Abstract

In super-continuum (SC) source based spectral domain optical coherence tomography (SC-SDOCT), the stability of the power spectral density (PSD) has a significant impact on OCT system sensitivity and image signal to noise ratio (SNR). High speed imaging decreases the camera's exposure time, thus each A-scan contained fewer laser pulse excited SC wideband emissions, resulting in a decrease of SNR. In this manuscript, we present a buffer-averaging SC-SDOCT (BASC-SDOCT) to improve the system's performance without losing imaging speed, taking advantage of the excess output power from typical SC sources. In our proposed technique, the output light from SC was passed through a fiber based light buffering and averaging system to improve the PSD stability by averaging 8 SC emissions. The results showed that 6.96 µs of SC emission after buffering and averaging can achieve the same PSD stability equivalent to a longer exposure time of 55.68 µs, despite increasing the imaging speed from 16.8 kHz to 91.9 kHz. The system sensitivity was improved by 8.6 dB, reaching 100.6 dB, which in turn improved SNR of structural imaging, Doppler OCT velocity measurement, and speckle variance OCT (SVOCT) angiographic imaging as demonstrated by phantom and in vivo experiments.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Beam-shifting technique for speckle reduction and flow rate measurement in optical coherence tomography

Chaoliang Chen, Weisong Shi, Ryan Deorajh, Nhu Nguyen, Joel Ramjist, Andrew Marques, and Victor XD Yang
Opt. Lett. 43(24) 5921-5924 (2018)

Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source

Jingjiang Xu, Shaozhen Song, Wei Wei, and Ruikang K. Wang
Biomed. Opt. Express 8(1) 420-435 (2017)

Optical coherence tomography based angiography [Invited]

Chieh-Li Chen and Ruikang K. Wang
Biomed. Opt. Express 8(2) 1056-1082 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
    [Crossref] [PubMed]
  3. V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
    [Crossref] [PubMed]
  4. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
    [Crossref] [PubMed]
  5. J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
    [Crossref] [PubMed]
  6. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref] [PubMed]
  7. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
    [Crossref] [PubMed]
  8. C. Chen, K. H. Y. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, E. Barnes, L. Chin, and V. X. D. Yang, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part V): Optimal utilization of multi-beam scanning for Doppler and speckle variance microvascular imaging,” Opt. Express 25(7), 7761–7777 (2017).
    [Crossref] [PubMed]
  9. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  10. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
    [Crossref] [PubMed]
  11. L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
    [Crossref] [PubMed]
  12. S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4(7), 1214–1228 (2013).
    [Crossref] [PubMed]
  13. S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8(1), 323–337 (2017).
    [Crossref] [PubMed]
  14. A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8(9), 4007–4025 (2017).
    [Crossref] [PubMed]
  15. M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
    [Crossref] [PubMed]
  16. W. Yuan, J. Mavadia-Shukla, J. Xi, W. Liang, X. Yu, S. Yu, and X. Li, “Optimal operational conditions for supercontinuum-based ultrahigh-resolution endoscopic OCT imaging,” Opt. Lett. 41(2), 250–253 (2016).
    [Crossref] [PubMed]
  17. K. Q. Kieu, J. Klein, A. Evans, J. K. Barton, and N. Peyghambarian, “Ultrahigh resolution all-reflective optical coherence tomography system with a compact fiber-based supercontinuum source,” J. Biomed. Opt. 16(10), 106004 (2011).
    [Crossref] [PubMed]
  18. S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
    [Crossref] [PubMed]
  19. J. Barrick, A. Doblas, M. R. Gardner, P. R. Sears, L. E. Ostrowski, and A. L. Oldenburg, “High-speed and high-sensitivity parallel spectral-domain optical coherence tomography using a supercontinuum light source,” Opt. Lett. 41(24), 5620–5623 (2016).
    [Crossref] [PubMed]
  20. Z. Zhi, J. Qin, L. An, and R. K. Wang, “Supercontinuum light source enables in vivo optical microangiography of capillary vessels within tissue beds,” Opt. Lett. 36(16), 3169–3171 (2011).
    [Crossref] [PubMed]
  21. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
  22. C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23(3), 1992–2001 (2015).
    [Crossref] [PubMed]
  23. M. Maria, I. B. Gonzalo, M. Bondu, R. D. Engelsholm, T. Feuchter, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution Optical Coherence Tomography,” Proc. SPIE 10056, 100560O (2017)
  24. S. Pi, A. Camino, M. Zhang, W. Cepurna, G. Liu, D. Huang, J. Morrison, and Y. Jia, “Angiographic and structural imaging using high axial resolution fiber-based visible-light OCT,” Biomed. Opt. Express 8(10), 4595–4608 (2017).
    [Crossref] [PubMed]
  25. S. Lawman, Y. Dong, B. M. Williams, V. Romano, S. Kaye, S. P. Harding, C. Willoughby, Y. C. Shen, and Y. Zheng, “High resolution corneal and single pulse imaging with line field spectral domain optical coherence tomography,” Opt. Express 24(11), 12395–12405 (2016).
    [Crossref] [PubMed]
  26. N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1 (2019).
  27. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]

