Abstract

We propose a new method of determining the optical axis (OA), pupillary axis (PA), and visual axis (VA) of the human eye by using dual-depth whole-eye optical coherence tomography (OCT). These axes, as well as the angles “α” between the OA and VA and “κ” between PA and VA, are important in many ophthalmologic applications, especially in refractive surgery. Whole-eye images are reconstructed based on simultaneously acquired images of the anterior segment and retina. The light from a light source is split into two orthogonal polarization components for imaging the anterior segment and retina, respectively. The OA and PA are identified based on their geometric definitions by using the anterior segment image only, while the VA is detected through accurate correlation between the two images. The feasibility of our approach was tested using a model eye and human subjects.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution, dual-depth spectral-domain optical coherence tomography with interlaced detection for whole-eye imaging

Hyung-Jin Kim, Pil Un Kim, Min Gyu Hyeon, Youngwoon Choi, Jeehyun Kim, and Beop-Min Kim
Appl. Opt. 55(26) 7212-7217 (2016)

Dual band dual focus optical coherence tomography for imaging the whole eye segment

Shanhui Fan, Lin Li, Qian Li, Cuixia Dai, Qiushi Ren, Shuliang Jiao, and Chuanqing Zhou
Biomed. Opt. Express 6(7) 2481-2493 (2015)

Optical coherence tomography for whole eye segment imaging

Cuixia Dai, Chuanqing Zhou, Shanhui Fan, Zhe Chen, Xinyu Chai, Qiushi Ren, and Shuliang Jiao
Opt. Express 20(6) 6109-6115 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Arba Mosquera, S. Verma, and C. McAlinden, “Centration axis in refractive surgery,” Eye Vis (Lond) 2(1), 4 (2015).
    [Crossref] [PubMed]
  2. K. V. Avudainayagam and C. S. Avudainayagam, “Simple method to measure the visual axis of the human eye,” Opt. Lett. 36(10), 1803–1805 (2011).
    [Crossref] [PubMed]
  3. M. Moshirfar, R. N. Hoggan, and V. Muthappan, “Angle Kappa and its importance in refractive surgery,” Oman J. Ophthalmol. 6(3), 151–158 (2013).
    [Crossref] [PubMed]
  4. C. Y. Park, S. Y. Oh, and R. S. Chuck, “Measurement of angle kappa and centration in refractive surgery,” Curr. Opin. Ophthalmol. 23(4), 269–275 (2012).
    [Crossref] [PubMed]
  5. B. Bouma, Handbook of Optical Coherence Tomography (Informa Health Care, 2001).
  6. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref] [PubMed]
  7. M. H. Frosz, M. Juhl, and M. H. Lang, Optical Coherence Tomography: System Design and Noise Analysis (Risø National Laboratory, 2001).
  8. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20(6), 6109–6115 (2012).
    [Crossref] [PubMed]
  9. S. Fan, L. Li, Q. Li, C. Dai, Q. Ren, S. Jiao, and C. Zhou, “Dual band dual focus optical coherence tomography for imaging the whole eye segment,” Biomed. Opt. Express 6(7), 2481–2493 (2015).
    [Crossref] [PubMed]
  10. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J.-M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
    [Crossref] [PubMed]
  11. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  12. H.-J. Kim, P. U. Kim, M. G. Hyeon, Y. Choi, J. Kim, and B.-M. Kim, “High-resolution, dual-depth spectral-domain optical coherence tomography with interlaced detection for whole-eye imaging,” Appl. Opt. 55(26), 7212–7217 (2016).
    [Crossref] [PubMed]
  13. S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: An application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
    [Crossref] [PubMed]
  14. A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
    [Crossref] [PubMed]
  15. H.-W. Jeong, S.-W. Lee, and B.-M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express 20(17), 19148–19159 (2012).
    [Crossref] [PubMed]
  16. H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express 2(8), 2175–2188 (2011).
    [Crossref] [PubMed]
  17. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
    [Crossref] [PubMed]
  18. S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004).
    [Crossref] [PubMed]
  19. V. Westphal, A. Rollins, S. Radhakrishnan, and J. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
    [Crossref] [PubMed]
  20. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
    [Crossref] [PubMed]
  21. H. J. Shammas, S. Ortiz, M. C. Shammas, S. H. Kim, and C. Chong, “Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer,” J. Cataract Refract. Surg. 42(1), 50–61 (2016).
    [Crossref] [PubMed]
  22. R. F. Steinert and D. Huang, Anterior Segment Optical Coherence Tomography (SLACK Incorporated, 2008).
  23. H. Hashemi, M. KhabazKhoob, K. Yazdani, S. Mehravaran, E. Jafarzadehpur, and A. Fotouhi, “Distribution of angle kappa measurements with Orbscan II in a population-based survey,” J. Refract. Surg. 26(12), 966–971 (2010).
    [Crossref] [PubMed]
  24. M. C. Dunne, G. P. Misson, E. K. White, and D. A. Barnes, “Peripheral astigmatic asymmetry and angle alpha,” Ophthalmic Physiol. Opt. 13(3), 303–305 (1993).
    [Crossref] [PubMed]
  25. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
    [Crossref] [PubMed]
  26. S. R. Choi and U. S. Kim, “The correlation between angle kappa and ocular biometry in Koreans,” Korean J. Ophthalmol. 27(6), 421–424 (2013).
    [Crossref] [PubMed]
  27. H. Basmak, A. Sahin, N. Yildirim, T. D. Papakostas, and A. J. Kanellopoulos, “Measurement of angle kappa with synoptophore and Orbscan II in a normal population,” J. Refract. Surg. 23(5), 456–460 (2007).
    [PubMed]
  28. B. N. Hwang, M. H. Son, and I. G. Won, “Angle kappa measurement with slit lamp biomicroscope,” Korean J. Ophthalmol. Soc. 43, 2005–2009 (2002).
  29. J. H. Yeo, N. J. Moon, and J. K. Lee, “Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography,” Korean J. Ophthalmol. 31(3), 257–262 (2017).
    [Crossref] [PubMed]

