ultralow concertation targeted biomarker. The toroidal plasmonic metasurface was designed and optimized through extensive numerical studies and fabricated by standard microfabrication techniques. The surface then functionalized by immobilizing the antibody for virus-envelope proteins (ZIKV-EPs) for selective sensing. We sensed and quantified the ZIKV-EP in the assays by measuring the spectral shifts of the toroidal resonances while varying the concentration. In an improved protocol, we introduced gold nanoparticles (GNPs) decorated with the same antibodies onto the metamolecules and monitored the resonance shifts for the same concentrations. Our studies verified that the presence of GNPs enhances capturing of biomarker molecules in the surrounding medium of the metamaterial. By measuring the shift of the toroidal dipolar momentum (up to Δω~0.35 cm−1) for different concentrations of the biomarker proteins, we analyzed the sensitivity, repeatability, and limit of detection (LoD) of the proposed toroidal THz metasensor. The results show that up to 100-fold sensitivity enhancement can be obtained by utilizing plasmonic nanoparticles-integrated toroidal metamolecules in comparison to analogous devices. This approach allows for detection of low molecular-weight biomolecules (≈13 kDa) in diluted solutions using toroidal THz plasmonic unit cells.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optofluidic detection of Zika nucleic acid and protein biomarkers using multimode interference multiplexing

Alexandra Stambaugh, Joshua W. Parks, Matthew A. Stott, Gopikrishnan G. Meena, Aaron R. Hawkins, and Holger Schmidt
Biomed. Opt. Express 9(8) 3725-3730 (2018)

Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response

Bingxin Han, Xiangjun Li, Chuanshuai Sui, Jinyan Diao, Xufeng Jing, and Zhi Hong
Opt. Mater. Express 8(8) 2197-2207 (2018)

Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface

Gui-Dong Liu, Xiang Zhai, Sheng-Xuan Xia, Qi Lin, Chu-Jun Zhao, and Ling-Ling Wang
Opt. Express 25(21) 26045-26054 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  2. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
    [Crossref]
  3. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [Crossref]
  4. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
    [Crossref] [PubMed]
  5. C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-based label-free nanosensor for conformation and affinity biosensing,” ACS Nano 7(9), 7583–7591 (2013).
    [Crossref] [PubMed]
  6. W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
    [Crossref]
  7. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
    [Crossref] [PubMed]
  8. L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
    [Crossref] [PubMed]
  9. J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21(21), 25159–25166 (2013).
    [Crossref] [PubMed]
  10. P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 4730 (2014).
    [Crossref] [PubMed]
  11. J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express 19(7), 5970–5978 (2011).
    [Crossref] [PubMed]
  12. X. Fang, M. Lun Tseng, J. Y. Ou, K. F. MacDonald, D. Ping Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
    [Crossref]
  13. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  14. A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A, Pure Appl. Opt. 10(9), 093002 (2008).
    [Crossref]
  15. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
    [Crossref] [PubMed]
  16. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
    [Crossref] [PubMed]
  17. M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
    [Crossref] [PubMed]
  18. I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
    [Crossref]
  19. S. Zouhdi, A. Sihvola, and A. P. Vinogradov, Metamaterials and Plasmonics: Fundamentals, Modelling, Applications (Springer, Netherlands, 2008).
  20. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  21. A. Ahmadivand, R. Sinha, M. Karabiyik, P. K. Vabbina, B. Gerislioglu, S. Kaya, and N. Pala, “Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators,” J. Nanopart. Res. 19(1), 3 (2017).
    [Crossref]
  22. L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
    [Crossref] [PubMed]
  23. J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. A 78(4), 043811 (2008).
    [Crossref]
  24. S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials (Amst.) 5(2), 64–73 (2011).
    [Crossref]
  25. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  26. M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
    [Crossref] [PubMed]
  27. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  28. J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express 19(7), 5970–5978 (2011).
    [Crossref] [PubMed]
  29. E. E. Radescu and G. Vaman, “Toroid moments in the momentum and angular momentum loss by a radiating arbitrary source,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2A), 035601 (2002).
    [Crossref] [PubMed]
  30. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
    [Crossref] [PubMed]
  31. Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).
    [Crossref]
  32. N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
    [Crossref] [PubMed]
  33. S. H. Kim, S. S. Oh, K. J. Kim, J. E. Kim, H. Y. Park, O. Hess, and C. S. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
    [Crossref]
  34. Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5(1), 11793 (2015).
    [Crossref] [PubMed]
  35. M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp toroidal resonances in planar terahertz metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
    [Crossref] [PubMed]
  36. C. Tang, J. Chen, Q. Wang, Z. Yan, B. Liu, F. Liu, and C. Sui, “Toroidal Dipolar Response in Metamaterials Composed of Metal–Dielectric–Metal Sandwich Magnetic Resonators,” IEEE Photonics J. 8(3), 1–9 (2016).
    [Crossref]
  37. A. Ahmadivand, B. Gerislioglu, and N. Pala, “Large-modulation-depth polarization-sensitive plasmonic toroidal terahertz metamaterial,” IEEE Photonics Technol. Lett. 29(21), 1860–1863 (2017).
    [Crossref]
  38. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  39. S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
    [Crossref] [PubMed]
  40. D. K. Avasthi, Y. K. Mishra, R. Singhal, D. Kabiraj, S. Mohapatra, B. Mohanta, N. K. Gohil, and N. Singh, “Synthesis of plasmonic nanocomposites for diverse applications,” J. Nanosci. Nanotechnol. 10(4), 2705–2712 (2010).
    [Crossref] [PubMed]
  41. J. H. Son, Terahertz Biomedical Science and Technology (CRC press, US, 2014).
  42. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory 52(10), 2438–2447 (2004).
    [Crossref]
  43. A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelop proteins by magnetoplasmonic toroidal metasensors,” ACS Sens 2(9), 1359–1368 (2017).
    [Crossref] [PubMed]
  44. T. Otsuji and M. Shur, “Terahertz plasmonics: Good results and great expectations,” IEEE Microw. Mag. 2014 15(7), 43–50 (2014).
    [Crossref]
  45. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of Au, Ni, and Pb at submillimeter wavelengths,” Appl. Opt. 26(4), 744–752 (1987).
    [Crossref] [PubMed]
  46. H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47(33R), 1632–1634 (2008).
    [Crossref]
  47. A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active control over the interplay between the dark and hidden sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
    [Crossref]
  48. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
    [Crossref] [PubMed]
  49. F. Miyamaru, M. Tanaka, and M. Hangyo, “Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays,” Phys. Rev. B 74(15), 153416 (2006).
    [Crossref]
  50. A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
    [Crossref] [PubMed]
  51. R. Yahiaoui, A. C. Strikwerda, and P. U. Jepsen, “Terahertz plasmonic structure with enhanced sensing capabilities,” IEEE Sens. J. 16(8), 2484–2488 (2016).
    [Crossref]
  52. V. Espina, E. C. Woodhouse, J. Wulfkuhle, H. D. Asmussen, E. F. Petricoin, and L. A. Liotta, “Protein microarray detection strategies: focus on direct detection technologies,” J. Immunol. Methods 290(1-2), 121–133 (2004).
    [Crossref] [PubMed]
  53. A. Ambrosi, F. Airò, and A. Merkoçi, “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker,” Anal. Chem. 82(3), 1151–1156 (2010).
    [Crossref] [PubMed]
  54. P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, and F. Milanovich, “PCR detection of bacteria in seven minutes,” Science 284(5413), 449–450 (1999).
    [Crossref] [PubMed]
  55. J. F. Rusling, C. V. Kumar, J. S. Gutkind, and V. Patel, “Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer,” Analyst (Lond.) 135(10), 2496–2511 (2010).
    [Crossref] [PubMed]
  56. A. Kaushik, S. Tiwari, R. D. Jayant, A. Vashist, R. Nikkhah-Moshaie, N. El-Hage, and M. Nair, “Electrochemical biosensors for early stage Zika diagnostics,” Trends Biotechnol. 35(4), 308–317 (2017).
    [Crossref] [PubMed]
  57. J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta 469(1), 3–36 (2002).
    [Crossref]
  58. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  59. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  60. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [Crossref] [PubMed]
  61. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
    [Crossref]
  62. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
    [Crossref] [PubMed]
  63. B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
    [Crossref]
  64. W. R. Erwin and R. Bardhan, “Directional Scattering and Sensing with Bimetallic Fanocubes: A Complex Fano-Resonant Plasmonic Nanostructure,” J. Phys. Chem. C 120(51), 29423–29431 (2016).
    [Crossref]
  65. L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
    [Crossref] [PubMed]
  66. C. Seco-Martorell, V. López-Domínguez, G. Arauz-Garofalo, A. Redo-Sanchez, J. Palacios, and J. Tejada, “Goya’s artwork imaging with Terahertz waves,” Opt. Express 21(15), 17800–17805 (2013).
    [Crossref] [PubMed]
  67. S. Yan, L. Xia, D. Wei, H.-L. Cui, and C. Du, “Terahertz biosensing of protein based on a metamaterial,” IEEE Int. Conf. Manipulation, Manufacturing, and Measurement on the Nanoscale, Chongqing, 327 (2016).
    [Crossref]
  68. S. J. Park, S. H. Cha, G. A. Shin, and Y. H. Ahn, “Sensing viruses using terahertz nano-gap metamaterials,” Biomed. Opt. Express 8(8), 3551–3558 (2017).
    [Crossref] [PubMed]
  69. A. Ahmadivand, B. Gerislioglu, R. Sinha, P. K. Vabbina, M. Karabiyik, and N. Pala, “Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures,” J. Infrared Millim, THz Waves 38(8), 992–1003 (2017).
  70. L. A. Currie, “Detection and Quantification Limits: Origin and Historical Overview,” Anal. Chim. Acta 391(2), 127–134 (1999).
    [Crossref]
  71. https://www.lumerical.com/
  72. N. A. Spaldin, M. Fiebig, and M. Mostovoy, “The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect,” J. Phys. Condens. Matter 20(43), 434203 (2008).
    [Crossref]
  73. W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
    [Crossref] [PubMed]
  74. V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
    [Crossref]
  75. A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
    [Crossref] [PubMed]
  76. W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole‐induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).
    [Crossref]