2019 (1)

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1 (2019).

2017 (6)

M. Maria, I. B. Gonzalo, M. Bondu, R. D. Engelsholm, T. Feuchter, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution Optical Coherence Tomography,” Proc. SPIE 10056, 100560O (2017)

S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8(1), 323–337 (2017).
[Crossref] [PubMed]

C. Chen, K. H. Y. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, E. Barnes, L. Chin, and V. X. D. Yang, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part V): Optimal utilization of multi-beam scanning for Doppler and speckle variance microvascular imaging,” Opt. Express 25(7), 7761–7777 (2017).
[Crossref] [PubMed]

A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8(9), 4007–4025 (2017).
[Crossref] [PubMed]

S. Pi, A. Camino, M. Zhang, W. Cepurna, G. Liu, D. Huang, J. Morrison, and Y. Jia, “Angiographic and structural imaging using high axial resolution fiber-based visible-light OCT,” Biomed. Opt. Express 8(10), 4595–4608 (2017).
[Crossref] [PubMed]

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (1)

2013 (1)

2012 (1)

2011 (3)

Z. Zhi, J. Qin, L. An, and R. K. Wang, “Supercontinuum light source enables in vivo optical microangiography of capillary vessels within tissue beds,” Opt. Lett. 36(16), 3169–3171 (2011).
[Crossref] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[Crossref] [PubMed]

K. Q. Kieu, J. Klein, A. Evans, J. K. Barton, and N. Peyghambarian, “Ultrahigh resolution all-reflective optical coherence tomography system with a compact fiber-based supercontinuum source,” J. Biomed. Opt. 16(10), 106004 (2011).
[Crossref] [PubMed]

2010 (2)

2008 (1)

2005 (1)

2003 (2)

1997 (2)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

An, L.

Augustin, M.

Bang, O.

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref] [PubMed]

M. Maria, I. B. Gonzalo, M. Bondu, R. D. Engelsholm, T. Feuchter, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution Optical Coherence Tomography,” Proc. SPIE 10056, 100560O (2017)

Barnes, E.

Barrick, J.

Barton, J.

Barton, J. K.

K. Q. Kieu, J. Klein, A. Evans, J. K. Barton, and N. Peyghambarian, “Ultrahigh resolution all-reflective optical coherence tomography system with a compact fiber-based supercontinuum source,” J. Biomed. Opt. 16(10), 106004 (2011).
[Crossref] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
[Crossref] [PubMed]

Baumann, B.

Bernucci, M.

Bondu, M.

M. Maria, I. B. Gonzalo, M. Bondu, R. D. Engelsholm, T. Feuchter, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution Optical Coherence Tomography,” Proc. SPIE 10056, 100560O (2017)

Bravo Gonzalo, I.

Cable, A.

Camino, A.

Cepurna, W.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, C.

Chen, S.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

Chen, Z.

Cheng, K. H. Y.

Cheung, C. S.

Chin, L.

Chong, S. P.

Clarkson, W. A.

Daniel, J. M. O.

Denninger, M.

Deorajh, R.

Doblas, A.

Dong, Y.

Engelsholm, R. D.

M. Maria, I. B. Gonzalo, M. Bondu, R. D. Engelsholm, T. Feuchter, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution Optical Coherence Tomography,” Proc. SPIE 10056, 100560O (2017)

Eugui, P.

Evans, A.

K. Q. Kieu, J. Klein, A. Evans, J. K. Barton, and N. Peyghambarian, “Ultrahigh resolution all-reflective optical coherence tomography system with a compact fiber-based supercontinuum source,” J. Biomed. Opt. 16(10), 106004 (2011).
[Crossref] [PubMed]

Fawzi, A.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

Fercher, A.

Feuchter, T.