2017 (1)

J. H. Yeo, N. J. Moon, and J. K. Lee, “Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography,” Korean J. Ophthalmol. 31(3), 257–262 (2017).
[Crossref] [PubMed]

2016 (2)

H. J. Shammas, S. Ortiz, M. C. Shammas, S. H. Kim, and C. Chong, “Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer,” J. Cataract Refract. Surg. 42(1), 50–61 (2016).
[Crossref] [PubMed]

H.-J. Kim, P. U. Kim, M. G. Hyeon, Y. Choi, J. Kim, and B.-M. Kim, “High-resolution, dual-depth spectral-domain optical coherence tomography with interlaced detection for whole-eye imaging,” Appl. Opt. 55(26), 7212–7217 (2016).
[Crossref] [PubMed]

2015 (2)

2013 (4)

2012 (6)

2011 (2)

2010 (1)

H. Hashemi, M. KhabazKhoob, K. Yazdani, S. Mehravaran, E. Jafarzadehpur, and A. Fotouhi, “Distribution of angle kappa measurements with Orbscan II in a population-based survey,” J. Refract. Surg. 26(12), 966–971 (2010).
[Crossref] [PubMed]

2007 (1)

H. Basmak, A. Sahin, N. Yildirim, T. D. Papakostas, and A. J. Kanellopoulos, “Measurement of angle kappa with synoptophore and Orbscan II in a normal population,” J. Refract. Surg. 23(5), 456–460 (2007).
[PubMed]

2005 (1)

2004 (2)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004).
[Crossref] [PubMed]

2002 (2)

1997 (1)

1993 (1)

M. C. Dunne, G. P. Misson, E. K. White, and D. A. Barnes, “Peripheral astigmatic asymmetry and angle alpha,” Ophthalmic Physiol. Opt. 13(3), 303–305 (1993).
[Crossref] [PubMed]

Akiba, M.

Arba Mosquera, S.

S. Arba Mosquera, S. Verma, and C. McAlinden, “Centration axis in refractive surgery,” Eye Vis (Lond) 2(1), 4 (2015).
[Crossref] [PubMed]

Avudainayagam, C. S.

Avudainayagam, K. V.

Barnes, D. A.

M. C. Dunne, G. P. Misson, E. K. White, and D. A. Barnes, “Peripheral astigmatic asymmetry and angle alpha,” Ophthalmic Physiol. Opt. 13(3), 303–305 (1993).
[Crossref] [PubMed]

Basmak, H.