2017 (7)

A. Ahmadivand, R. Sinha, M. Karabiyik, P. K. Vabbina, B. Gerislioglu, S. Kaya, and N. Pala, “Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators,” J. Nanopart. Res. 19(1), 3 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Large-modulation-depth polarization-sensitive plasmonic toroidal terahertz metamaterial,” IEEE Photonics Technol. Lett. 29(21), 1860–1863 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelop proteins by magnetoplasmonic toroidal metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active control over the interplay between the dark and hidden sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

A. Kaushik, S. Tiwari, R. D. Jayant, A. Vashist, R. Nikkhah-Moshaie, N. El-Hage, and M. Nair, “Electrochemical biosensors for early stage Zika diagnostics,” Trends Biotechnol. 35(4), 308–317 (2017).
[Crossref] [PubMed]

S. J. Park, S. H. Cha, G. A. Shin, and Y. H. Ahn, “Sensing viruses using terahertz nano-gap metamaterials,” Biomed. Opt. Express 8(8), 3551–3558 (2017).
[Crossref] [PubMed]

A. Ahmadivand, B. Gerislioglu, R. Sinha, P. K. Vabbina, M. Karabiyik, and N. Pala, “Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures,” J. Infrared Millim, THz Waves 38(8), 992–1003 (2017).

2016 (8)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

W. R. Erwin and R. Bardhan, “Directional Scattering and Sensing with Bimetallic Fanocubes: A Complex Fano-Resonant Plasmonic Nanostructure,” J. Phys. Chem. C 120(51), 29423–29431 (2016).
[Crossref]

A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
[Crossref] [PubMed]

R. Yahiaoui, A. C. Strikwerda, and P. U. Jepsen, “Terahertz plasmonic structure with enhanced sensing capabilities,” IEEE Sens. J. 16(8), 2484–2488 (2016).
[Crossref]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp toroidal resonances in planar terahertz metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

C. Tang, J. Chen, Q. Wang, Z. Yan, B. Liu, F. Liu, and C. Sui, “Toroidal Dipolar Response in Metamaterials Composed of Metal–Dielectric–Metal Sandwich Magnetic Resonators,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

2015 (8)

S. H. Kim, S. S. Oh, K. J. Kim, J. E. Kim, H. Y. Park, O. Hess, and C. S. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref] [PubMed]

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[Crossref] [PubMed]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole‐induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).
[Crossref]

2014 (6)

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

T. Otsuji and M. Shur, “Terahertz plasmonics: Good results and great expectations,” IEEE Microw. Mag. 2014 15(7), 43–50 (2014).
[Crossref]

I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 4730 (2014).
[Crossref] [PubMed]

X. Fang, M. Lun Tseng, J. Y. Ou, K. F. MacDonald, D. Ping Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

2013 (6)

J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21(21), 25159–25166 (2013).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-based label-free nanosensor for conformation and affinity biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref] [PubMed]

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).
[Crossref]

C. Seco-Martorell, V. López-Domínguez, G. Arauz-Garofalo, A. Redo-Sanchez, J. Palacios, and J. Tejada, “Goya’s artwork imaging with Terahertz waves,” Opt. Express 21(15), 17800–17805 (2013).
[Crossref] [PubMed]