M. Maria, I. B. Gonzalo, M. Bondu, R. D. Engelsholm, T. Feuchter, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution Optical Coherence Tomography,” Proc. SPIE 10056, 100560O (2017)

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gao, W.

Gardner, M. R.

Gesperger, J.

Gonzalo, I. B.

M. Maria, I. B. Gonzalo, M. Bondu, R. D. Engelsholm, T. Feuchter, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution Optical Coherence Tomography,” Proc. SPIE 10056, 100560O (2017)

Gordon, M.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Harding, S. P.

Harper, D. J.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

Hornegger, J.

Huang, D.

Izatt, J. A.

Jakubovic, R.

Jarvi, M.

Jia, Y.

Jiang, J.

Jivraj, J.

Kawabe, T.

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1 (2019).

Kawagoe, H.

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1 (2019).

Kaye, S.

Khurana, M.

Kieu, K. Q.

K. Q. Kieu, J. Klein, A. Evans, J. K. Barton, and N. Peyghambarian, “Ultrahigh resolution all-reflective optical coherence tomography system with a compact fiber-based supercontinuum source,” J. Biomed. Opt. 16(10), 106004 (2011).
[Crossref] [PubMed]

Klein, J.

K. Q. Kieu, J. Klein, A. Evans, J. K. Barton, and N. Peyghambarian, “Ultrahigh resolution all-reflective optical coherence tomography system with a compact fiber-based supercontinuum source,” J. Biomed. Opt. 16(10), 106004 (2011).
[Crossref] [PubMed]

Kraus, M. F.

Kulkarni, M. D.

Lawman, S.

Lee, K.

Leick, L.

M. Maria, I. B. Gonzalo, M. Bondu, R. D. Engelsholm, T. Feuchter, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution Optical Coherence Tomography,” Proc. SPIE 10056, 100560O (2017)

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref] [PubMed]

Leitgeb, R.

Leung, M. K. K.

Li, X.

Liang, H.

Liang, W.

Lichtenegger, A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, G.

Liu, J. J.

Lo, S.

Malekafzali, A.

Maria, M.

M. Maria, I. B. Gonzalo, M. Bondu, R. D. Engelsholm, T. Feuchter, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution Optical Coherence Tomography,” Proc. SPIE 10056, 100560O (2017)

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref] [PubMed]

Mariampillai, A.

Matsushima, M.

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1 (2019).

Mavadia-Shukla, J.

Milner, T. E.

Mok, A.

Mori, K.

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1 (2019).

Moriyama, E. H.

Morrison, J.

Moselund, P. M.

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref] [PubMed]

M. Maria, I. B. Gonzalo, M. Bondu, R. D. Engelsholm, T. Feuchter, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution Optical Coherence Tomography,” Proc. SPIE 10056, 100560O (2017)

Muck, M.

Munce, N. R.

Nelson, J. S.

Nishizawa, N.

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1 (2019).

Oldenburg, A. L.

Ostrowski, L. E.

Pekar, J.

Peyghambarian, N.

K. Q. Kieu, J. Klein, A. Evans, J. K. Barton, and N. Peyghambarian, “Ultrahigh resolution all-reflective optical coherence tomography system with a compact fiber-based supercontinuum source,” J. Biomed. Opt. 16(10), 106004 (2011).
[Crossref] [PubMed]

Pi, S.

Podoleanu, A.

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref] [PubMed]

M. Maria, I. B. Gonzalo, M. Bondu, R. D. Engelsholm, T. Feuchter, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution Optical Coherence Tomography,” Proc. SPIE 10056, 100560O (2017)

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qi, B.

Qin, J.

Radhakrishnan, H.

Ramjist, J.

Romano, V.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sears, P. R.

Seng-Yue, E.

Shen, T. T.

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[Crossref] [PubMed]

Shen, Y. C.

Shu, X.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

Srinivas, S.

Srinivasan, V. J.

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Stromski, S.

Subhash, H.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tan, O.

Tokayer, J.

Tokurakawa, M.

van Gemert, M. J. C.

Vitkin, A.

Vitkin, I.

Vitkin, I. A.

Wang, R. K.

Wang, X.

Wang, Y.

Welch, A. J.

Williams, B. M.

Willoughby, C.

Wilson, B.

Wilson, B. C.

Woehrer, A.

Xi, J.

Yamanaka, M.

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1 (2019).

Yang, V.

Yang, V. X. D.

Yazdanfar, S.

Yi, J.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

Yousefi, S.

Yu, S.

Yu, X.

Yuan, W.