H. Basmak, A. Sahin, N. Yildirim, T. D. Papakostas, and A. J. Kanellopoulos, “Measurement of angle kappa with synoptophore and Orbscan II in a normal population,” J. Refract. Surg. 23(5), 456–460 (2007).
[PubMed]

Baumann, B.

Birkenfeld, J.

Bouma, B.

Bustamante, T.

Cable, A. E.

Chai, X.

Chan, K.-P.

Charalambous, I.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Chen, Z.

Chinn, S. R.

Choi, S. R.

S. R. Choi and U. S. Kim, “The correlation between angle kappa and ocular biometry in Koreans,” Korean J. Ophthalmol. 27(6), 421–424 (2013).
[Crossref] [PubMed]

Choi, W.

Choi, Y.

Chong, C.

Chuck, R. S.

C. Y. Park, S. Y. Oh, and R. S. Chuck, “Measurement of angle kappa and centration in refractive surgery,” Curr. Opin. Ophthalmol. 23(4), 269–275 (2012).
[Crossref] [PubMed]

Dai, C.

de Boer, J.

de Castro, A.

De Freitas, C.

Dhalla, A.-H.

Dogariu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Duker, J. S.

Dunne, M. C.

M. C. Dunne, G. P. Misson, E. K. White, and D. A. Barnes, “Peripheral astigmatic asymmetry and angle alpha,” Ophthalmic Physiol. Opt. 13(3), 303–305 (1993).
[Crossref] [PubMed]

Durán, S.

Fan, S.

Fotouhi, A.

H. Hashemi, M. KhabazKhoob, K. Yazdani, S. Mehravaran, E. Jafarzadehpur, and A. Fotouhi, “Distribution of angle kappa measurements with Orbscan II in a population-based survey,” J. Refract. Surg. 26(12), 966–971 (2010).
[Crossref] [PubMed]

Fujimoto, J. G.

Grulkowski, I.

Hashemi, H.

H. Hashemi, M. KhabazKhoob, K. Yazdani, S. Mehravaran, E. Jafarzadehpur, and A. Fotouhi, “Distribution of angle kappa measurements with Orbscan II in a population-based survey,” J. Refract. Surg. 26(12), 966–971 (2010).
[Crossref] [PubMed]

Hendargo, H. C.

Ho, A.

Hoggan, R. N.

M. Moshirfar, R. N. Hoggan, and V. Muthappan, “Angle Kappa and its importance in refractive surgery,” Oman J. Ophthalmol. 6(3), 151–158 (2013).
[Crossref] [PubMed]

Huang, D.

Hwang, B. N.

B. N. Hwang, M. H. Son, and I. G. Won, “Angle kappa measurement with slit lamp biomicroscope,” Korean J. Ophthalmol. Soc. 43, 2005–2009 (2002).

Hyeon, M. G.

Itoh, M.

Izatt, J.

Izatt, J. A.

Jafarzadehpur, E.

H. Hashemi, M. KhabazKhoob, K. Yazdani, S. Mehravaran, E. Jafarzadehpur, and A. Fotouhi, “Distribution of angle kappa measurements with Orbscan II in a population-based survey,” J. Refract. Surg. 26(12), 966–971 (2010).
[Crossref] [PubMed]

Jayaraman, V.

Jeong, H.-W.

Jiang, J.

Jiao, S.

Jiménez-Alfaro, I.

Kanellopoulos, A. J.

H. Basmak, A. Sahin, N. Yildirim, T. D. Papakostas, and A. J. Kanellopoulos, “Measurement of angle kappa with synoptophore and Orbscan II in a normal population,” J. Refract. Surg. 23(5), 456–460 (2007).
[PubMed]

KhabazKhoob, M.

H. Hashemi, M. KhabazKhoob, K. Yazdani, S. Mehravaran, E. Jafarzadehpur, and A. Fotouhi, “Distribution of angle kappa measurements with Orbscan II in a population-based survey,” J. Refract. Surg. 26(12), 966–971 (2010).
[Crossref] [PubMed]

Kim, B.-M.

Kim, H.-J.

Kim, J.

Kim, P. U.

Kim, S. H.