2012 (3)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
[Crossref] [PubMed]

2011 (8)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express 19(7), 5970–5978 (2011).
[Crossref] [PubMed]

J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express 19(7), 5970–5978 (2011).
[Crossref] [PubMed]

S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials (Amst.) 5(2), 64–73 (2011).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

2010 (5)

A. Ambrosi, F. Airò, and A. Merkoçi, “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker,” Anal. Chem. 82(3), 1151–1156 (2010).
[Crossref] [PubMed]

D. K. Avasthi, Y. K. Mishra, R. Singhal, D. Kabiraj, S. Mohapatra, B. Mohanta, N. K. Gohil, and N. Singh, “Synthesis of plasmonic nanocomposites for diverse applications,” J. Nanosci. Nanotechnol. 10(4), 2705–2712 (2010).
[Crossref] [PubMed]

J. F. Rusling, C. V. Kumar, J. S. Gutkind, and V. Patel, “Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer,” Analyst (Lond.) 135(10), 2496–2511 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref] [PubMed]

2009 (3)

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

2008 (7)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

N. A. Spaldin, M. Fiebig, and M. Mostovoy, “The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect,” J. Phys. Condens. Matter 20(43), 434203 (2008).
[Crossref]

H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47(33R), 1632–1634 (2008).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A, Pure Appl. Opt. 10(9), 093002 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. A 78(4), 043811 (2008).
[Crossref]

2007 (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

2006 (1)

F. Miyamaru, M. Tanaka, and M. Hangyo, “Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays,” Phys. Rev. B 74(15), 153416 (2006).
[Crossref]

2004 (2)

V. Espina, E. C. Woodhouse, J. Wulfkuhle, H. D. Asmussen, E. F. Petricoin, and L. A. Liotta, “Protein microarray detection strategies: focus on direct detection technologies,” J. Immunol. Methods 290(1-2), 121–133 (2004).
[Crossref] [PubMed]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory 52(10), 2438–2447 (2004).
[Crossref]

2002 (3)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta 469(1), 3–36 (2002).
[Crossref]

E. E. Radescu and G. Vaman, “Toroid moments in the momentum and angular momentum loss by a radiating arbitrary source,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2A), 035601 (2002).
[Crossref] [PubMed]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

1999 (2)

L. A. Currie, “Detection and Quantification Limits: Origin and Historical Overview,” Anal. Chim. Acta 391(2), 127–134 (1999).
[Crossref]

P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, and F. Milanovich, “PCR detection of bacteria in seven minutes,” Science 284(5413), 449–450 (1999).
[Crossref] [PubMed]

1987 (1)

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Ahmadivand, A.

A. Ahmadivand, B. Gerislioglu, R. Sinha, P. K. Vabbina, M. Karabiyik, and N. Pala, “Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures,” J. Infrared Millim, THz Waves 38(8), 992–1003 (2017).

A. Ahmadivand, R. Sinha, M. Karabiyik, P. K. Vabbina, B. Gerislioglu, S. Kaya, and N. Pala, “Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators,” J. Nanopart. Res. 19(1), 3 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Large-modulation-depth polarization-sensitive plasmonic toroidal terahertz metamaterial,” IEEE Photonics Technol. Lett. 29(21), 1860–1863 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelop proteins by magnetoplasmonic toroidal metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active control over the interplay between the dark and hidden sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
[Crossref] [PubMed]

Ahn, Y. H.

S. J. Park, S. H. Cha, G. A. Shin, and Y. H. Ahn, “Sensing viruses using terahertz nano-gap metamaterials,” Biomed. Opt. Express 8(8), 3551–3558 (2017).
[Crossref] [PubMed]

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref] [PubMed]

Airò, F.

A. Ambrosi, F. Airò, and A. Merkoçi, “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker,” Anal. Chem. 82(3), 1151–1156 (2010).
[Crossref] [PubMed]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Alexander, R. W.

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Alù, A.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A, Pure Appl. Opt. 10(9), 093002 (2008).
[Crossref]

Ambrosi, A.

A. Ambrosi, F. Airò, and A. Merkoçi, “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker,” Anal. Chem. 82(3), 1151–1156 (2010).
[Crossref] [PubMed]

Amin, M.

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Ansell, D.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Arauz-Garofalo, G.

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Asmussen, H. D.

V. Espina, E. C. Woodhouse, J. Wulfkuhle, H. D. Asmussen, E. F. Petricoin, and L. A. Liotta, “Protein microarray detection strategies: focus on direct detection technologies,” J. Immunol. Methods 290(1-2), 121–133 (2004).
[Crossref] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Avasthi, D. K.

D. K. Avasthi, Y. K. Mishra, R. Singhal, D. Kabiraj, S. Mohapatra, B. Mohanta, N. K. Gohil, and N. Singh, “Synthesis of plasmonic nanocomposites for diverse applications,” J. Nanosci. Nanotechnol. 10(4), 2705–2712 (2010).
[Crossref] [PubMed]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Bagci, H.

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref] [PubMed]

Bakker, R. M.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Bao, Y.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref] [PubMed]

Bardhan, R.

W. R. Erwin and R. Bardhan, “Directional Scattering and Sensing with Bimetallic Fanocubes: A Complex Fano-Resonant Plasmonic Nanostructure,” J. Phys. Chem. C 120(51), 29423–29431 (2016).
[Crossref]

Bartoli, F. J.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Belgrader, P.

P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, and F. Milanovich, “PCR detection of bacteria in seven minutes,” Science 284(5413), 449–450 (1999).
[Crossref] [PubMed]

Bell, R. J.

Benett, W.

P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, and F. Milanovich, “PCR detection of bacteria in seven minutes,” Science 284(5413), 449–450 (1999).
[Crossref] [PubMed]

Bhansali, S.

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelop proteins by magnetoplasmonic toroidal metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

Biran, I.

J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta 469(1), 3–36 (2002).
[Crossref]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Britnell, L.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Butz, S.

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 4730 (2014).
[Crossref] [PubMed]

Cai, W.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Cao, C.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-based label-free nanosensor for conformation and affinity biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Cha, S. H.

Chen, C.

Chen, H.

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).
[Crossref]

Chen, J.

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Chichkov, B. N.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Chipouline, A.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. A 78(4), 043811 (2008).
[Crossref]

Choi, S. J.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Cong, L.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp toroidal resonances in planar terahertz metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

Cui, H.-L.

S. Yan, L. Xia, D. Wei, H.-L. Cui, and C. Du, “Terahertz biosensing of protein based on a metamaterial,” IEEE Int. Conf. Manipulation, Manufacturing, and Measurement on the Nanoscale, Chongqing, 327 (2016).
[Crossref]

Cui, Y.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

Currie, L. A.