Zhang, H. F.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

Zhang, M.

Zheng, Y.

Zhi, Z.

Biomed. Opt. Express (4)

IEEE J. Sel. Top. Quantum Electron. (1)

N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, and T. Kawabe, “Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1 (2019).

J. Biomed. Opt. (3)

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[Crossref] [PubMed]

K. Q. Kieu, J. Klein, A. Evans, J. K. Barton, and N. Peyghambarian, “Ultrahigh resolution all-reflective optical coherence tomography system with a compact fiber-based supercontinuum source,” J. Biomed. Opt. 16(10), 106004 (2011).
[Crossref] [PubMed]

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

Opt. Express (8)

V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
[Crossref] [PubMed]

J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
[Crossref] [PubMed]

C. Chen, K. H. Y. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, E. Barnes, L. Chin, and V. X. D. Yang, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part V): Optimal utilization of multi-beam scanning for Doppler and speckle variance microvascular imaging,” Opt. Express 25(7), 7761–7777 (2017).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

S. Lawman, Y. Dong, B. M. Williams, V. Romano, S. Kaye, S. P. Harding, C. Willoughby, Y. C. Shen, and Y. Zheng, “High resolution corneal and single pulse imaging with line field spectral domain optical coherence tomography,” Opt. Express 24(11), 12395–12405 (2016).
[Crossref] [PubMed]

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23(3), 1992–2001 (2015).
[Crossref] [PubMed]

Opt. Lett. (8)

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref] [PubMed]

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
[Crossref] [PubMed]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
[Crossref] [PubMed]

J. Barrick, A. Doblas, M. R. Gardner, P. R. Sears, L. E. Ostrowski, and A. L. Oldenburg, “High-speed and high-sensitivity parallel spectral-domain optical coherence tomography using a supercontinuum light source,” Opt. Lett. 41(24), 5620–5623 (2016).
[Crossref] [PubMed]

Z. Zhi, J. Qin, L. An, and R. K. Wang, “Supercontinuum light source enables in vivo optical microangiography of capillary vessels within tissue beds,” Opt. Lett. 36(16), 3169–3171 (2011).
[Crossref] [PubMed]

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref] [PubMed]