H. J. Shammas, S. Ortiz, M. C. Shammas, S. H. Kim, and C. Chong, “Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer,” J. Cataract Refract. Surg. 42(1), 50–61 (2016).
[Crossref] [PubMed]

Kim, U. S.

S. R. Choi and U. S. Kim, “The correlation between angle kappa and ocular biometry in Koreans,” Korean J. Ophthalmol. 27(6), 421–424 (2013).
[Crossref] [PubMed]

Kuo, A.

Lee, J. K.

J. H. Yeo, N. J. Moon, and J. K. Lee, “Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography,” Korean J. Ophthalmol. 31(3), 257–262 (2017).
[Crossref] [PubMed]

Lee, S.-W.

Li, L.

Li, Q.

Liu, J. J.

Lu, C. D.

Madjarova, V. D.

Makita, S.

Manns, F.

Marcos, S.

McAlinden, C.

S. Arba Mosquera, S. Verma, and C. McAlinden, “Centration axis in refractive surgery,” Eye Vis (Lond) 2(1), 4 (2015).
[Crossref] [PubMed]

McNabb, R. P.

Mehravaran, S.

H. Hashemi, M. KhabazKhoob, K. Yazdani, S. Mehravaran, E. Jafarzadehpur, and A. Fotouhi, “Distribution of angle kappa measurements with Orbscan II in a population-based survey,” J. Refract. Surg. 26(12), 966–971 (2010).
[Crossref] [PubMed]

Misson, G. P.

M. C. Dunne, G. P. Misson, E. K. White, and D. A. Barnes, “Peripheral astigmatic asymmetry and angle alpha,” Ophthalmic Physiol. Opt. 13(3), 303–305 (1993).
[Crossref] [PubMed]

Moon, N. J.

J. H. Yeo, N. J. Moon, and J. K. Lee, “Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography,” Korean J. Ophthalmol. 31(3), 257–262 (2017).
[Crossref] [PubMed]

Morosawa, A.

Moshirfar, M.

M. Moshirfar, R. N. Hoggan, and V. Muthappan, “Angle Kappa and its importance in refractive surgery,” Oman J. Ophthalmol. 6(3), 151–158 (2013).
[Crossref] [PubMed]

Muthappan, V.

M. Moshirfar, R. N. Hoggan, and V. Muthappan, “Angle Kappa and its importance in refractive surgery,” Oman J. Ophthalmol. 6(3), 151–158 (2013).
[Crossref] [PubMed]

Nankivil, D.

Oh, S. Y.

C. Y. Park, S. Y. Oh, and R. S. Chuck, “Measurement of angle kappa and centration in refractive surgery,” Curr. Opin. Ophthalmol. 23(4), 269–275 (2012).
[Crossref] [PubMed]

Ortiz, S.

H. J. Shammas, S. Ortiz, M. C. Shammas, S. H. Kim, and C. Chong, “Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer,” J. Cataract Refract. Surg. 42(1), 50–61 (2016).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: An application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

Papakostas, T. D.

H. Basmak, A. Sahin, N. Yildirim, T. D. Papakostas, and A. J. Kanellopoulos, “Measurement of angle kappa with synoptophore and Orbscan II in a normal population,” J. Refract. Surg. 23(5), 456–460 (2007).
[PubMed]

Parel, J.-M.

Park, C. Y.

C. Y. Park, S. Y. Oh, and R. S. Chuck, “Measurement of angle kappa and centration in refractive surgery,” Curr. Opin. Ophthalmol. 23(4), 269–275 (2012).
[Crossref] [PubMed]

Pérez-Merino, P.

Plesea, L.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Podoleanu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Potsaid, B.

Radhakrishnan, S.

Ren, Q.

Rollins, A.

Rosen, R.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Ruggeri, M.

Sahin, A.

H. Basmak, A. Sahin, N. Yildirim, T. D. Papakostas, and A. J. Kanellopoulos, “Measurement of angle kappa with synoptophore and Orbscan II in a normal population,” J. Refract. Surg. 23(5), 456–460 (2007).
[PubMed]

Sakai, T.

Shammas, H. J.

H. J. Shammas, S. Ortiz, M. C. Shammas, S. H. Kim, and C. Chong, “Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer,” J. Cataract Refract. Surg. 42(1), 50–61 (2016).
[Crossref] [PubMed]

Shammas, M. C.