L. A. Currie, “Detection and Quantification Limits: Origin and Historical Overview,” Anal. Chim. Acta 391(2), 127–134 (1999).
[Crossref]

Dao, N. T.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-based label-free nanosensor for conformation and affinity biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Dayal, G.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp toroidal resonances in planar terahertz metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Ding, P.

Ding, Y. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Dodson, S. L.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-based label-free nanosensor for conformation and affinity biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Du, C.

S. Yan, L. Xia, D. Wei, H.-L. Cui, and C. Du, “Terahertz biosensing of protein based on a metamaterial,” IEEE Int. Conf. Manipulation, Manufacturing, and Measurement on the Nanoscale, Chongqing, 327 (2016).
[Crossref]

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

El-Hage, N.

A. Kaushik, S. Tiwari, R. D. Jayant, A. Vashist, R. Nikkhah-Moshaie, N. El-Hage, and M. Nair, “Electrochemical biosensors for early stage Zika diagnostics,” Trends Biotechnol. 35(4), 308–317 (2017).
[Crossref] [PubMed]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Engheta, N.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A, Pure Appl. Opt. 10(9), 093002 (2008).
[Crossref]

Epstein, J. R.

J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta 469(1), 3–36 (2002).
[Crossref]

Erwin, W. R.

W. R. Erwin and R. Bardhan, “Directional Scattering and Sensing with Bimetallic Fanocubes: A Complex Fano-Resonant Plasmonic Nanostructure,” J. Phys. Chem. C 120(51), 29423–29431 (2016).
[Crossref]

Espina, V.

V. Espina, E. C. Woodhouse, J. Wulfkuhle, H. D. Asmussen, E. F. Petricoin, and L. A. Liotta, “Protein microarray detection strategies: focus on direct detection technologies,” J. Immunol. Methods 290(1-2), 121–133 (2004).
[Crossref] [PubMed]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Evlyukhin, A. B.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Fan, C.

Fan, Y.

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).
[Crossref]

Fang, X.

X. Fang, M. Lun Tseng, J. Y. Ou, K. F. MacDonald, D. Ping Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Fang, Z.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref] [PubMed]

Farhat, M.

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref] [PubMed]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref] [PubMed]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fiebig, M.

N. A. Spaldin, M. Fiebig, and M. Mostovoy, “The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect,” J. Phys. Condens. Matter 20(43), 434203 (2008).
[Crossref]

Fistul, M. V.

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 4730 (2014).
[Crossref] [PubMed]

Fu, J. H.

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Gan, Q.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Gao, W.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

Gao, Y.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Geim, A. K.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Gerislioglu, B.

A. Ahmadivand, R. Sinha, M. Karabiyik, P. K. Vabbina, B. Gerislioglu, S. Kaya, and N. Pala, “Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators,” J. Nanopart. Res. 19(1), 3 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Large-modulation-depth polarization-sensitive plasmonic toroidal terahertz metamaterial,” IEEE Photonics Technol. Lett. 29(21), 1860–1863 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelop proteins by magnetoplasmonic toroidal metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active control over the interplay between the dark and hidden sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, R. Sinha, P. K. Vabbina, M. Karabiyik, and N. Pala, “Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures,” J. Infrared Millim, THz Waves 38(8), 992–1003 (2017).

A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gohil, N. K.

D. K. Avasthi, Y. K. Mishra, R. Singhal, D. Kabiraj, S. Mohapatra, B. Mohanta, N. K. Gohil, and N. Singh, “Synthesis of plasmonic nanocomposites for diverse applications,” J. Nanosci. Nanotechnol. 10(4), 2705–2712 (2010).
[Crossref] [PubMed]

Gorbachev, R. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Gosztola, D. J.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Gupta, M.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp toroidal resonances in planar terahertz metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Gutkind, J. S.

J. F. Rusling, C. V. Kumar, J. S. Gutkind, and V. Patel, “Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer,” Analyst (Lond.) 135(10), 2496–2511 (2010).
[Crossref] [PubMed]

Hadley, D.

P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, and F. Milanovich, “PCR detection of bacteria in seven minutes,” Science 284(5413), 449–450 (1999).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Han, S. T.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref] [PubMed]

Hangyo, M.

F. Miyamaru, M. Tanaka, and M. Hangyo, “Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays,” Phys. Rev. B 74(15), 153416 (2006).
[Crossref]

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

He, J.

Hendren, W.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Hess, O.

S. H. Kim, S. S. Oh, K. J. Kim, J. E. Kim, H. Y. Park, O. Hess, and C. S. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Hong, J. T.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref] [PubMed]

Hosako, I.

H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47(33R), 1632–1634 (2008).
[Crossref]

Hu, H.

Hua, J.

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Jalil, R.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Jayant, R. D.

A. Kaushik, S. Tiwari, R. D. Jayant, A. Vashist, R. Nikkhah-Moshaie, N. El-Hage, and M. Nair, “Electrochemical biosensors for early stage Zika diagnostics,” Trends Biotechnol. 35(4), 308–317 (2017).
[Crossref] [PubMed]

Jepsen, P. U.

R. Yahiaoui, A. C. Strikwerda, and P. U. Jepsen, “Terahertz plasmonic structure with enhanced sensing capabilities,” IEEE Sens. J. 16(8), 2484–2488 (2016).
[Crossref]

Jung, P.

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 4730 (2014).
[Crossref] [PubMed]

Kabashin, A. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Kabiraj, D.

D. K. Avasthi, Y. K. Mishra, R. Singhal, D. Kabiraj, S. Mohapatra, B. Mohanta, N. K. Gohil, and N. Singh, “Synthesis of plasmonic nanocomposites for diverse applications,” J. Nanosci. Nanotechnol. 10(4), 2705–2712 (2010).
[Crossref] [PubMed]

Kaelberer, T.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref] [PubMed]

Kang, L.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

Karabiyik, M.

A. Ahmadivand, R. Sinha, M. Karabiyik, P. K. Vabbina, B. Gerislioglu, S. Kaya, and N. Pala, “Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators,” J. Nanopart. Res. 19(1), 3 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, R. Sinha, P. K. Vabbina, M. Karabiyik, and N. Pala, “Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures,” J. Infrared Millim, THz Waves 38(8), 992–1003 (2017).

A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
[Crossref] [PubMed]

Kaushik, A.

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelop proteins by magnetoplasmonic toroidal metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

A. Kaushik, S. Tiwari, R. D. Jayant, A. Vashist, R. Nikkhah-Moshaie, N. El-Hage, and M. Nair, “Electrochemical biosensors for early stage Zika diagnostics,” Trends Biotechnol. 35(4), 308–317 (2017).
[Crossref] [PubMed]

Kaya, S.