W. Yuan, J. Mavadia-Shukla, J. Xi, W. Liang, X. Yu, S. Yu, and X. Li, “Optimal operational conditions for supercontinuum-based ultrahigh-resolution endoscopic OCT imaging,” Opt. Lett. 41(2), 250–253 (2016).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Maria, I. B. Gonzalo, M. Bondu, R. D. Engelsholm, T. Feuchter, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “A comparative study of noise in supercontinuum light sources for ultra-high resolution Optical Coherence Tomography,” Proc. SPIE 10056, 100560O (2017)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (1)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of fiber based light buffering and averaging system.
Fig. 2
Fig. 2 Simulation results. (a) Theoretical PSD. (b) Plot of noise STD versus optical intensity. (c)-(d) Overlapped 1000 A-scans of original PSD and 8-buffer–averaged PSD. (e)-(f) Overlapped 1000 A-scans of simulated interference fringes obtained by multiplying a cosine function by (c)-(d). (g) Averaged PSF of 1000 PSFs obtained by performing FFT on (e) and (f). (h)-(i) Histograms of Doppler phase shifts (at peak intensity pixel) between each two adjacent A-scans. In (g)-(i), blue data and red data are from the original PSD and buffer-averaged PSD, respectively.
Fig. 3
Fig. 3 Schematic of our home-built BASC-SDOCT. L1-L6: achromatic lens, PC: polarization controller, DP: dispersion compensation.
Fig. 4
Fig. 4 Schematic of scanning protocol for CDOCT technique. (a) Synchronized trigger signal for camera and driving signal of fast scanning galvo. (b) Structure of tilted mirror scanning. (c) Image without stitching. (d) Stitched images.
Fig. 5
Fig. 5 Performance of BASC-SDOCT. (a)-(c) Overlapped 1000 A-scans of PSD under three different settings. (d) Relative noise plots obtained through dividing STD by the mean value at each pixel. (e)-(g) Plots of relative PSFs with the intensity at each pixel divided by noise floor (STD of background). (h) Plots of SNR versus depth. (i)-(k) Histograms of differential peak values of 1000 PSFs at the depth marked by a black arrow in (l). (l) Plots of the STDs of PSFs' differential peak values versus depth. (m)-(o) Histograms of the phase shifts of PSF peak value pixel at the position marked by a black arrow in (p). (p) The plots of phase-shift STDs versus SNRs. In (d), (h), (l) and (p), blue, green and red data are from the original PSD, 8-buffer-averaged PSD and the PSD with 8 times longer exposure time.
Fig. 6
Fig. 6 (a) Measured dark noise at each camera pixel. (b) Plots of total noise versus mean pixel readout count at exposure time of 6.96 µs, where red, green and black are from original PSD, 8-buffer-averaged PSD and SLD.
Fig. 7
Fig. 7 Averaged PSFs obtained by inserting a neutral density filter (OD = 3) in the optical path, where black and red plots were from original PSD and 8-buffer-averaged PSD, respectively, showing 8.6 dB improvement.
Fig. 8
Fig. 8 Structural images of orange. (a)-(c) Structural images obtained by original PSD of 6.96 µs, 8-buffer-averaged PSD and the PSD with exposure time of 55.68 µs. (d)-(f) Zoomed images of the local regions marked by dashed red rectangles in (a)-(c), respectively. (g) The intensity plots of the positions marked by dashed green lines in (d)-(f), where blue, green and red curves are data of original PSD, 8-buffer-averaged PSD and the PSD with exposure time of 55.68 µs. The region outside of sample (marked by yellow rectangle) was used as background for SNR calculation. (a)-(c) share the same scale bar.
Fig. 9
Fig. 9 CDOCT images of flow phantom. (a) Structural image. (b)-(d) Doppler phase shift images of original PSD of 6.96 µs, 8-buffer-averaged PSD and the PSD with exposure time of 55.68 µs, where a Kasai window of 5 × 9 pixels were used [3]. (e) Phase shift plots at the positions marked by dashed red lines in (b)-(d), where blue, red and green curves are data of original PSD of 6.96 µs, 8-buffer-averaged PSD and the PSD with exposure time of 55.68 µs. The regions marked by dashed white rectangles were used as background for SNR calculation. (b)-(d) share the same scale bar.
Fig. 10
Fig. 10 Cross sectional SVOCT images of intralipid at room temperature with zero volumetric flow rate. (a) Structural image. (b)-(d) SVOCT images of original PSD of 6.96 µs, 8-buffer-averaged PSD and the PSD with exposure time of 55.68 µs. (e) Intensity plots at the positions marked by dashed white line in (b)-(d), respectively, where blue, red and green curves are data of original PSD of 6.96 µs, 8-buffer-averaged PSD and the PSD with exposure time of 55.68 µs. (b)-(d) share the same scale bar.
Fig. 11
Fig. 11 Ex vivo images of chicken thigh. (a) Photograph of chicken thigh muscle and the position marked by black line was scanned. (b)-(d) Structural images of original PSD, 8-buffer-averaged PSD and the PSD with exposure time of 55.68 µs. (e)-(g) Doppler phase shift images of (b)-(d), respectively, where a Kasai window of 5 × 9 pixels were used. (h)-(j) Histograms of the phase shifts in the local regions marked by dashed white rectangles in (e)-(g), respectively. (b)-(d) and (e)-(g) share the same scale bar.
Fig. 12
Fig. 12 Cross sectional human skin images. (a) Photograph of a volunteer's left hand and the region marked by a red line was scanned. (b)-(d) Structural images of original PSD, 8-buffer-averaged PSD and the PSD with exposure time of 55.68 µs. (e)-(g) Doppler phase shift images of (b)-(d), respectively, where a Kasai window of 5 × 9 pixels was used. (h)-(j) Histograms of the phase shifts at the positions marked by dashed white lines (indicative of the background level) in (e)-(g), respectively. (b)-(d) and (e)-(g) share the same scale bar.
Fig. 13
Fig. 13 En face SVOCT images within a local region of 2 × 2 mm2. (a)-(c) En face SVOCT images of original PSD, 8-buffer-averaged PSD and the PSD with exposure time of 55.68 µs within depth range of 390-900 µm. (d)-(f) Zoomed images within the local region marked by dashed white rectangles in (a)-(c), respectively. (g) Plots of SVOCT signals at the positions marked by white dashed lines in (d)-(f), where blue, red and green curves are data of original PSD, 8-buffer-averaged PSD and the PSD with exposure time of 55.68 µs. (a)-(c) share the same scale bar.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L 0 = cT n ,
σ ¯ 2 = 1 N ( σ shot 2 + σ excess 2 + σ dark 2 + σ read 2 + σ sc 2 ),
SNR=20 log 10 ( I max σ bg ),