H. J. Shammas, S. Ortiz, M. C. Shammas, S. H. Kim, and C. Chong, “Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer,” J. Cataract Refract. Surg. 42(1), 50–61 (2016).
[Crossref] [PubMed]

Shepherd, N.

Son, M. H.

B. N. Hwang, M. H. Son, and I. G. Won, “Angle kappa measurement with slit lamp biomicroscope,” Korean J. Ophthalmol. Soc. 43, 2005–2009 (2002).

Swanson, E. A.

Tearney, G.

Uhlhorn, S. R.

Velasco-Ocana, M.

Verma, S.

S. Arba Mosquera, S. Verma, and C. McAlinden, “Centration axis in refractive surgery,” Eye Vis (Lond) 2(1), 4 (2015).
[Crossref] [PubMed]

Westphal, V.

White, E. K.

M. C. Dunne, G. P. Misson, E. K. White, and D. A. Barnes, “Peripheral astigmatic asymmetry and angle alpha,” Ophthalmic Physiol. Opt. 13(3), 303–305 (1993).
[Crossref] [PubMed]

Won, I. G.

B. N. Hwang, M. H. Son, and I. G. Won, “Angle kappa measurement with slit lamp biomicroscope,” Korean J. Ophthalmol. Soc. 43, 2005–2009 (2002).

Yasuno, Y.

Yatagai, T.

Yazdani, K.

H. Hashemi, M. KhabazKhoob, K. Yazdani, S. Mehravaran, E. Jafarzadehpur, and A. Fotouhi, “Distribution of angle kappa measurements with Orbscan II in a population-based survey,” J. Refract. Surg. 26(12), 966–971 (2010).
[Crossref] [PubMed]

Yeo, J. H.

J. H. Yeo, N. J. Moon, and J. K. Lee, “Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography,” Korean J. Ophthalmol. 31(3), 257–262 (2017).
[Crossref] [PubMed]

Yildirim, N.

H. Basmak, A. Sahin, N. Yildirim, T. D. Papakostas, and A. J. Kanellopoulos, “Measurement of angle kappa with synoptophore and Orbscan II in a normal population,” J. Refract. Surg. 23(5), 456–460 (2007).
[PubMed]

Yun, S.

Zhou, C.

Appl. Opt. (1)

Biomed. Opt. Express (5)

Curr. Opin. Ophthalmol. (1)

C. Y. Park, S. Y. Oh, and R. S. Chuck, “Measurement of angle kappa and centration in refractive surgery,” Curr. Opin. Ophthalmol. 23(4), 269–275 (2012).
[Crossref] [PubMed]

Eye Vis (Lond) (1)

S. Arba Mosquera, S. Verma, and C. McAlinden, “Centration axis in refractive surgery,” Eye Vis (Lond) 2(1), 4 (2015).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (1)

H. J. Shammas, S. Ortiz, M. C. Shammas, S. H. Kim, and C. Chong, “Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer,” J. Cataract Refract. Surg. 42(1), 50–61 (2016).
[Crossref] [PubMed]

J. Refract. Surg. (2)

H. Hashemi, M. KhabazKhoob, K. Yazdani, S. Mehravaran, E. Jafarzadehpur, and A. Fotouhi, “Distribution of angle kappa measurements with Orbscan II in a population-based survey,” J. Refract. Surg. 26(12), 966–971 (2010).
[Crossref] [PubMed]

H. Basmak, A. Sahin, N. Yildirim, T. D. Papakostas, and A. J. Kanellopoulos, “Measurement of angle kappa with synoptophore and Orbscan II in a normal population,” J. Refract. Surg. 23(5), 456–460 (2007).
[PubMed]

Korean J. Ophthalmol. (2)

J. H. Yeo, N. J. Moon, and J. K. Lee, “Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography,” Korean J. Ophthalmol. 31(3), 257–262 (2017).
[Crossref] [PubMed]

S. R. Choi and U. S. Kim, “The correlation between angle kappa and ocular biometry in Koreans,” Korean J. Ophthalmol. 27(6), 421–424 (2013).
[Crossref] [PubMed]

Korean J. Ophthalmol. Soc. (1)

B. N. Hwang, M. H. Son, and I. G. Won, “Angle kappa measurement with slit lamp biomicroscope,” Korean J. Ophthalmol. Soc. 43, 2005–2009 (2002).