A. Ahmadivand, R. Sinha, M. Karabiyik, P. K. Vabbina, B. Gerislioglu, S. Kaya, and N. Pala, “Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators,” J. Nanopart. Res. 19(1), 3 (2017).
[Crossref]

Kee, C. S.

S. H. Kim, S. S. Oh, K. J. Kim, J. E. Kim, H. Y. Park, O. Hess, and C. S. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Khoo, I. C.

I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Kim, D. S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref] [PubMed]

Kim, H. S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref] [PubMed]

Kim, J. E.

S. H. Kim, S. S. Oh, K. J. Kim, J. E. Kim, H. Y. Park, O. Hess, and C. S. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Kim, K. J.

S. H. Kim, S. S. Oh, K. J. Kim, J. E. Kim, H. Y. Park, O. Hess, and C. S. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Kim, S. H.

S. H. Kim, S. S. Oh, K. J. Kim, J. E. Kim, H. Y. Park, O. Hess, and C. S. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Kono, J.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

Koshelets, V. P.

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 4730 (2014).
[Crossref] [PubMed]

Kravets, V. G.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Kumar, C. V.

J. F. Rusling, C. V. Kumar, J. S. Gutkind, and V. Patel, “Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer,” Analyst (Lond.) 135(10), 2496–2511 (2010).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Lan, S.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

Lederer, F.

S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials (Amst.) 5(2), 64–73 (2011).
[Crossref]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. A 78(4), 043811 (2008).
[Crossref]

Lee, S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref] [PubMed]

Lei, B.

Leppäkangas, J.

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 4730 (2014).
[Crossref] [PubMed]

Li, H.

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).
[Crossref]

Li, S.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-based label-free nanosensor for conformation and affinity biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Liang, E.

Liotta, L. A.

V. Espina, E. C. Woodhouse, J. Wulfkuhle, H. D. Asmussen, E. F. Petricoin, and L. A. Liotta, “Protein microarray detection strategies: focus on direct detection technologies,” J. Immunol. Methods 290(1-2), 121–133 (2004).
[Crossref] [PubMed]

Liu, B.

C. Tang, J. Chen, Q. Wang, Z. Yan, B. Liu, F. Liu, and C. Sui, “Toroidal Dipolar Response in Metamaterials Composed of Metal–Dielectric–Metal Sandwich Magnetic Resonators,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

Liu, F.

C. Tang, J. Chen, Q. Wang, Z. Yan, B. Liu, F. Liu, and C. Sui, “Toroidal Dipolar Response in Metamaterials Composed of Metal–Dielectric–Metal Sandwich Magnetic Resonators,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Liu, W.

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[Crossref] [PubMed]

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole‐induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).
[Crossref]

Liu, Y.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

Long, L. L.

López-Domínguez, V.

Lu, Y.

Luk’yanchuk, B.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Lun Tseng, M.

X. Fang, M. Lun Tseng, J. Y. Ou, K. F. MacDonald, D. Ping Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Ma, Y.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

MacDonald, K. F.

X. Fang, M. Lun Tseng, J. Y. Ou, K. F. MacDonald, D. Ping Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Manickam, P.

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelop proteins by magnetoplasmonic toroidal metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

Mariella, R.

P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, and F. Milanovich, “PCR detection of bacteria in seven minutes,” Science 284(5413), 449–450 (1999).
[Crossref] [PubMed]

Marthaler, M.

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 4730 (2014).
[Crossref] [PubMed]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Meng, F. Y.

Menzel, C.

S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials (Amst.) 5(2), 64–73 (2011).
[Crossref]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. A 78(4), 043811 (2008).
[Crossref]

Merkoçi, A.

A. Ambrosi, F. Airò, and A. Merkoçi, “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker,” Anal. Chem. 82(3), 1151–1156 (2010).
[Crossref] [PubMed]

Milanovich, F.

P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, and F. Milanovich, “PCR detection of bacteria in seven minutes,” Science 284(5413), 449–450 (1999).
[Crossref] [PubMed]

Ming, H.

Miroshnichenko, A. E.

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[Crossref] [PubMed]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole‐induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).
[Crossref]

Mishra, Y. K.

D. K. Avasthi, Y. K. Mishra, R. Singhal, D. Kabiraj, S. Mohapatra, B. Mohanta, N. K. Gohil, and N. Singh, “Synthesis of plasmonic nanocomposites for diverse applications,” J. Nanosci. Nanotechnol. 10(4), 2705–2712 (2010).
[Crossref] [PubMed]

Miyamaru, F.

F. Miyamaru, M. Tanaka, and M. Hangyo, “Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays,” Phys. Rev. B 74(15), 153416 (2006).
[Crossref]

Mohanta, B.

D. K. Avasthi, Y. K. Mishra, R. Singhal, D. Kabiraj, S. Mohapatra, B. Mohanta, N. K. Gohil, and N. Singh, “Synthesis of plasmonic nanocomposites for diverse applications,” J. Nanosci. Nanotechnol. 10(4), 2705–2712 (2010).
[Crossref] [PubMed]

Mohapatra, S.

D. K. Avasthi, Y. K. Mishra, R. Singhal, D. Kabiraj, S. Mohapatra, B. Mohanta, N. K. Gohil, and N. Singh, “Synthesis of plasmonic nanocomposites for diverse applications,” J. Nanosci. Nanotechnol. 10(4), 2705–2712 (2010).
[Crossref] [PubMed]

Mostovoy, M.

N. A. Spaldin, M. Fiebig, and M. Mostovoy, “The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect,” J. Phys. Condens. Matter 20(43), 434203 (2008).
[Crossref]

Mühlig, S.

S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials (Amst.) 5(2), 64–73 (2011).
[Crossref]

Nair, M.

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelop proteins by magnetoplasmonic toroidal metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

A. Kaushik, S. Tiwari, R. D. Jayant, A. Vashist, R. Nikkhah-Moshaie, N. El-Hage, and M. Nair, “Electrochemical biosensors for early stage Zika diagnostics,” Trends Biotechnol. 35(4), 308–317 (2017).
[Crossref] [PubMed]

Nikkhah-Moshaie, R.

A. Kaushik, S. Tiwari, R. D. Jayant, A. Vashist, R. Nikkhah-Moshaie, N. El-Hage, and M. Nair, “Electrochemical biosensors for early stage Zika diagnostics,” Trends Biotechnol. 35(4), 308–317 (2017).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Novoselov, K. S.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Oh, S. S.

S. H. Kim, S. S. Oh, K. J. Kim, J. E. Kim, H. Y. Park, O. Hess, and C. S. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Ordal, M. A.

Otsuji, T.

T. Otsuji and M. Shur, “Terahertz plasmonics: Good results and great expectations,” IEEE Microw. Mag. 2014 15(7), 43–50 (2014).
[Crossref]

Ou, J. Y.