Oman J. Ophthalmol. (1)

M. Moshirfar, R. N. Hoggan, and V. Muthappan, “Angle Kappa and its importance in refractive surgery,” Oman J. Ophthalmol. 6(3), 151–158 (2013).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

M. C. Dunne, G. P. Misson, E. K. White, and D. A. Barnes, “Peripheral astigmatic asymmetry and angle alpha,” Ophthalmic Physiol. Opt. 13(3), 303–305 (1993).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Phys. Med. Biol. (1)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Other (3)

R. F. Steinert and D. Huang, Anterior Segment Optical Coherence Tomography (SLACK Incorporated, 2008).

M. H. Frosz, M. Juhl, and M. H. Lang, Optical Coherence Tomography: System Design and Noise Analysis (Risø National Laboratory, 2001).

B. Bouma, Handbook of Optical Coherence Tomography (Informa Health Care, 2001).

Supplementary Material (1)

NameDescription
» Visualization 1       3D whole-eye movie of the left eye of a volunteer, containing the VA, the OA, and the PA.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Cross-sectional schematic of the human right eye (top view). α is the angle between the VA and OA. κ is the angle between the OA and PA.

Fig. 2
Fig. 2

Schematic of the dual-depth SS-OCT system, which consists of two interferometers. PD: photodiode detector, L1–L3: lenses, PBS: polarization beam splitter, GM: galvanometer, BPD: balanced photodiode detector, FC: fiber coupler, FS: frequency shifter.

Fig. 3
Fig. 3

Conceptual diagrams of the algorithms used to define the VA, (a) using a telecentric and (b) non-telecentric scanning configuration; (c) the OA, which was determined by fitting a line through the centers of the best-fit circles of the anterior and posterior corneal surfaces (C1 and C2, respectively), and the centers of the best-fit circles of the anterior and posterior lens surfaces (L1 and L2, respectively); and (d) the PA, which is perpendicular to the cornea surface and passes through the center of the pupil.

Fig. 4
Fig. 4

Schematic of axis summation in 3D space. The axis vectors (blue arrows) are the projections of an axis onto the transverse and sagittal planes, while the red axis (red arrow) is the sum of the axis vectors in 3D space.

Fig. 5
Fig. 5

Transverse profiles of the three beams, including the two beams from the OCT source and a beam from the fixation target, at various axial positions in the sample arm. The red arrow indicates an OCT beam for the retina and a beam from the fixation target which are similar in size and shape. The yellow arrow indicates an OCT beam for the anterior segment imaging. Beam profiles were measured at (a) −20 mm (b) −10 mm, (c) 0 mm, (d) + 10 mm, (e) + 20 mm, and (f) + 30 mm from the focal position. The negative distance implies a direction closer to the objective lens and a positive distance implies a distance farther from the objective lens.

Fig. 6
Fig. 6

Measured angle “α” of the model eye at various orientations and differences between adjacent measurements

Fig. 7
Fig. 7

Simultaneously obtained (a) anterior segment and (b) retina images of a human volunteer’s left eye, each of which is the average of 30 images. (c) Whole-eye image reconstructed using (a) and (b). The distortions caused by the refractive indices of the eye and refraction at the corneal surface are corrected in the whole-eye image.

Fig. 8
Fig. 8

Three axes of the whole eye for 26-year-old volunteer (a) in the transverse plane and (b) in the sagittal plane.

Fig. 9
Fig. 9

3D whole-eye images of the left eye of a 26-year-old volunteer, containing the VA, the OA, and the PA. (a) side view (see Visualization 1) and (b) top view.

Fig. 10
Fig. 10

Box-whisker plot of α and κ from 10 subjects. Box plot represents interquartile range (25%–75% percentiles) and whisker plot represents min and max values. In each box, the longitudinal bars and squares represent the median and the average values, respectively. All data are plotted as diamond shapes.

Fig. 11
Fig. 11

Intensity profile of averaged A-lines around the center.

Tables (1)

Tables Icon

Table 1 Repeatability of full biometry using dual-depth whole-eye OCT system