X. Fang, M. Lun Tseng, J. Y. Ou, K. F. MacDonald, D. Ping Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Pala, N.

A. Ahmadivand, R. Sinha, M. Karabiyik, P. K. Vabbina, B. Gerislioglu, S. Kaya, and N. Pala, “Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators,” J. Nanopart. Res. 19(1), 3 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelop proteins by magnetoplasmonic toroidal metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active control over the interplay between the dark and hidden sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Large-modulation-depth polarization-sensitive plasmonic toroidal terahertz metamaterial,” IEEE Photonics Technol. Lett. 29(21), 1860–1863 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, R. Sinha, P. K. Vabbina, M. Karabiyik, and N. Pala, “Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures,” J. Infrared Millim, THz Waves 38(8), 992–1003 (2017).

A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
[Crossref] [PubMed]

Palacios, J.

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref] [PubMed]

Park, H. Y.

S. H. Kim, S. S. Oh, K. J. Kim, J. E. Kim, H. Y. Park, O. Hess, and C. S. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Park, J. Y.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref] [PubMed]

Park, S. J.

S. J. Park, S. H. Cha, G. A. Shin, and Y. H. Ahn, “Sensing viruses using terahertz nano-gap metamaterials,” Biomed. Opt. Express 8(8), 3551–3558 (2017).
[Crossref] [PubMed]

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref] [PubMed]

Park, W. K.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref] [PubMed]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Patel, V.

J. F. Rusling, C. V. Kumar, J. S. Gutkind, and V. Patel, “Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer,” Analyst (Lond.) 135(10), 2496–2511 (2010).
[Crossref] [PubMed]

Pertsch, T.

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. A 78(4), 043811 (2008).
[Crossref]

Petricoin, E. F.

V. Espina, E. C. Woodhouse, J. Wulfkuhle, H. D. Asmussen, E. F. Petricoin, and L. A. Liotta, “Protein microarray detection strategies: focus on direct detection technologies,” J. Immunol. Methods 290(1-2), 121–133 (2004).
[Crossref] [PubMed]

Petschulat, J.

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. A 78(4), 043811 (2008).
[Crossref]

Phan, A. T.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-based label-free nanosensor for conformation and affinity biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Ping Tsai, D.

X. Fang, M. Lun Tseng, J. Y. Ou, K. F. MacDonald, D. Ping Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Plum, E.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

Podolskiy, V. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pollard, R.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Qiu, M.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Querry, M. R.

Radescu, E. E.

E. E. Radescu and G. Vaman, “Toroid moments in the momentum and angular momentum loss by a radiating arbitrary source,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2A), 035601 (2002).
[Crossref] [PubMed]

Raybould, T. A.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

Redo-Sanchez, A.

Ren, M.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Richards, J.

P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, and F. Milanovich, “PCR detection of bacteria in seven minutes,” Science 284(5413), 449–450 (1999).
[Crossref] [PubMed]

Rockstuhl, C.

S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials (Amst.) 5(2), 64–73 (2011).
[Crossref]

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. A 78(4), 043811 (2008).
[Crossref]

Rodrigues, S. P.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

Rusling, J. F.

J. F. Rusling, C. V. Kumar, J. S. Gutkind, and V. Patel, “Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer,” Analyst (Lond.) 135(10), 2496–2511 (2010).
[Crossref] [PubMed]

Savinov, V.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp toroidal resonances in planar terahertz metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

Schedin, F.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Seco-Martorell, C.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Shin, G. A.

Shu, J.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

Shur, M.

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory 52(10), 2438–2447 (2004).
[Crossref]

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Singh, N.

D. K. Avasthi, Y. K. Mishra, R. Singhal, D. Kabiraj, S. Mohapatra, B. Mohanta, N. K. Gohil, and N. Singh, “Synthesis of plasmonic nanocomposites for diverse applications,” J. Nanosci. Nanotechnol. 10(4), 2705–2712 (2010).
[Crossref] [PubMed]

Singh, R.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp toroidal resonances in planar terahertz metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

Singhal, R.

D. K. Avasthi, Y. K. Mishra, R. Singhal, D. Kabiraj, S. Mohapatra, B. Mohanta, N. K. Gohil, and N. Singh, “Synthesis of plasmonic nanocomposites for diverse applications,” J. Nanosci. Nanotechnol. 10(4), 2705–2712 (2010).
[Crossref] [PubMed]

Sinha, R.

A. Ahmadivand, R. Sinha, M. Karabiyik, P. K. Vabbina, B. Gerislioglu, S. Kaya, and N. Pala, “Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators,” J. Nanopart. Res. 19(1), 3 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, R. Sinha, P. K. Vabbina, M. Karabiyik, and N. Pala, “Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures,” J. Infrared Millim, THz Waves 38(8), 992–1003 (2017).

A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
[Crossref] [PubMed]

Soukoulis, C. M.

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).
[Crossref]

Spaldin, N. A.

N. A. Spaldin, M. Fiebig, and M. Mostovoy, “The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect,” J. Phys. Condens. Matter 20(43), 434203 (2008).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Stratton, P.

P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, and F. Milanovich, “PCR detection of bacteria in seven minutes,” Science 284(5413), 449–450 (1999).
[Crossref] [PubMed]

Strikwerda, A. C.

R. Yahiaoui, A. C. Strikwerda, and P. U. Jepsen, “Terahertz plasmonic structure with enhanced sensing capabilities,” IEEE Sens. J. 16(8), 2484–2488 (2016).
[Crossref]

Sui, C.

C. Tang, J. Chen, Q. Wang, Z. Yan, B. Liu, F. Liu, and C. Sui, “Toroidal Dipolar Response in Metamaterials Composed of Metal–Dielectric–Metal Sandwich Magnetic Resonators,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

Tanaka, M.

F. Miyamaru, M. Tanaka, and M. Hangyo, “Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays,” Phys. Rev. B 74(15), 153416 (2006).
[Crossref]

Tang, C.

C. Tang, J. Chen, Q. Wang, Z. Yan, B. Liu, F. Liu, and C. Sui, “Toroidal Dipolar Response in Metamaterials Composed of Metal–Dielectric–Metal Sandwich Magnetic Resonators,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Tejada, J.

Thackray, B.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Tiwari, S.

A. Kaushik, S. Tiwari, R. D. Jayant, A. Vashist, R. Nikkhah-Moshaie, N. El-Hage, and M. Nair, “Electrochemical biosensors for early stage Zika diagnostics,” Trends Biotechnol. 35(4), 308–317 (2017).
[Crossref] [PubMed]

Tsai, D. P.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref] [PubMed]

Tünnermann, A.

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. A 78(4), 043811 (2008).
[Crossref]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Ustinov, A. V.

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 4730 (2014).
[Crossref] [PubMed]

Vabbina, P. K.

A. Ahmadivand, R. Sinha, M. Karabiyik, P. K. Vabbina, B. Gerislioglu, S. Kaya, and N. Pala, “Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators,” J. Nanopart. Res. 19(1), 3 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, R. Sinha, P. K. Vabbina, M. Karabiyik, and N. Pala, “Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures,” J. Infrared Millim, THz Waves 38(8), 992–1003 (2017).

Vaman, G.

E. E. Radescu and G. Vaman, “Toroid moments in the momentum and angular momentum loss by a radiating arbitrary source,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2A), 035601 (2002).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Vashist, A.

A. Kaushik, S. Tiwari, R. D. Jayant, A. Vashist, R. Nikkhah-Moshaie, N. El-Hage, and M. Nair, “Electrochemical biosensors for early stage Zika diagnostics,” Trends Biotechnol. 35(4), 308–317 (2017).
[Crossref] [PubMed]

Walt, D. R.

J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta 469(1), 3–36 (2002).
[Crossref]

Wang, C.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Wang, J.

Wang, P.

Wang, Q.

C. Tang, J. Chen, Q. Wang, Z. Yan, B. Liu, F. Liu, and C. Sui, “Toroidal Dipolar Response in Metamaterials Composed of Metal–Dielectric–Metal Sandwich Magnetic Resonators,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

Wang, S.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp toroidal resonances in planar terahertz metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-based label-free nanosensor for conformation and affinity biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wei, D.

S. Yan, L. Xia, D. Wei, H.-L. Cui, and C. Du, “Terahertz biosensing of protein based on a metamaterial,” IEEE Int. Conf. Manipulation, Manufacturing, and Measurement on the Nanoscale, Chongqing, 327 (2016).
[Crossref]

Wei, Z.

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).
[Crossref]

Wen, X.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-based label-free nanosensor for conformation and affinity biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Werner, D. H.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

Wiederrecht, G. P.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Wong, L. M.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-based label-free nanosensor for conformation and affinity biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Woodhouse, E. C.

V. Espina, E. C. Woodhouse, J. Wulfkuhle, H. D. Asmussen, E. F. Petricoin, and L. A. Liotta, “Protein microarray detection strategies: focus on direct detection technologies,” J. Immunol. Methods 290(1-2), 121–133 (2004).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Wu, Q.

Wulfkuhle, J.

V. Espina, E. C. Woodhouse, J. Wulfkuhle, H. D. Asmussen, E. F. Petricoin, and L. A. Liotta, “Protein microarray detection strategies: focus on direct detection technologies,” J. Immunol. Methods 290(1-2), 121–133 (2004).
[Crossref] [PubMed]

Wurtz, G. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Xia, L.

S. Yan, L. Xia, D. Wei, H.-L. Cui, and C. Du, “Terahertz biosensing of protein based on a metamaterial,” IEEE Int. Conf. Manipulation, Manufacturing, and Measurement on the Nanoscale, Chongqing, 327 (2016).
[Crossref]

Xie, L.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

Xiong, Q.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-based label-free nanosensor for conformation and affinity biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Xu, J.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

Xu, N.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp toroidal resonances in planar terahertz metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

Xu, W.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Xu, X.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Xue, Q.

Yahiaoui, R.

R. Yahiaoui, A. C. Strikwerda, and P. U. Jepsen, “Terahertz plasmonic structure with enhanced sensing capabilities,” IEEE Sens. J. 16(8), 2484–2488 (2016).
[Crossref]

Yan, S.

S. Yan, L. Xia, D. Wei, H.-L. Cui, and C. Du, “Terahertz biosensing of protein based on a metamaterial,” IEEE Int. Conf. Manipulation, Manufacturing, and Measurement on the Nanoscale, Chongqing, 327 (2016).
[Crossref]

Yan, Z.

C. Tang, J. Chen, Q. Wang, Z. Yan, B. Liu, F. Liu, and C. Sui, “Toroidal Dipolar Response in Metamaterials Composed of Metal–Dielectric–Metal Sandwich Magnetic Resonators,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Yasuda, H.

H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47(33R), 1632–1634 (2008).
[Crossref]

Ye, Z.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Ying, Y.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

Yu, Y. F.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Yuan, B.

Zayats, A. V.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Zeng, B.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Zhan, Q.

Zhang, J.

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[Crossref] [PubMed]

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole‐induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).
[Crossref]

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-based label-free nanosensor for conformation and affinity biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp toroidal resonances in planar terahertz metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp toroidal resonances in planar terahertz metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

X. Fang, M. Lun Tseng, J. Y. Ou, K. F. MacDonald, D. Ping Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref] [PubMed]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Zhu, J.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Zhu, L.

Zhu, X.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref] [PubMed]

ACS Nano (1)

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-based label-free nanosensor for conformation and affinity biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

ACS Sens (1)

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid detection of infectious envelop proteins by magnetoplasmonic toroidal metasensors,” ACS Sens 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

Adv. Mater. (3)

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp toroidal resonances in planar terahertz metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Anal. Chem. (1)

A. Ambrosi, F. Airò, and A. Merkoçi, “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker,” Anal. Chem. 82(3), 1151–1156 (2010).
[Crossref] [PubMed]

Anal. Chim. Acta (2)

J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta 469(1), 3–36 (2002).
[Crossref]

L. A. Currie, “Detection and Quantification Limits: Origin and Historical Overview,” Anal. Chim. Acta 391(2), 127–134 (1999).
[Crossref]

Analyst (Lond.) (1)

J. F. Rusling, C. V. Kumar, J. S. Gutkind, and V. Patel, “Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer,” Analyst (Lond.) 135(10), 2496–2511 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

X. Fang, M. Lun Tseng, J. Y. Ou, K. F. MacDonald, D. Ping Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Biomed. Opt. Express (1)

IEEE Microw. Mag. 2014 (1)

T. Otsuji and M. Shur, “Terahertz plasmonics: Good results and great expectations,” IEEE Microw. Mag. 2014 15(7), 43–50 (2014).
[Crossref]

IEEE Photonics J. (1)

C. Tang, J. Chen, Q. Wang, Z. Yan, B. Liu, F. Liu, and C. Sui, “Toroidal Dipolar Response in Metamaterials Composed of Metal–Dielectric–Metal Sandwich Magnetic Resonators,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Large-modulation-depth polarization-sensitive plasmonic toroidal terahertz metamaterial,” IEEE Photonics Technol. Lett. 29(21), 1860–1863 (2017).
[Crossref]

IEEE Sens. J. (1)

R. Yahiaoui, A. C. Strikwerda, and P. U. Jepsen, “Terahertz plasmonic structure with enhanced sensing capabilities,” IEEE Sens. J. 16(8), 2484–2488 (2016).
[Crossref]

IEEE Trans. Microw. Theory (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory 52(10), 2438–2447 (2004).
[Crossref]

J. Immunol. Methods (1)

V. Espina, E. C. Woodhouse, J. Wulfkuhle, H. D. Asmussen, E. F. Petricoin, and L. A. Liotta, “Protein microarray detection strategies: focus on direct detection technologies,” J. Immunol. Methods 290(1-2), 121–133 (2004).
[Crossref] [PubMed]

J. Infrared Millim, THz Waves (1)

A. Ahmadivand, B. Gerislioglu, R. Sinha, P. K. Vabbina, M. Karabiyik, and N. Pala, “Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures,” J. Infrared Millim, THz Waves 38(8), 992–1003 (2017).

J. Nanopart. Res. (1)

A. Ahmadivand, R. Sinha, M. Karabiyik, P. K. Vabbina, B. Gerislioglu, S. Kaya, and N. Pala, “Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators,” J. Nanopart. Res. 19(1), 3 (2017).
[Crossref]

J. Nanosci. Nanotechnol. (1)

D. K. Avasthi, Y. K. Mishra, R. Singhal, D. Kabiraj, S. Mohapatra, B. Mohanta, N. K. Gohil, and N. Singh, “Synthesis of plasmonic nanocomposites for diverse applications,” J. Nanosci. Nanotechnol. 10(4), 2705–2712 (2010).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A, Pure Appl. Opt. 10(9), 093002 (2008).
[Crossref]

J. Phys. Chem. C (2)

W. R. Erwin and R. Bardhan, “Directional Scattering and Sensing with Bimetallic Fanocubes: A Complex Fano-Resonant Plasmonic Nanostructure,” J. Phys. Chem. C 120(51), 29423–29431 (2016).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active control over the interplay between the dark and hidden sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

J. Phys. Condens. Matter (1)

N. A. Spaldin, M. Fiebig, and M. Mostovoy, “The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect,” J. Phys. Condens. Matter 20(43), 434203 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47(33R), 1632–1634 (2008).
[Crossref]

Laser Photonics Rev. (1)

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole‐induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).
[Crossref]

Metamaterials (Amst.) (1)

S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials (Amst.) 5(2), 64–73 (2011).
[Crossref]

Nat. Commun. (3)

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting metamaterial,” Nat. Commun. 5, 4730 (2014).
[Crossref] [PubMed]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Nat. Mater. (10)

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (1)

J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. A 78(4), 043811 (2008).
[Crossref]

Phys. Rev. B (6)

S. H. Kim, S. S. Oh, K. J. Kim, J. E. Kim, H. Y. Park, O. Hess, and C. S. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).
[Crossref]

F. Miyamaru, M. Tanaka, and M. Hangyo, “Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays,” Phys. Rev. B 74(15), 153416 (2006).
[Crossref]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

E. E. Radescu and G. Vaman, “Toroid moments in the momentum and angular momentum loss by a radiating arbitrary source,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2A), 035601 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

Sci. Rep. (4)

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref] [PubMed]

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref] [PubMed]

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5(1), 8671 (2015).
[Crossref] [PubMed]

Science (3)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, and F. Milanovich, “PCR detection of bacteria in seven minutes,” Science 284(5413), 449–450 (1999).
[Crossref] [PubMed]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref] [PubMed]

Trends Biotechnol. (1)

A. Kaushik, S. Tiwari, R. D. Jayant, A. Vashist, R. Nikkhah-Moshaie, N. El-Hage, and M. Nair, “Electrochemical biosensors for early stage Zika diagnostics,” Trends Biotechnol. 35(4), 308–317 (2017).
[Crossref] [PubMed]

Other (4)

S. Yan, L. Xia, D. Wei, H.-L. Cui, and C. Du, “Terahertz biosensing of protein based on a metamaterial,” IEEE Int. Conf. Manipulation, Manufacturing, and Measurement on the Nanoscale, Chongqing, 327 (2016).
[Crossref]

https://www.lumerical.com/

S. Zouhdi, A. Sihvola, and A. P. Vinogradov, Metamaterials and Plasmonics: Fundamentals, Modelling, Applications (Springer, Netherlands, 2008).

J. H. Son, Terahertz Biomedical Science and Technology (CRC press, US, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Artistic rendering of the toroidal unit cell. (b) Geometrical parameters of the unit cell. (c) SEM image of the fabricated metasurface. (d) Schematics of the formation of head-to-tail arrangement correlating with the toroidal momentum between the proximal resonators with the direction of magnetic momenta. (e) A schematic representation of the BWO setup used to characterize the spectral response of the metasensor.
Fig. 2
Fig. 2 (a), (b), and (c) Normalized transmission amplitude for the toroidal metamaterials with three different gap distances g=7 μm, 5 μm, and 3 μm, respectively.(d) Local near-field map of the E-field enhancement at the gaps at the toroidal mode frequency. (e) Surface current plot for the current across the structure and formation of toroidal mode. (f) A cross-sectional yz-plane of the resonators, showing the head-to-tail magnetic moments forming the toroidal moment in a vectorial map.
Fig. 3
Fig. 3 (a) Surface current as a function of x-axis for three different gap spacing. (b) The toroidal scattering intensity as a function of frequency for three different gap spacing. (c) The Q factor of the toroidal lineshape and dephasing time (τ) as a function of three different gap spacing.
Fig. 4
Fig. 4 (a) Schematic flowchart of functionalized gold nanoparticle conjugation with the ZIKV-AB and ZIKV-EPs NS1 with the explanation for different parts. (b) Schematic representation of gold nanoparticles-integrated toroidal unit cells. (c) and (d) The SEM images of plasmonic metamolecule in the presence of GNPs with AB and ZIKV-EPs, respectively.
Fig. 5
Fig. 5 (a), (b) TEM images of functionalized GNPs binding with AB in two different scales. (c) The TEM image of ZIKV-EPs captured by AB-conjugated GNPs.
Fig. 6
Fig. 6 (a) The transmission amplitude spectra for the fabricated metasurfaces in both W/ and W/O GNPs regimes in the presence of ZIKV-AB and ZIKV-EPs with different concentrations. (b) The toroidal resonance shift as a function of ZIKV-EPs concentration W/ and W/O GNPs with the corresponding determination coefficient. (c) The magnified transmission spectra as a function of frequency, showing the maximum shift of the toroidal moment in the presence and absence of GNPs attached to the system.
Fig. 7
Fig. 7 (a) and (b) The toroidal resonance shift (Δω) and Q factor as a function to time in hours for the presence and absence of GNPs, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E s = ( μ 0 k c 2 2 A 2 ) [ i { r ^ ( m k 2 m ( 1 ) / 10 ) p } k ( T x y k 2 T ( 1 ) 10 ) ] exp ( i k r )

Metrics